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Abstract : 

The second harmonic light scattered from silver nanocubes dispersed in an aqueous suspension 

is investigated. The first hyperpolarizability is determined and corrected for resonance 

enhancement. It is shown to be similar to that of silver nanospheres with a comparable volume. 

The polarization-resolved analysis of the scattered harmonic intensity exhibits a surface 

response strongly modulated by the different multipolar field contributions. As a result, the 

shape does not play a leading role anymore for nanoparticles with a centrosymmetric shape 

when retardation must be considered. Comparing the right angle and forward-scattered 

polarized intensity responses, the unequal balance of the eight nanocube corners’ contribution 

to the total response is revealed despite the high degree of centrosymmetry of the cubic shape. 

It is then demonstrated with a simple model that the nanocubes’ first hyperpolarizability 

exhibits an octupolar tensorial symmetry. The surface integral equation method calculations are 

finally provided to investigate further the role of the corners’ and edges’ rounding. 
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INTRODUCTION 

The investigation of the optical properties of noble metal nanoparticles has received 

considerable attention over the last decades owing to their potential application in a wide range 

of fields, from imaging and sensing to optoelectronics.1-7 This interest largely relies on the 

plasmonic properties of these metallic nanoparticles, especially gold and silver nanoparticles. 

Surface plasmon (SP) resonances associated with the collective oscillation of the conduction 

band electrons within the visible and the near infra-red parts of the optical spectrum provide an 

insightful tool to investigate these optical properties in particular. Indeed, the properties of these 

SP resonances, i.e. their strength and energy position, are extremely sensitive to the morphology, 

the size or the shape of the nanoparticles. In this respect, the design of specific shapes and 

morphologies for these particles has been at the focus of an intense effort, using either wet 

chemical synthesis routes or lithography.2,8-10 A non-exhaustive list of shapes and morphologies 

includes spheres, rods, triangles, cubes, pyramids, core-shell and star-like nanoparticles for 

example.11  

 

SPRs are also associated with enhanced local fields in the vicinity of the nanoparticles, 

which has sparked an interest in the nonlinear optical properties of these particles too. Nonlinear 

optical processes involving simultaneously several photons are not efficient but their cross-

sections, otherwise extremely small, can be enhanced by SPRs.12 Second harmonic generation 

(SHG), the process whereby two photons at a fundamental frequency are converted into one 

photon at the second frequency, has thus also received attention as this is one of the simplest 

nonlinear optical phenomena. This process is forbidden within the electric dipole 

approximation in materials possessing a center of inversion.13 This approximation neglects the 

spatial dependence of the electromagnetic fields. Similarly, it is also forbidden for nanoparticles 

with a centrosymmetric shape within the same approximation, provided that these particles are 
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much smaller than the wavelength of light. However, it has since been demonstrated that 

centrosymmetric shapes are only ideal shapes, and as such, never observed in real samples. The 

centrosymmetry rule associated with perfect shapes is consequently easily broken in real 

experiments. Besides, retardation of electromagnetic fields, effectively the dependence of the 

electromagnetic fields with the space coordinates, requires the incorporation of higher order 

multipoles, beyond the electric dipole approximation.14 This feature introduces a source of 

complexity in the full understanding of the SHG response from metallic nanoparticles and 

careful studies must be performed to identify the origin of the response as well as to disentangle 

the different contributions to the overall response. Based on an appropriate knowledge of this 

response, several schemes have been proposed to use the nonlinear optical properties of metallic 

nanoparticles with specifically designed morphologies for applications, such as nanorulers and 

nonlinear plasmonic sensors for instance.15-17 

 

Fundamental studies on the nonlinear optical properties have been performed over the 

last years on a series of gold and silver nanoparticles with a special attention to the shape of the 

nanoparticles. Nanospheres, nanorods and nanodecahedra have been closely investigated with 

the determination of their first hyperpolarizability, namely their cross-section for the SHG 

process.18-23 A competition between the shape defect contribution and the field multipole modes 

has been identified while the nonlinearity can be assumed to originate from the surface itself.24 

Unfortunately, for many nanoparticle fabrication routes, be it in a liquid solution by the 

reduction of metallic salts or on a substrate by lithography, no perfect centrosymmetric shape 

can be achieved and it is difficult to disentangle these different contributions. Recently, it has 

nevertheless been demonstrated how polarization resolved measurements could achieve this 

operation.14 The shape defect contribution and the field multipoles have clearly been observed 

for nanospheres, nanorods and nanopyramids. In the latter case, the centrosymmetry of the 
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second harmonic sources is accidental, due to a symmetry five cancellation.22 To go further into 

this direction, nanocubes are investigated in the present work. It is indeed expected that, because 

the six cube facets can be easily identified, the nanocube shape will be closer to the ideal shape, 

perhaps to a larger extent as compared to nanospheres and nanorods.20,21 After an introductory 

part presenting the morphology and the linear optical properties of the different samples, the 

first hyperpolarizability is measured using the standard method of hyper Rayleigh scattering 

(HRS) also known as second harmonic scattering (SHS). In the second part, a polarization 

analysis is performed for the different samples to investigate the contributions to the quadratic 

nonlinear optical response. Finally, these data are compared to surface integral method 

computations with a particular attention given to the role of a rounding procedure on the edges 

and corners. 

 

MATERIAL AND METHODS 

Chemicals. Silver nitrate (AgNO3, 99+%), ethylene glycol (EG, 99.8%), polyvinylpyrrolidone 

(PVP, Mw ≈ 55,000), sodium sulfide, hydrochloric acid (38%), ethanol (95%) were all 

purchased from Sigma-Aldrich and used as obtained.    

 

Synthesis: Three silver nanocube samples with average edge lengths of 39 ± 5.5 nm (sample 

S1), 48 ± 4.4 nm (sample S2), and 100 ± 9.0 nm (sample S3) were prepared using variations of 

a sulfide-mediated polyol process developed by Xia et al..25 First, for Samples 1 and 2, 6 mL 

of EG was heated at 140oC for 1 h in a 24 mL loosely closed reaction vial. This solution was 

continuously stirred throughout the whole reaction. Towards the end of the initial heating period, 

separate EG solutions were prepared containing PVP (20 mg/mL), AgNO3 (48 mg/mL) and 

Na2S (3 mM). Next, 90 µL of the Na2S solution was added and after an additional ~9 mins this 

was followed with 1.5 mL of the PVP solution. Then 0.5 mL of the AgNO3 solution was also 
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added.  After ~15 mins, when the reaction solution had turned to dark-green, the reaction was 

quenched by placing in a water bath at room temperature. Clean-up was performed by adding 

~50 mL of acetone and centrifuging at 2000g for 30 mins. The supernatant was removed and 

the pellet of cubes was redispersed in distilled water. This was centrifuged again at 9000g for 

10 mins, the supernatant was discarded and the process was repeated a further two times. In the 

case of Sample 3, a modified procedure was adopted,26 where 5 mL of EG was heated for 1 h, 

after which 1 mL of a freshly prepared solution of 3 mM HCl was added. Ten minutes later, 

EG solutions of AgNO3 (94 mM, 3 mL) and PVP (147 mM, 3 mL) were added sequentially. 

The reaction was continued with heating at 140 oC for 26 h.  Washing was performed by diluting 

in ethanol, centrifugation and resuspending the precipitate in water. This was repeated before 

filtering the aqueous solution through a nylon filter (Whatman, pore size: 0.45 µm).  

 

Scanning Electron Microscopy and UV-Vis Absorption Characterization 

The samples were characterized by scanning electron microscopy (SEM) to measure the 

nanocube edge length. Typical SEM pictures for the three samples are provided as Figures S1a-

c in the Supporting Information.   

 

Similarly, the UV-visible extinction spectra were recorded for the three samples as well and are 

reported in Figure 1. 
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Figure 1 : Normalized UV-visible extinction spectra for the three silver nanocubes solution 

samples. (blue) Sample S1 : 39 nm edge length nanocubes, (green) Sample S2 : 

48 nm edge length nanocubes and (red) Sample S3 : 100 nm edge length 

nanocubes. 

 

The observed nanocube extinction spectra follow the trend already reported.8,9,27 It is 

nevertheless pointed out that Sample S3 has a rather broad spectrum, indicative of a broad 

distribution of nanocubes size. All samples exhibit higher order multipolar resonances on the 

short wavelength side of the main electric dipole SP resonance. 

 

Nonlinear Optical Setup  

The experimental nonlinear scattering apparatus was based on a femtosecond laser source 

operating at a repetition rate of 80 MHz, a fundamental wavelength of 800 nm and delivering 

140 femtosecond duration pulses with average power of about 700 mW at the laser exit. The 

fundamental beam linear polarization angle was selected with a half-wave plate and was 

spectrally cleaned with a low-pass filter to remove any harmonic light generated prior to the 

cell. The cell containing 1 mL of the nanocube aqueous samples was made of fused silica. The 

harmonic output light was then passed through a high-pass filter to remove the fundamental 

light and then sent at right angle from the fundamental beam propagation direction or in the 

forward direction through a collecting lens into a spectrometer coupled to a photomultiplier 
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tube working in photon counting regime (see Figure S2). An analyzer was placed before the 

spectrometer to record the polarization plots.  

 

RESULTS AND DISCUSSION 

First Hyperpolarizability 

The first hyperpolarizabilities of the silver nanocubes samples was determined by the standard 

technique of hyper Rayleigh scattering (HRS). The method offers the advantage of a 

measurement without any external symmetry-breaking element like a substrate. The quadratic 

nonlinear optical response stems from the nanocubes and the solvent and the latter is used as 

internal reference. The determination of the first hyperpolarizabilities entails the measurement 

of the harmonic scattered intensity as a function of the nanocubes concentration. The HRS 

intensity IHRS is then written as:28,29 

 

 !"#$ = &(($〈*$+〉 + (./〈*./+ 〉)!+       (1) 

 

where G is a general constant and I is the fundamental beam intensity. Also, NS and NnC are the 

number of water molecules, i.e. the solvent, and nanocubes per unit volume and bS and bnC their 

respective first hyperpolarizabilities. The brackets indicate an averaging procedure over all 

orientations in space since the measurements are performed in an isotropic liquid suspension. 

Figure 2 displays the data obtained for the three samples and Table 1 the first 

hyperpolarizabilities determined using the known first hyperpolarizability for pure water, 

namely  esu.30 The corresponding values measured previously for the first 

hyperpolarizability of silver nanospheres with different diameters are also given for comparison. 

 

β
S
= 0.087×10

−30



	 9	

 
Figure 2 : 800 nm excited HRS intensity normalized to that of the neat water solution as a 

function of the concentration of (disks) 39 nm, (triangles) 48 nm and (squares) 

100 nm edge length nanocubes. 

 

Table 1 :  First Hyperpolarizability * , first hyperpolarizability corrected for resonance 

enhancement *1  and first hyperpolarizability corrected for resonance 

enhancement and divided by the number of silver atoms in the particle measured 

at 800 nm fundamental wavelength for the three nanocubes samples. Similar 

values provided for silver nanospheres for comparison (taken from Ref. 31). The 

nanocube equivalent diameter D is the diameter of a spherical nanoparticle with 

same volume. 

 

Sample Edge 

Length 

nm 

× 34567 

esu 

8 

nm 
× 3456	74 

esu 

× 34:574;;;; 
esu/atom 

S1 39 10.6±1.1 33.5 0.5±0.05 1.4±0.2 

S2 48 16.6±1.7 41.3 1.8±0.2 2.7±0.3 

S3 100 12.8±1.3 86.0 3.4±0.3 0.6±0.1 

Nanospheres - 7.0±0.7 40 0.3±0.1 0.5±0.1 

Nanospheres - 30.1±3 80 5.3±0.5 1.4±0.2 

 

The silver nanocubes’ first hyperpolarizability present a behavior with the largest magnitude 

for the 48 nm edge length nanocubes for a 800 nm excitation wavelength. This behavior must 

be analyzed in light of the corresponding absorption spectra. The SPR are indeed rather sharp 

for nanocubes and therefore the field enhancement spectrally narrow.  

 

To rationalize the first hyperpolarizabilities, it is appropriate to correct them for the 

number of atoms in the nanoparticles and for the SPR field enhancement. This scaling with the 

number of atoms corresponds to a volume scaling, as expected when field retardation is taken 
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into account. A surface scaling of the first hyperpolarizability could have also been used 

because silver metal is a centrosymmetric medium at the atomic level. However, because 

retardation plays a non-negligible role and introduces orders beyond the electric dipole one, 

such a scaling is not appropriate. Besides, this analysis is further supported considering the 

centrosymmetry of the nanocube shape. Indeed, within the local electric dipole approximation, 

the first hyperpolarizability vanishes altogether leaving a response dominated by higher order 

field multipoles, i.e. retardation. The rescaling of the first hyperpolarizabilities determined 

experimentally is performed in Table 1. The second correction introduced is required by the SP 

resonance field enhancement. As observed on the extinction spectra (see Figure 1), there is a 

spectral shift of the maximum of the extinction spectrum as a function of the nanocubes edge 

length. As a result, the measured hyperpolarizabilities are resonantly enhanced by the SP 

resonance excitation. In the present case, the enhancement can be considered to occur 

essentially at the second harmonic wavelength, namely 400 nm. In order to correct for this 

enhancement, the two level model is applied.32 No analytical expression is available for the 

field factors of the second harmonic response from nanocubes, to the contrary of nanospheres 

or nanoellipsoids. The two level model correction procedure used here is customary in 

molecular organic nonlinear optics to compare static hyperpolarizabilities when resonance 

enhancement occurs at different wavelengths.33 Hence, Table 1 displays the first 

hyperpolarizabilities corrected for the resonance enhancement using the resonance wavelengths 

determined from the UV-visible absorption spectra. The resonance enhancement factor =(>) 

in the two level model is simply given by * = *1=(>) with : 

 

 =(>) = ?@
A

B?@
CD?CEB?@

CDF?CE
        (2) 
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where >1 is the resonance frequency and > the excitation fundamental frequency. All of the 

hyperpolarizabilities after correction for resonance enhancement and rescaled by the number of 

silver atoms contained on average in the nanocubes, present a magnitude close to ~1 × 10DJ+ 

esu/atom, leading to a generic value for long edge length silver nanocubes. This value compares 

rather well with the one obtained for spherical silver nanoparticles, also shown in Table 1. 

Consequently, when field retardation is non-negligible due to the nanoparticles size, the shape 

does not play a leading role anymore, at least for the sub-class of nanoparticles with a 

centrosymmetric shape.  

 

Polarization Analysis 

The nanocubes edge length investigated range from 39 to 100 nm, a range where field 

retardation, namely the dependence of the electromagnetic fields with the spatial coordinates 

of the nanoparticles, is known to play a major role in the response in the case of nanospheres.14 

The role of retardation is also confirmed for nanocubes using polarization analysis of the HRS 

intensity. To investigate this point further, HRS studies were performed where the input angle 

of polarization g of the linearly polarized fundamental beam was rotated for fixed output 

polarization angles. This method has been demonstrated in the past to be ideally suited to 

identify the contributions of the electric quadrupole and octupole for the second harmonic 

scattering from nanospheres. In Figure 3 are thus given the different gV and gH plots, where V 

and H stands for vertically and horizontally polarized second harmonic light, obtained for the 

different samples. The V polarized plots clearly show a four lobes pattern for all edge lengths. 

This pattern is a typical signature of retardation in nano-objects and more particularly of the 

second harmonic quadrupole mode. The weight of this contribution increases with the edge 

length and is almost fully developed for the 100 nm edge length nanocubes, as seen from the 

quantitative analysis performed below. 
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(a)    (b)    (c) 

 

Figure 3 : Right angle polarization plots of the HRS intensity excited at 800 nm for the (a) 

39 nm, (b) 48 nm and (c) 100 nm edge length nanocubes : (full blue disks) V 

polarized harmonic intensity, (empty red disks) H polarized harmonic intensity. 

 

 

On the contrary, the H polarized plots exhibit weakly varying intensities as a function of the 

angle g. At a 39 nm edge length, the plot is a circle and it evolves into an ellipse at longer edge 

lengths. This feature indicates a contribution from retardation attributed to the second harmonic 

octupolar mode, similarly to the case of centrosymmetric nanospheres with large diameters.14 

A quantitative analysis can be built with four parameters to describe the polarization dependent 

results. The first one, zV, defines the relative weight of the excited second harmonic quadrupolar 

mode against the surface defect contribution. As said above, the latter contribution arises from 

the deviation of the shape of the nanocubes from the perfect cubic shape. We hence define:18 

 

         (3) 

 

where ,	 	and	 	are the HRS intensities collected for the input polarization g equal to 

45°, 0° (v) and 90° (h) respectively and the harmonic intensity vertically (0° or V) polarized. 

The non-vanishing 	and	 	intensities experimentally measured assess the imperfect 

nanocubes shape. Indeed, for perfect nanocubes or centrosymmetric shape, the nanocubes 

should exhibit vanishing 	and	 	intensities. The experimental values of zV are given in 
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Table 2 for the as-synthesized nanocubes with respective edge lengths of 39, 48 and 100 nm. 

These values all differ from unity, indicating imperfect cubic shapes. Their increase with the 

nanocube edge length also indicates that the contribution from the excited second harmonic 

quadrupole increases with the nanocubes edge length as compared to the shape defect 

contribution. The non vanishing 	and	 	intensities observed can tentatively be attributed 

to the role of the corners and edges, highly confined regions where it is expected that the 

centrosymmetry rule can be broken quite easily, see below for an in-depth discussion about the 

corners contribution. In a similar way, for the H polarized plots, the parameter zH can be 

calculated as:14  

 

         (3) 

 

where  and . This parameter permits to quantify the 

second harmonic octupolar mode contribution. The zH value increases with the edge length, 

from a vanishing value indicative of the absence of the octupole contribution to a finite value 

in agreement with an increasing contribution from retardation, i.e. an increasing octupolar 

contribution. 

 

Unequal Contributions from the Cube Corners 

To get a deeper insight into the origin of the nanocubes HRS response, it is possible to 

record the second harmonic scattered in the forward direction. In this case, the multipolar 

contributions associated with field retardation are suppressed. 
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Table 2 :  Parameters determined for the different nanocubes samples polarization plots. 

See text for the definitions of the four parameters. 

 

Sample Edge 

Length 

nm 

     

S1 39 0.37±0.11 0.02±0.05 0.73±0.25 0.64±0.21 

S2 48 0.59±0.2 0.06±0.05 0.69±0.24 0.51±0.15 

S3 100 0.78±0.25 0.16±0.03 0.97±0.32 0.55±0.17 

 

 

Then, repeating the same operation as before where the HRS intensity is collected for 

both crossed vertical and horizontal polarization states as a function of the input polarization 

angle g. Two crossed dipolar patterns are recorded as seen on Figure 4 for the 48 nm edge length 

nanocubes resulting from the symmetry of the experiments itself. The corresponding graphs for 

the 39 and 100 nm edge lengths are similar and are provided in Figure S3 in the Supplementary 

Information.  

 

 

Figure 4 : Forward polarization plots of the HRS intensity excited at 800 nm for the 48 nm 

edge length nanocubes : (filled blue disks) V polarized harmonic intensity, 

(empty red disks) H polarized harmonic intensity. 

 

For perfectly centrosymmetric nanoparticles, no signal should be recorded in this 

configuration. Indeed, only the occurrence of deviations from centrosymmetry introduces a 

non-vanishing surface defect contribution that can be observed in this geometrical forward 
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configuration without the contribution from field retardation. Hence, Figure 4 clearly exhibits 

the unbalanced contributions of the eight cube corners as these corners can be indeed assumed 

to be the sources of the second harmonic light from plasmonic nanocubes.  

 

In a more quantitative way, a third parameter and a fourth parameter are worth discussing, 

namely  recorded with the collection direction at 90° from the fundamental beam 

propagation and likewise collected for the forward direction at 180°. The two 

ratios are rather similar and take values between 0.5 and unity. The latter ratios are related to 

the nanocubes 3D nonlinear tensorial response stemming from the cubes corners. Similarly to 

molecular systems, this ratio provides a further insight into the tensorial dipolar and octupolar 

weight to the first hyperpolarizability. Indeed, an irreducible decomposition of the first 

hyperpolarizability tensor yields  where  and  are respectively the 

dipolar and octupolar irreducible hyperpolarizability tensors.34,35 Note here, that this 

decomposition must not be mistaken with the field multipoles discussed above and arising from 

retardation. For 3D systems and without making any further hypotheses on the first 

hyperpolarizability tensor elements, the problem is rather complicated. It nevertheless sheds 

light on the symmetry of this response associated with the perfectness of the nanocubes shape. 

Considering the values of the ratio  and  observed, all between 0.5 and unity, see Table 

2, it can be concluded that the deviation of the perfect cubic shape yields a first 

hyperpolarizability dominated by a tensorial octupolar symmetry.  

 

Simulation of Dipolar and Octupolar Tensorial Nanocube Hyperpolarizabilities 

In order to further support the above analysis of the response from the nanocubes, a 

model was developed. A first hyperpolarizability was attributed to each corner and distributed 

in space according to the eight nanocube corners location. To simplify the problem, each corner 
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hyperpolarizabiltiy was assumed to have a single non vanishing tensor element  where the 

corner Oz direction is oriented outward along the direction going from the center of the 

nanocube and out through the corner. Then, all averaging procedures were performed to account 

for the HRS experiment in a liquid solution. Two distributions of the corners first 

hyperpolarizabilities were investigated as described in Figure 5. On this Figure, the color code 

indicates the hyperpolarizability tensor element  value. The filled versus empty red disk 

code indicates values differing by 
 
respectively with 

 
whereas as the 

blue disk code indicates unit tensor elements. Note that all simulations can be performed in 

relative units, i.e. with a unit  tensor element, since one is interested in the intensity 

normalized  and ratios. One distribution is therefore dipolar, oriented along one of the 

nanocube diagonals whereas the other one is octupolar in the irreducible tensorial 

decomposition sense. These two simple examples constitute only a small subset of the 

possibilities afforded by the eight corners nanocube geometry. The number of the possible 

configurations is indeed very large, especially when incorporating other tensor elements for 

each corner hyperpolarizability to account for the local symmetry. This could be the case for 

instance in order to account for the neighboring edges.  
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Figure 5(a-b) : Two distributions of the eight corners first hyperpolarizability tensor 

investigated : (a) dipolar distribution, (b) octupolar distribution. Blue disks 

describe corners associated with a unit first hyperpolarizability , filled 

red disks with corners associated with a first hyperpolarizability equal to 

, and empty red disks with a first hyperpolarizability equal to 

 
where . Hyperpolarizability units are arbitrary. A 

local corner reference frame is given as an example for a corner of the 

octupolar configuration. 

 

The simulations were performed for both the right angle and the forward geometry with 

the following results reported in Figure 6 for two edge lengths, namely a short 5 nm one where 

retardation is minimal and a longer edge length of 80 nm where retardation dominates. It is 

important to note that the sizes introduced in the simulation do not match perfectly the 

experimental ones because of the interplay between the first hyperpolarizability values and 

sizes that is difficult to quantitatively account for. From a symmetry point of view, the dipolar 

distribution is unlikely to occur. It is nevertheless displayed as Figure S4 in the Supplementary 

Information file. The corresponding polar graphs for the octupolar distribution describe the 

experimental data with excellent agreement.  
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(a)     (b) 

 

(c)     (d) 

Figure 6(a-d) : Simulated polarization resolved HRS plots for two different sizes of the 

octupolar distribution of the corners hyperpolarizability. (Blue) Vertically 

polarized harmonic intensity, (red) Horizontally polarized harmonic 

intensity. (a) 5 nm edge length, right angle configuration, (b) 5 nm edge 

length, forward configuration, (c) 80 nm edge length, right angle 

configuration, (d) 80 nm edge length, forward configuration. 

 

The simulated polarization resolved HRS plots for the octupolar distribution of the individual 

response of the corners first hyperpolarizability are, from a close comparison between the 

experimental and simulated D90 and D180 parameters reported in Tables 2 and 3, in better 

agreement with the experimental data as compared to the polar distribution. This result further 

supports the analysis of the experimental parameters reported in Table 2. The corresponding 

parameters of the simulated plots are reported in Table 3. 
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Table 3 :  Various parameters determined for the simulated nanocubes polarization plots. 

See text for the definitions of the parameters. 

  

Edge 

Length 

nm 

     

Polar     

5 0.30 0.03 0.30 0.2 

80 0.84 0.04 0.74 0.2 

Non Polar     

5 0.44 0.01 0.68 0.67 

80 0.84 0.04 0.75 0.67 

 

 

Surface Integral Equation Calculations 

To obtain another insight into the nonlinear optical properties of silver nanocubes, the 

second harmonic response was numerically evaluated using a surface integral equation (SIE) 

method. This method has been extensively described elsewhere.36 The method requires in 

particular the discretization of the scattering object surface only and is thus suitable for the in-

depth investigation of rounding and size effects in silver nanocubes. The dielectric constants 

for silver were taken from Johnson and Christy at both the fundamental and second harmonic 

wavelengths.37 All the computations were performed considering nanocubes dispersed in water 

with optical index n = 1.33. The SHG response was computed taken into account a surface 

contribution only for the nonlinear optical response. It confirms in particular that the nanocubes 

nonlinear optical response arises from the corners, see Figure 7 below. 

 

 
Figure 7 :  Surface second harmonic polarization excited at 800 nm for a 40 nm silver 

nanocube with an edge and corner rounding of 5 nm for an incident polarization 

angle (a) g = 0°, (b) g = 22.5°, (c) g = 45°, (d) g = 67.5°, and (e) g = 90°. 
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The impact of the nanocube size is investigated first. The scattering spectra of the silver 

nanocubes with various sizes, edge length a ranging from 40 nm to 100 nm, correspond to the 

range of nanocube edge lengths experimentally investigated and are shown in Figure 8a. The 

edges and corners were rounded with a rounding radius r = a / 4 following the procedure 

described in the inset of Figure 8a. All spectra exhibit several resonances, similarly to the 

experiments as seen in Figure 1. For each spectrum, the strongest resonance corresponds to the 

excitation of the dipolar SP resonance. As the nanocube size increases, this resonance redshifts 

and broadens due to an increase in radiative losses.  

 

Figure 8(a-e): (a) Second harmonic scattering cross-section as a function of the incident 

wavelength computed for silver nanocubes with edge length a = 40 nm (blue), 

70 nm (black) and 100 nm (red). The edges and corners were rounded with a 

rounding radius r = a / 4 (see inset). Relative second harmonic intensity scattered 

in the vertical plane as a function of the scattering direction evaluated for (b-c) 

a H polarized second harmonic wave (polarized along the incident wave 
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propagation vector) and (d-e) a V polarized second harmonic wave. The edge 

length a is (b) 40 nm, (c-d) 70 nm and (e) 100 nm. 

 

In the nonlinear regime, the relative second harmonic intensity scattered in the vertical 

plane as a function of the scattering direction were evaluated for a second harmonic wave 

polarized along the incident wave (see Figures 8b,c). This configuration is closely related to 

HRS measurements where the SH wave is collected at right angle as presented in the above 

section albeit without any orientation distribution averaging. Note that the second harmonic 

intensity vanishes in the backward and forward directions for perfectly symmetric nanocubes 

like those numerically studied here. The fundamental wavelength was set to 800 nm in order to 

make comparisons with the experimental results straightforward. The case of the H polarized 

second harmonic wave (polarized along the incident wave vector) is discussed first. For the 

smallest nanocubes, i.e. a = 40 nm, the second harmonic intensity slightly oscillates as the 

observation direction is rotated. This feature arises from interferences between the second 

harmonic excited dipolar and octupolar modes. These interferences are destructive or 

constructive depending on the scattering direction, as previously reported for the SHG response 

from metallic nanospheres.14 Note that the second harmonic dipole moment points along the 

propagating direction of the incident plane wave, contrary to the linear dipole moment which 

points along the incident electric field direction. For larger nanocubes, i.e. a = 70 nm, the second 

harmonic intensity is found almost independent of the scattering direction for the H polarized 

second harmonic wave. Despite larger retardation effects, the second harmonic excited 

octupolar contribution is weaker since the first octupolar resonance is shifted to longer 

wavelengths, namely 440 nm, see Figure 8a, resulting in a smaller interference contrast. This 

feature is however not so well observed experimentally. This discrepancy may arise from the 

dispersion in morphology of the nanocubes and the corresponding SP resonance band 

broadening. The relative second harmonic intensity scattered in the vertical plane as a function 
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of the scattering direction was also evaluated for a V polarized second harmonic wave (see 

Figure 8d,e). In this case, a four-lobe emission pattern corresponding to a second harmonic 

quadrupolar mode is observed, similarly to the experimental results presented above, see Figure 

3. Even though the emission patterns are identical, the lobe intensity is about 70 times higher 

for a 100 nm nanocube than for a 70 nm nanocube. Experimentally, this edge length range 

corresponds to a regime where the scattered intensity scales with the volume of the nanocube. 

Experimentally therefore, a factor of three only is expected. Thus, this large change can be 

understood as arising from the redshift of the dipolar resonance as the nanocube size increases, 

see Figure 1. Indeed, it has already been shown that a dipolar resonance excitation at the 

fundamental wavelength is preferred for the excitation of the second harmonic excited 

quadrupolar mode. These calculations are in agreement with the experimental data discussed 

above. In order to go forward with the investigation of the impact of the nanocube shape on the 

SHG, the effect of the corners and edges rounding is now considered in greater detail. 

 

The impact of the corners’ and edges’ rounding procedure on the linear response of 

silver nanocubes was recently discussed and it was shown that an increase of the rounding 

radius r blueshifts the dipolar SP resonance towards the SP resonance supported by a sphere 

with the same size.38 To quantify this rounding effect and perform a comparison between 

nanocubes with different edge lengths, a rounding parameter R defined as R=2r/a is introduced. 

The parameter R evolves from 0 for cubes with sharp corners to 1 for a perfect nanosphere (see 

Figure 9a). The relative second harmonic intensity scattered in the vertical plane with a 

scattering angle equal to 0° evaluated for a H polarized second harmonic wave (polarized along 

the incident beam) is then shown as a function of the rounding parameter R for a total edge 

length a = 40 nm and 70 nm.39 As the rounding parameter R increases, i.e. as the nanoparticles 

evolves from nanocubes with sharp corners to nanospheres, the second harmonic intensity 



	 23	

increases for the two considered nanocube sizes. This observation is explained by the blueshift 

of the dipolar SP resonance. As the corners rounding increases, this resonance shifts closer to 

the 400 nm emission wavelength resulting in an increase of the second harmonic excited dipolar 

mode contribution. The SP resonance wavelengths for the final spheres were estimated to be 

398 nm (a = 40 nm) and 430 nm (a = 70 nm) respectively using Mie theory. The SPR 

wavelength for the 40 nm sphere is shorter than the SH wavelength explaining the slight second 

harmonic intensity decrease observed for rounding parameter R close to unity (see Figure 9b). 

Let us now turn our attention to the effect of rounding corners on the SH excited quadrupolar 

emission. The relative second harmonic intensity scattered in the vertical plane, i.e. scattering 

angle equals to 45° (see Figure 8d,e), evaluated for a V polarized second harmonic wave 

(polarized in the vertical plane) is shown as a function of the rounding parameter for an edge 

length of a = 70 nm and 100 nm (see Figure 9c). In both cases, the SH intensity decreases as 

the rounding parameter R increases. This behavior is also explained by a blueshift of the dipolar 

SP resonance. As mentioned above, a dipolar resonant excitation at the fundamental wavelength 

favors the SH quadrupolar mode but the dipolar SP resonance is shifted away from the 

fundamental wavelength at 800 nm as the rounding parameter increases. These results 

emphasize that the second harmonic response of plasmonic nanocubes is more complex than 

its linear counterpart due to the interplay between resonance effects at the fundamental and SH 

wavelengths.  
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Figure 9(a-c): (a) Example of nanocubes for different values of the rounding parameter R. This 

parameter evolves from 0 (nanocube with sharp corners) to 1 (perfect 

nanosphere). (b) Relative SH intensity scattered in the vertical plane (scattering 

angle equals to 0°, see Fig. 5 (b-c)) evaluated for a H polarized second harmonic 

wave (polarized along the incident beam) as a function of the rounding parameter 

R for an edge length a of 40 nm (blue) and 70 nm (black). (c) Relative second 

harmonic intensity scattered in the vertical plane (scattering angle equals to 45°, 

see Fig. 5 (d-e)) evaluated for a V polarized second harmonic wave (polarized 

in the vertical plane) as a function of the rounding parameter for an edge length 

a of 70 nm (black) and 100 nm (red). 

 

 

CONCLUSIONS 

The first hyperpolarizability for silver nanocubes has been determined for edge lengths 

between 39 and 100 nm. It appears that in all cases the response can be described by a surface 

nonlinearity only with a strong contribution from field retardation. A value of the first 
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hyperpolarizability per atom is deduced, corrected for the SP resonance enhancement, and 

found similar to the one obtained for centrosymmetric silver nanospheres. Also, a polarization 

analysis of the scattered second harmonic intensity scattered is performed, further supporting 

the hyperpolarizability analysis. The retardation contribution in the overall SHG response is 

clearly observed using the adequate polarization schemes. In the forward geometry, it is 

nevertheless possible to discuss the unbalanced role of the eight nanocube corners. Finally, 

further in depth analysis is brought in with surface integral method analysis to investigate the 

role of SP resonance enhancement as well as edge and corners rounding.  

From this general analysis, it appears that nanocubes, although possessing a well-

defined centrosymmetric shape, still retain a strong shape defect electric dipole contribution in 

their SHG, most likely due to the difficulty to establish a perfect centrosymmetry with edges 

and corners. This point is important for a future design of second order nonlinear plasmonic 

metasurfaces based on nanocubes. 

 

Supporting Information  

SEM images of the three nanocube samples, schematics of the experimental hyper 

Rayleigh set-up, simulation details, forward scattering polarization plots for the 39 and 100 nm 

edge length nanocubes, simulated scattering polarization plots for the dipolar distribution of the 

first hyperpolarizability nanocube corners, and geometry for the SIE computations. 
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