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Abstract—Buffer caches are commonly used in servers to reduce the number of slow disk accesses or network messages. These

buffer caches form a multilevel buffer cache hierarchy. In such a hierarchy, second-level buffer caches have different access patterns

from first-level buffer caches because accesses to a second-level are actually misses from a first-level. Therefore, commonly used

cache management algorithms such as the Least Recently Used (LRU) replacement algorithm that work well for single-level buffer

caches may not work well for second-level. This paper investigates multiple approaches to effectively manage second-level buffer

caches. In particular, it reports our research results in 1) second-level buffer cache access pattern characterization, 2) a new local

algorithm called Multi-Queue (MQ) that performs better than nine tested alternative algorithms for second-level buffer caches, 3) a set

of global algorithms that manage a multilevel buffer cache hierarchy globally and significantly improve second-level buffer cache hit

ratios over corresponding local algorithms, and 4) implementation and evaluation of these algorithms in a real storage system

connected with commercial database servers (Microsoft SQL Server and Oracle) running industrial-strength online transaction

processing benchmarks.

Index Terms—Cache memories, storage hierarchy, storage management.
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1 INTRODUCTION

TECHNOLOGY trends have continued to increase the access-
time gap between processor and disk. To bridge the gap,

main-memory buffer caches are used along data retrieving
paths toavoidslowdiskaccesses.Besides client buffer caches,
requested data can also be cached at a Web browser, a Web
proxy server, a Web server, an application server, a database
server, and a file server. In addition, many modern storage
systems also use large volatile or nonvolatile memory as
buffer caches to speed-up I/O accesses [14], [18]. For
example, the EMC Symmetrix Storage System has up to
256 Gbytes large software-managed buffer caches [14].

These buffer caches form a multilevel buffer cache
hierarchy. Fig. 1 shows an example of such a hierarchy. In
this example, a database server buffer cache or a file server
buffer cache serves as a first-level (L1) buffer cache,
whereas a storage server buffer cache serves as a second-
level (L2) buffer cache. Note that L1/L2 buffer caches are
very different from L1/L2 processor caches, which are
usually set-associative and managed by hardware, whereas
L1/L2 buffer caches are main-memory buffers distributed
in multiple machines and managed by different software.

Second-level buffer caches such as storage caches have
different access patterns from single level buffer caches
because accesses to an L2 buffer cache are misses from an
L1 buffer cache. L1 buffer caches, such as database buffer
caches, typically employ a locality-based algorithm, such as
the Least Recently Used (LRU) replacement algorithm, so
that recently accessed blocks are kept in an L1. As a result,
accesses to an L2 buffer cache exhibit poorer temporal
locality than those to an L1. This implies that a replacement
algorithm such as LRU, which works well for L1 buffer

caches, may not perform well for L2 buffer caches. Though
the aggregate cache size of the hierarchy is increasingly
larger, the system might not deliver the expected perfor-
mance commensurate to the aggregate cache size if these
buffer caches could not work together effectively.

Multilevel caching has been previously studied byMuntz

andHoneyman [29] in the context of distributed file systems.

Their study shows that L2 buffer caches have poor hit ratios.

They concluded that the poor hit ratios are due to poor data

sharing among clients. This study did not characterize the

behavior of accesses to lower-level buffer caches, but raised

the question whether the algorithms that work well for client

or single level buffer caches can effectively reduce misses for

second-level. Another study conducted by Willick et al.

demonstrated that the Frequency-Based Replacement (FBR)

algorithm performs better for a back-end disk caches than

locality-based replacement algorithms such as LRU [47], but

this study did not study disk cache access patterns to

understand their results.
These studies motivate research to address the following

questions:

1. What are the access patterns at an L2 buffer cache?
Does it have good temporal locality? How is it
different from single level buffer caches?

2. How do recently proposed single-level cache repla-
cement algorithms, such as LRU-k [31], Least
Frequently Recently Used (LFRU) [24], Two Queues
(2Q) [20], ARC [28], LIRS [19], and DEMOTE [48],
perform for second level?

3. If most existing algorithms do not perform well for
L2, how do we design a new cache management
algorithm to improve L2 buffer cache performance?

4. How do we manage a multilevel buffer cache
hierarchy globally? Is a global buffer cache manage-
ment beneficial compared to local management?

This paper addresses the above problems. More speci-
fically, it has the following contributions:
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. We have studied L2 buffer cache access patterns
using several large real-system traces. The access
pattern analysis shows that accesses to an L2 have
poor temporal locality and some blocks are accessed
more frequently than others.

. We present a new local L2 cache replacement
algorithm called Multi-Queue (MQ) that outperforms
nine tested alternatives including LRU, Most Re-
cently Used (MRU), Least Frequently Used (LFU),
FBR [34], LRU-2, LFRU [24], 2Q [20], LIRS [19], and
ARC [28].

. We present a set of global algorithms that manage a
multilevel buffer cache hierarchy globally and
significantly improves corresponding local algo-
rithms for L2 buffer caches. In addition, we have
investigated two methods to implement the global
algorithm, one of which requires modification to the
L1 software and the other does not have such a
requirement.

. We implement and evaluate the new algorithms and
previous algorithms in a real storage system that is
connected to commercial database servers (Microsoft
SQL Server and Oracle) running online transaction
processing (OLTP) benchmarks. Our implementa-
tion results show that MQ can provide similar
transaction rate as LRU with a twice as large storage
cache (L2 buffer cache). The global algorithms can
further improve the transaction rate by 20 percent.

The rest of this paper is organized as follows: The next
section briefly describes the background work on cache
management. Section 3 describes the L2 buffer cache traces
used in this study. Section 4 discusses L2 buffer cache
access patterns. Section 5 presents the MQ replacement
algorithm and Section 6 presents the global algorithm.
Sections 7 and 8 present the simulation and implementation
results. Related work is discussed in Section 9. Finally,
Section 10 concludes this paper.

2 BACKGROUND

Much research has been conducted on buffer cache
management. Most buffer cache replacement algorithms
were designed for single-level buffer caches. In our study,
we evaluate nine online replacement algorithms originally
designed for single-level buffer caches. These algorithms
include:

OPT (Optimal) algorithm [5], [27] is an offline replacement
algorithm and gives the best possible cache hit ratios

assuming demand-based access-policy (data is fetched
into the cache when it is accessed). This algorithm
assumes that the entire access sequence is available
ahead of time and, therefore, cannot be used online.

LRU (Least Recently Used) has been used widely for buffer
cache management [7], [12], [11], [39], [2]. When the
cache is full, it replaces the block that is the least recently
used. It is designed to take advantage of the temporal
locality exhibited in accesses.

MRU (Most Recently Used) is also called the Fetch-and-
Discard replacement algorithm [7], [12]. Instead of
replacing the least recently used block like LRU, MRU
replaces the most recently used block. It was originally
designed to deal with situations like sequential scans.

LFU (Least Frequently Used) replaces the block that is least
frequently used. The frequency of a block is its reference
count. The frequency reflects the approximated prob-
ability of the block to be accessed again in the future. The
“aged” version of LFU performs better than the original
LFU because recent access history predicts more pre-
cisely future access patterns.

FBR (Frequency Based Replacement) algorithm was pro-
posed by Robinson and Devarakonda [34]. It considers
both recency and frequency to capture the benefit of both
LRU and LFU. It divides LRU queue into three sections:
new, middle, and old. It does not increment reference
counts in the new section and replaces least frequent
blocks in the old section. This algorithm requires
parameter tuning to adjust the section sizes. So far, no
online adaptive scheme has been proposed to dynami-
cally tune these parameters.

LRU-k (Least kth-to-last Reference) algorithm was first
proposed by O’Neil et al. for database systems [31]. It
replaces the block with the least recent Kth-to-last

access. LRU-1 is same as the classical LRU. When K is
large, it discriminates the frequent and infrequent blocks.
When K is small, it removes cold blocks (blocks accessed
only once) quickly.

LFRU (Least Frequently Recently Used) algorithm was
proposed by Lee et al. in 1999 to cover a spectrum of
replacement algorithms that include LRU at one end and
LFU at the other [24]. It endeavors to replace blocks that
are the least frequently used and not recently used. It
associates a value, called Combined Recency and
Frequency (CRF), with each block. It replaces the block
with the minimum CRF value. LFRU can implement
LRU and LFU with different parameters. It also needs
parameter tuning and no dynamic scheme has been
proposed.

2Q (Two queue) algorithm was proposed by Johnson and
Shasha in 1994 [20]. The algorithm utilizes one FIFO
queue A1in and two LRU lists, A1out and Am. It places a
block in A1in on the first access and promotes the block
to Am on the second access. It replaces a block in A1in
and put the block’s identifier in A1out if A1in has more
than a fixed number of blocks. Otherwise, it replaces a
block in Am.

LIRS (Low Inter-Reference Recency Set) was proposed by
Jiang and Zhang in 2002 [19]. It uses Inter-Reference
Recency (IRR) history instead of just access recency for
making a replacement decision. Blocks with smaller IRR
values are favored than those with larger IRR values.
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Fig. 1. An example of a multilevel buffer cache hierarchy.



ARC (Adaptive Replacement Cache) was proposed in 2003
[28]. It combines recency and frequency by using two
lists and dynamically adjusts their sizes depending
which factor is more important.

3 TRACES

To study L2 buffer cache access patterns and evaluate
caching algorithms and policies, we use six L2 buffer cache
access traces. These traces are chosen to represent different
types of workloads. All traces contained only misses from
one or multiple L1 buffer caches that use LRU or its
variations as their replacement algorithms. We collect OLTP
I/O traces from both Oracle and Microsoft SQL Server
because these two database servers are very different
internally, using different caching schemes and software
architecture. In our study, we use 8 Kbytes as the cache
block size for our access pattern analysis and our experi-
mental evaluation of various algorithms. We have exam-
ined other block sizes and the results are similar.

Table 1 shows the characteristics of the six traces. Since
L1 buffer cache sizes clearly affect an L2 cache’s perfor-
mance, we set the L1 buffer cache (database server cache)
sizes for the two Oracle traces and two MS-SQL traces to
represent typical configurations in real systems. However,
we could not change the first level buffer cache sizes of the
other two traces because they were obtained from other
sources.

Oracle Miss Trace-128M and Oracle Miss Trace-16M
are collected from a storage server connecting to an Oracle
8i database front-end running the standard TPC-C bench-
mark [44], [25] for about two hours. The Oracle buffer cache
replacement algorithm is similar to LRU [32]. The TPC-C
database contains 256 warehouses and occupies around
100 GBytes of storage excluding log disks. The traces
capture all I/O accesses from the Oracle Server to the
storage server. The traces ignore all accesses to log disks.
The first trace is collected by setting the Oracle buffer cache
to be 128 MBytes, whereas the latter is collected with
16 MBytes of Oracle buffer cache.

MS-SQL-Large and MS-SQL-Small are collected on a
different hardware platform running Microsoft SQL Server
2000. Similar to Oracle traces, the SQL Server runs TPC-C
benchmark with 256 warehouses. In MS-SQL-Large, we set
the SQL Server cache size to the maximum available amount
of the platform, 1 Gbyte. To predict results for larger
workloads, we reduce the Microsoft SQL-server cache size
to 64 MBytes and collect another trace, MS-SQL-Small.

HP Disk Trace was collected at Hewlett-Packard
Laboratories in 1992 [36], [35]. It captured all low-level disk

I/O performed by the system. We used the trace gathered
on Cello, which is a timesharing system used by a group of
researchers at HP Lab to do simulations, compilation,
editing, and e-mail. We have also tried other HP disk trace
files and the results are similar.

Auspex Server Trace was an NFS file system activity
trace on an Auspex file server in 1993 at UC Berkeley [9].
The system included 237 clients spread over four Ethernets,
each of which connected directly to the central server. The
trace covers seven days of activities.

4 SECOND-LEVEL BUFFER CACHE ACCESS

PATTERNS

4.1 Temporal Locality

We first study the temporal locality of L2 buffer cache
accesses. Previous studies have shown that L1 buffer cache
accesses exhibit a high degree of temporal locality. An
accessed block exhibits temporal locality if it is likely to be
accessed again in the near future. The LRU replacement
algorithm, typically used in L1 buffer caches, is designed to
take advantage of temporal locality. Thus, blocks with a
high degree of temporal locality are likely to remain in an
L1 buffer cache. But, accesses to an L2 level buffer cache are
misses from an L1. Do second-level buffer cache accesses
exhibit temporal locality similar to those of an L1 buffer
cache?

We use reuse distance histograms to observe the temporal
localityof the traces.A reference sequence (or reference string) is a
numbered sequence of temporally ordered accesses to a
cache. A trace is essentially such a reference sequence. The
reuse distance is the number of distinct accesses between two
accesses to the same block in the reference sequence. It is
similar to the interreference gap defined by a previous study
[33]. For example, in the reference sequence ABCDBAX, the
reuse distance fromA1 toA6 is 4 and the reuse distance from
B2 toB5 is 3.A reuse distance histogramshows the number of
correlated accesses (accesses to the same block) for various
reuse distances.

Fig. 2 compares an L1 and L2 buffer cache’s temporal
locality using reuse distance histograms. The L1 trace is
collected at an Auspex client, while the L2 trace is captured
at the Auspex Server. Each Auspex client uses an 8 MByte
cache. The data in the figure shows the histograms by
grouping reuse distances by powers of two. Distances that
are not power of two are rounded up to the nearest power
of two. Significantly, for the L1 buffer cache, 74 percent of
the correlated references have a reuse distance less than or
equal to 16. This indicates good temporal locality. On the
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TABLE 1
Characteristics of the Six Traces Used in the Study

Oracle Miss Trace-128M has more reads/writes than Oracle Miss Trace-16M because the former executes more transactions. Both traces are
collected by running the TPC-C benchmark for two hours. Similarly, MS-SQL-Large has more reads/writes than MS-SQL-Small.



contrary, 99 percent of the correlated accesses to the
L2 buffer cache have a reuse distance of 512 or greater,
exhibiting weaker temporal locality.

Fig. 3 shows the reuse distance histograms of four L2
buffer cache access traces. These traces exhibit two common
patterns. First, all histogram curves are hill-shaped. Second,
peak reuse distance values, while different, are all relatively
large and occur at distances greater than their L1 buffer
cache sizes (see Table 1). This access behavior at L2 caches is
expectable. If an L1 buffer cache of size k uses a locality-
based replacement policy, after a reference to a block, it
takes at least k references to evict this block from the
L1 buffer cache. Thus, subsequent accesses to the L2 cache
should be separated by at least k noncorrelated references in
the L2 buffer cache reference sequence. Therefore, the “hill”
regions starts after k in Fig. 3.

A good replacement algorithm for L2 caches should
retain blocks that reside in the “hill” portion of the
histogram for a longer period of time. In this paper, “time”
means logical time, measured by the number of references.
For example, initially, time is 0; after accesses ABC, time is
3. We call the beginning, peak, and end of this “hill” region
minimal distance (or minDist), peak distance (or peakDist),
and maximal distance (or maxDist), respectively. minDist
depends more on first level buffer cache sizes, whereas
peakDist and maxDist depend more on workload char-
acteristics. We picked minDist and maxDist for each trace
by examining the histogram figure for simplicity. Since the
reuse distance values in the “hill” are relatively large, a
good replacement algorithm should keep most blocks in
this region for at least minDist time. It is clear that, when
the number of blocks in an L2 cache is less than theminDist

of a given workload, the LRU replacement algorithm tends
to perform poorly, because most blocks do not stay in an
L2 buffer cache long enough for subsequent correlated
accesses.

4.2 Access Frequency

We have also examined the behavior of L2 buffer cache
accesses in terms of frequency. While it is clear that
L2 buffer cache accesses represent misses from L1 buffer
caches, the distribution of access frequencies among blocks
remains uncertain. Past studies [13], [40] have shown that
blocks are typically referenced unevenly: A few blocks are
hot (frequently accessed), some blocks are warm, and most
blocks are cold (infrequently accessed). Is this also true for
L2 buffer caches?

Our hypothesis is that both hot and cold blocks will be
referenced less frequently in an L2 buffer cache because hot
blocks will stay in L1 buffer caches most of the time and
cold blocks will be accessed infrequently by definition. If
this hypothesis is true, the access frequency distributions at
L2 caches should be uneven, though probably not as
uneven as those at L1 buffer caches. A good L2 buffer
cache replacement algorithm should be able to identify
warm blocks and keep them in L2 caches for a longer period
of time than others.

In order to understand the frequency distributions of
reference sequences seen at L2 buffer caches, we examined
the relationship between access distribution and block
distribution for different frequencies. Similar to most cache
studies, frequency here means the number of accesses. Fig. 4
shows, for a given frequency f , the percentage of total
number of blocks accessed at least f times. It also shows the
percentage of total accesses to those types of blocks. Notice
that the number of blocks accessed at least i times includes
blocks accessed at least j times (j > i). This explains why all
the curves always decrease gradually. The access percen-
tage curves decrease similarly for the same reason.

For all four traces, the access percentage curves decrease
more slowly than the block percentage curves, indicating
that a large percentage of accesses are to a small percentage
of blocks. For example, in the Oracle Miss Trace-128M,
around 60 percent accesses are made to less than 10 percent
of blocks, each of which are accessed at least 16 times. This
shows that the access frequency distribution among blocks
at L2 buffer caches is uneven. In other words, a subset of
blocks is accessed more frequently than others. Thus, if the
replacement algorithm can selectively keep those blocks for
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Fig. 2. Temporal locality of L1 and L2 buffer cache accesses using reuse

distance histograms. (a) Auspex client trace and (b) Auspex server trace.

Fig. 3. Reuse distance histograms of L2 cache accesses for different traces. (Note: figures are in different scales.) (a) Oracle Miss Trace-128M,

(b) Oracle Miss Trace-16M, (c) HP Disk Trace, and (d) Auspex server trace.



a long period of time, it will significantly reduce the number
of misses, especially when the L2 buffer cache size is small.

Blocks that are accessed more frequently contribute more
accesses and, therefore, should be given higher priorities.
For example, in Fig. 4a, 70 percent of the blocks have been
accessed at least twice and contribute to 95 percent of the
accesses. However, only 40 percent of the blocks have been
accessed at least four times, but contribute to 90 percent of
the accesses. Therefore, there is a need to differentiate
blocks accessed at least four times from those accessed only
two or three times. In other words, the replacement
algorithm needs to give different priorities for blocks with
different frequencies.

5 LOCAL L2 BUFFER CACHE REPLACEMENT

ALGORITHM: MULTI-QUEUE

Based on the special access patterns at L2 buffer caches, we
design a new replacement algorithm, called Multi-Queue
(MQ). This is a local cache replacement algorithm because it
manages an L2 buffer cache without any information from
first-level. The advantage with a local cache management
scheme is that it does not require any modification to first-
level software such as database servers (Fig. 1).

The main idea of this algorithm is to maintain blocks with
different access frequencies for different periods of time in an
L2buffer cache such as a storage cache. To achieve this, it uses
multiple LRU queues: Q0, . . . , Qm�1, where m is a tunable
parameter. Blocks in Qj have a longer lifetime in the buffer
cache than those in Qi (i < j). MQ also uses a history buffer
Qout, similarly to the 2Q algorithm [20], to remember access
frequencies of recently evictedblocks for someperiodof time.
Qout only keeps block identifiers and their access frequencies.
It is a FIFO queue of limited size.

On a cache hit to block b, b is first removed from the
current LRU queue and then put at the tail of queue Qk

according to b’s current access frequency. In other words, k
is a function of the access frequency, QueueNumðfÞ. For
example, for a given frequency f , QueueNumðfÞ can be
defined as log2f . So, the eighth access to a block that is
already in an L2 buffer cache will promote this block from
Q2 to Q3 according to this QueueNumðfÞ function.

On a cache miss to block b, MQ evicts the head of the
lowest nonempty queue from an L2 buffer cache in order to
make room for b, i.e., MQ starts with the head of queue Q0

when choosing victims for replacement. If Q0 is empty, then

MQ evicts the head block of Q1 and so on. If block c is the
victim, its identifier and current access frequency are
inserted into the tail of the history buffer Qout. If Qout is
full, the oldest identifier in Qout will be deleted. If the
requested block b is in Qout, then it is loaded and its
frequency f is set to be the remembered value plus 1 and
then b’s entry is removed from Qout. If b is not in Qout, it is
loaded into the cache and its frequency is set to 1. Finally,
block b is inserted into an LRU queue according to the value
of QueueNumðfÞ.

MQ ages reference counts by demoting inactive blocks
from higher to lower level queues. MQ does this by
associating a value called expireTime with each block in an
L2 buffer cache. “Time” here refers to logical time, measured
by the number of accesses. When a block stays in a queue for
longer thanapermittedperiodof timewithout anyaccess, it is
demoted to the next lower queue. This is easy to implement
with LRU queues. When a block enters a queue, the block’s
expireTime is set to be currentTimeþ lifeTime, where
lifeTime, a tunable parameter, is the time that each block
can be kept in a queuewithout any access. At each access, the
expireTime of each queue’s head block is checked against the
currentTime. If the former is less than the latter, it ismoved to
the tail of the next lower level queue and the block’s
expireTime is reset. Fig. 5 gives a pseudocode outline for
the MQ algorithm.

When m equals 1, the MQ algorithm is the LRU
algorithm. When m equals 2, the MQ algorithm and the
2Q algorithm [20] both use two queues and a history buffer.
However, MQ uses two LRU queues, while 2Q uses one
FIFO and one LRU queue. MQ demotes blocks from Q1 to
Q0 when their lifetime in Q1 expires, while 2Q does not
make this kind of adjustment. When a block in Q1 (or Am) is
evicted in the 2Q algorithm, it is not put into the history
buffer, whereas it is with MQ.

Like the 2Q algorithm, MQ has a time complexity of Oð1Þ
because all queues are implemented using LRU lists and m

is usually very small (less than 10). At each access, at most
m� 1 head blocks are examined for possible demotion. MQ
is faster in execution and also much simpler to implement
than algorithms like FBR, LFRU, or LRU-K, which have a
time complexity close to Oðlog2nÞ (where n is the number of
entries in the cache) and usually require a heap data
structure for implementation.

ZHOU ET AL.: SECOND-LEVEL BUFFER CACHE MANAGEMENT 509

Fig. 4. Access and block distribution among different frequencies. A point ðf; p1Þ on the block percentage curve indicates that p1 percent of the total

number of blocks are accessed at least f times, while a point ðf; p2Þ on the access percentage curve represents that p2 percent of the total number

of accesses are to blocks accessed at least f times. (a) Oracle Miss Trace-128M, (b) Oracle Miss Trace-16M, (c) HP Disk Trace, and (d) Auspex

server trace.



6 GLOBAL L2 BUFFER CACHE MANAGEMENT

The MQ algorithm described in the last section is a local
L2 buffer cache replacement algorithm that does not require
any information from first level. In this section, we present a
global management scheme that exploits information from
L1 buffer caches to effectively manage an L2 buffer cache.
We also describe two approaches to implement this global
scheme, one of which requires modification to first-level
software and the other does not require such modification,
but has less accurate information about first-level.

6.1 Main Idea

Intuitively, a multilevel buffer cache heirarchy is less
efficient than a unified, single-level buffer cache with the
same aggregate buffer cache size. For example, if an
L1 buffer cache has S1 blocks and an L2 buffer cache has
S2 blocks, the minimum number of misses from the two-
level buffer cache hierarchy cannot be smaller than that
from a unified single-level buffer cache with S1 þ S2 blocks.
This observation can be easily proved by contradiction.

Based on this observation, we propose a global cache
management scheme to manage a multilevel hierarchy
collaboratively. We use the LRU algorithm as an example
even though this global scheme can also apply to other
replacement algorithms. For simplicity, we first assume
that there is only one L1 buffer cache and one L2 buffer

cache. Section 6.3 will discuss how to extend it to multiple
L1s and L2s.

Fig. 6 shows a global LRU stack. The top of the LRU stack
records blocks that are most recently used and the bottom of
the stack records blocks least recently used. The top S1

entries physically reside in the L1 buffer cache and the
bottom S2 entries reside in the L2 buffer cache. The global
LRU algorithm works as follows:

. Operation 1: A hit to the L1 buffer cache is handled
in the same way as the local algorithm: The accessed
block is moved to the top of the global LRU stack.

. Operation 2: At a miss at L1, if the missed block is in
the L2 buffer cache (lower half of the global LRU
stack), the block is “moved” from L2 to L1 and is
deleted in L2.

. Operation 3: If the missed block is not in L2, the
block is loaded directly from disks to L1 bypassing
L2. The bypassing process can be implemented
using a temporary buffer at the second level.

. Operation 4: When L1 evicts a block, the evicted
block is “shifted” to the top of L2’s LRU stack
partition.

With these operations, the two-level buffer cache hier-
archy behaves in the same way as a local LRU algorithm
managing a large single-level buffer cache. By following the
same principle, this global LRU algorithm can be easily
extended from two-level to multilevel.

The above four operations can also integrate with other
replacement algorithms. Basically, the replacement decision
can be made independently in an L1 and L2 using their
local algorithms. To “globalize” an algorithm, one can
simply add the four operations described above.

6.2 Design Issues

Two challenging issues need to be addressed for the global
algorithm to be used in real systems. The first issue is to
obtain replacement (eviction) information from L1 buffer
caches in order to perform Operation 4. The second issue is
where L2 should load blocks that are evicted from L1. This
section discusses these two design issues and the trade offs
between different solutions.

6.2.1 How to Obtain First-Level Replacement

Information

In most software-managed buffer caches, the replacement
(eviction) information is usually not passed from an upper
level to a lower level. For example, a database buffer cache
always silently evicts a clean page and only writes out dirty
pages to its back-end storage systems.

510 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 6, JUNE 2004
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There are two approaches to obtain an L1’s replacement
information. The first approach is to modify an L1 software
to pass the eviction information to an L2 software. In the
example of database-storage buffer cache hierarchy, this
approach requires modification to the database server
source code to pass its buffer cache eviction information
to the storage system using either explicit messages or
pigging-back on ordinary requests. It is very similar to the
DEMOTE approach investigated by Wong and Wilkes in
their disk cache study [48]. The advantage with this
approach is that an L2 can obtain very accurate eviction
information from L1. The disadvantage is transparency.
When the L1 software source code is unavailable (because it
is usually developed by a different company from L2
software), this method is not applicable.

The second approach is to have L2 estimate an L1’s
replacement information. Themain idea is tomake use of the
buffer address parameter in the I/O read/write interface and
build a table to keep track of the contents of the client buffer
cache. For example, in a standard I/O interface, a storage I/O
read/write call passes at least the following input arguments:
disk ID, disk offset, length, and buffer address. The buffer
address parameter indicates the virtual memory address to
store/load the data.

An L2 buffer cache can use a data structure called client
content tracking (CCT) table to record current disk blocks
(diskID; blockNo) that reside in different memory location
of an L1 buffer cache. The content table size grows
dynamically based on the buffer addresses it has seen.
Since only 16 bytes are needed for each cache block (of size
8 KBytes in our experiments), the content table does not
require too much memory space. For example, if an L1 uses
a 4 GBytes buffer cache, the memory space needed for a
CCT is only 8 MByte and, therefore, imposing only
0.2 percent space overheads.

Fig. 7 shows a CCT table and how it changes after a read
request from L1. At every read/write operation, CCT is
consulted to find out which disk block was previously put
in the given L1’s memory address. If the old disk block is
different from the currently accessed disk block, the old
disk block must have been evicted from L1 to make space
for the new block. Then, this eviction information is
obtained by L2. The corresponding CCT entry is modified
to point to the currently accessed disk block.

The advantage with the CCT approach is that it does not
require modification to L1’s software such as the database
server’s source code. However, this approach may not
accurately capture an L1’s eviction information. For exam-
ple, if the L1 software moves blocks around in its buffer
cache, this approach may capture the wrong eviction
information (although this is not the case in both the
Microsoft SQL Server and the Oracle Server used in our
experiments).

Where to implement the CCT table depends on a
particular system with second-level buffer caches. For
example, in an I/O subsystem, there are two possible
places: the I/O device driver and the storage server. In our
experiments, we decided to implement it on the I/O device
driver because it is easier to support storage clients
(database servers) that use multiple storage systems. Since
every I/O operation needs to pass through the I/O device
driver, the CCT table can accurately keep track of an
L1 buffer cache content and pass eviction information to the
corresponding storage system.

6.2.2 Where to Load Blocks Evicted by L1

After an L2 buffer cache knows the L1’s replacement
information, L2 needs to load blocks evicted by L1. There
are two methods to load these blocks: 1) The first method is
to have the L1 software send the evicted blocks (even clean
blocks) to L2. The DEMOTE mechanism proposed [48] takes
this approach. The cleanest way to implement this method
is to modify the L1 software because any external heuristic
implementation may incorrectly send a block with un-
wanted updated back to L2. 2) The second method is to
reload blocks (evicted by L1) from disks (third or lower
level) to L2. This method does not require any modification
to the L1 software.

One trade off between the two methods is the location of
the extra traffic. The first method increases the amount of
network traffic between L2 and L1, whereas the second
method adds more traffic on disk accesses. In a real system,
the disk bandwidth is usually less utilized than the L1-L2
network bandwidth. For example, in the database-storage
hierarchy, real-world configurations typically put many
disks (for example, 60-100 SCSI disks) in a storage server
[50]. With an average seek time of 5-6 ms, a modern SCSI
hard drive can provide over 1MBps bandwidth for a traffic
of random 8-KByte block accesses. Thus, without any
caching at the storage server, a medium disk array, say
100 disks, can readily saturate a 1Gbps database-storage
interconnection. Moreover, a storage server cache (L2 buffer
cache) can also filter some of the data access traffic. For
instance, if a storage cache has a hit ratio of 50 percent, only
one half of the network traffic will go to disks. In this case,
using only 50 disks can saturate a 1Gbps database-storage
interconnection. In such a system, the first method of
loading evicted blocks from L1 can significantly degrade
the system throughput. Our experimental results validate
this limitation. On the other hand, in a system whose L1-L2
network bandwidth is larger than the aggregate disk
bandwidth, the first method would be a better option.

Another trade off is the flexibility for optimizations.
Since an L1 buffer cache evicts a clean block to make space
for a new block, the first method needs to demote (send) the
evicted block to an L2 buffer cache before replacing it. Due
to this constraint, the time window to demote a block to the
L2 buffer cache is very short, not enough to perform any
effective scheduling or batching optimizations. In contrast,
using the second method, any demand requests at L1 to L2
can proceed without interference.

However, the second method can also affect performance
due to the additional disk traffic caused by reloading blocks
(evicted by L1) from disks. To reduce the reload overhead,
the following optimizations can be performed:

1. Eliminating unnecessary reloads. In most cache
studies, the rule of thumb is that a large percentage
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Fig. 7. Client Content Tracking (CCT) table (notation: (disk1, bno1)
uniquely identifies a recently evicted block).



of accesses are made to small percentage of blocks.
This means that most of the blocks (cold blocks) are
accessed only once or twice in a long period of time.
When these blocks are evicted from an L1 buffer
cache, it is unnecessary to reload them from disks.
Reloading these blocks can actually degrade an
L2 buffer cache’s hit ratios because they can pollute
an L2 buffer cache. Unfortunately, information on
future accesses is usually not available in real
systems. In our implementations, we speculate cold
blocks based on the number of previous accesses. In
other words, L2 does not reload blocks that have
been accessed fewer than reload threshold number
of times.

2. Masking reload overheads through disk schedul-
ing. To avoid reloads delaying demand disk
requests, demand requests can have higher priority
than reloads. Reloads can be considered in a similar
way to prefetching hints since it is perfectly OK if a
reload operation is not performed. Given such
flexibility, an L2 can put reload operations in a
separate task queue and only issues them when
there is no ongoing demand request competing for
the same disk. Many previous works such as the
freeblock scheduling [26], [3] can be easily applied
here to mask reload overheads.

6.3 Extensions to Multiple L1 and L2 Buffer Caches

The global algorithm can be extended to manage multiple
L1 and L2 buffer caches. First, if there are multiple L2 buffer
caches in the hierarchy, the four operations of the global
algorithm can still be performed with little change. The only
extension is that, when an L1 evicts a block, this block
should be reloaded by an L2 that is connected to the disk
storing the block. If there are multiple choices, the decision
can be made based on their workloads.

To support multiple L1 buffer caches is more compli-
cated. If different L1s access different data (which is
typically the case in parallel databases such as Microsoft
SQL Server), one method is to divide an L2 buffer cache into
multiple partitions, one for each L1. To effectively use the
L2 buffer cache, a marginal benefit analysis similar to [22]
can be used to dynamically determine the partition sizes. If
multiple L1s share data, the global algorithm can be
modified by integrating with a cooperative caching scheme
for all L1s [8]. That is, if a block missed by an L1 buffer
cache has a copy in another L1 buffer cache, the former can
fetch the data directly from the latter. When an L1 evicts a
block, the block is not reloaded into an L2 unless this is the
last copy among all L1s.

7 SIMULATION RESULTS

We have evaluated the local and global algorithms for
second level buffer caches using both trace-driven simula-
tions and implementations on a real storage system. First,
we report our trace-driven simulation results in this section.

7.1 Evaluation of Local Algorithms

We have implemented MQ and eight existing replacement
algorithms including LRU, MRU, LFU, LRU-2, FBR, LFRU,
2Q, ARC, LIRS, and offline OPT (optimal) algorithms in our
L2 buffer cache simulator. The block size for all simulations
is 8 KBytes. With experiments, we found out that using
logðfÞ function as our QueueNumðfÞ function works very

well for all traces. Our experiments also show that eight
LRU queues are enough to separate the warmer blocks from
the others. The history buffer Qout size is set to be four times
the number of blocks in the L2 buffer cache. Each entry of
the history buffer occupies fewer than 32 bytes so that the
memory requirement for the history buffer is quite small,
less than 0.5 percent of the L2 buffer cache size. The lifeTime
parameter is adjusted adaptively at running time. The main
idea for dynamic lifeTime adjusting is to efficiently collect
statistic information on the reuse distance distributions
from access history. We will not discuss it further, but
details can be found in [49].

The history buffer size for 2Q is one-half of the number
of blocks in the cache as suggested by Johnson and Shasha
in [20]. For fairness, we have extended the LFRU, LRU-2,
FBR, and LFU algorithms to keep track of CRF values,
second-to-last reference time, and access frequencies for
recently evicted blocks, respectively. We have tuned the
FBR and LFRU algorithms with several different para-
meters suggested by the authors and report the best results.
We also implemented the offline optimal algorithm (OPT)
to give a low-bound of any online local algorithms.

As with all cache studies, interesting effects can only be
observed if the size of the working set exceeds the cache
capacity. The two traces provided by other sources (HP
Disk Trace and Auspex Server Trace) have relatively small
working sets. To anticipate the current trends that working
set sizes increase with user demands and new technologies,
we chose to use smaller buffer cache sizes for these three
traces. In most of experiments, we set the L2 buffer cache
size to be larger than the L1 buffer cache size. However, this
property does not always hold in real systems. For example,
in many low-end or high-end configurations, storage
systems such as the IBM Enterprise Storage Server have
less than 1 Gigabyte of storage cache (second level buffer
cache), while the front-end server, database, or file servers,
typically have more than 4 Gigabytes of buffer cache (first
level buffer cache). Because of this reason, we have also
explored a few cases where the L2 buffer cache is equal to
or smaller than the L1 buffer cache.

7.1.1 Overall Results

Table 2 shows that the MQ algorithm performs better than
other online algorithms for L2 buffer caches. Its perfor-
mance is robust for different workloads and cache sizes.
MQ is substantially better than LRU. With the Oracle Miss
Trace-128M, LRU’s hit ratio is 30.9 percent for a 512 Mbyte
storage cache (L2 buffer cache), whereas MQ’s is 47.5 per-
cent, a 53 percent improvement. For the same cache size,
MQ has a 10 percent higher hit ratio than FBR. The main
reason is that this algorithm can selectively keep a warm
block in caches for a long period of time till the next access.

LRU does not perform well for the four L2 buffer cache
access traces, though it works quite well for L1 buffer
caches. This is because LRU does not keep blocks in the
cache long enough. The LFU algorithm performs worse
than LRU. The long reuse distance (minDist) at L2 buffer
caches makes frequency values inaccurate. Of the eight
online algorithms, the MRU algorithm has the worst
performance. Although this algorithm can keep old blocks
for a long time in L2 buffer caches, unfortunately, old blocks
are not accessed frequently.

FBR, LFRU, and LRU-2 perform better than LRU, but
always worse than MQ. The gap between these three
algorithms and MQ is quite large in several cases. Although
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FBR and LFRU can overcome some of the LRU drawbacks
by taking access frequency into account, it is difficult to
choose the right combination of frequency and recency by
tuning the parameters for these two algorithms. LRU-2 does
not work well because it favors blocks with small reuse
distances.

2Q performs better than other online algorithms except
MQ. With a separate queue (A1in) for blocks that have only
been accessed once, 2Q can keep frequently accessed blocks
in the Am queue for a long period of time. However, when
the L2 buffer cache size is small, 2Q performs worse than
MQ. For example, with Oracle Miss Trace-128M, 2Q has a
4 percent lower hit ratio than MQ for a 512 MBytes cache.
With Oracle Miss Trace-16M, the gap between MQ and 2Q
is 6.7 percent for a 64 MBytes cache. This is because the
lifetime of a block in the 2Q-managed L2 buffer cache is not
long enough to keep the block resident for the next access.

7.1.2 Performance Analysis

To understand the performance results in more detail, we
use reuse distance as a measure to analyze the algorithms.
Since the traces in our study have similar access patterns,
this section reports the analysis using the Oracle Miss
Trace-128M trace as a representative.

The performance of a local replacement algorithm at
L2 buffer caches primarily depends on how well they can
satisfy the life time property. As we have observed from
Section 4, accesses to L2 buffer caches tend to have long
reuse distances. If the majority of accesses have reuse
distances greater than D, a replacement algorithm that
cannot keep blocks longer than D time is unlikely to
perform well.

Our method to analyze the performance is to classify all
accesses into two categories according to their reuse dis-
tances:< C and� C, where C is the number of entries in the
L2 buffer cache. Table 3 shows the number of hits andmisses
in the two categories for a 512 MBytes L2 buffer cache.

LRU has no miss in the left category because any access
in this category is less than C references away from its

previous access to the same block. The block being accessed

should still remain in the cache since the buffer cache can

hold C blocks. However, LRU has a large number of misses

in the right category because any block that has not been

accessed for more than C time can be evicted from the cache

and, therefore, lead to a miss for the next access to this

block. Since the right category dominates the total number

of accesses (Fig. 3a), LRU does not perform well.
The 2Q, FBR, LFRU, and LRU2 algorithms reduce the

number of misses in the right category by 15 to 25 percent

because these algorithms can keep warm blocks in the cache

longer than C time. However, in order to achieve this, the

FBR, LFRU, and LRU2 algorithms have to sacrifice some

blocks, which are kept in the cache for a short period of

time. As a result, these three algorithms have some misses

in the left category. But, the number of such misses is much

smaller than the number of misses avoided in the right

category. Overall, the three algorithms have fewer misses

than LRU. Because the 2Q algorithm has no misses in the
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(a) Oracle Miss Trace-128M, (b) Oracle Miss Trace-16M, (c) HP Disk Trace, and (d) Auspex Server Trace.

TABLE 3
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left category, it outperforms the FBR, LFRU, and LRU2
algorithms.

MQsignificantly reduces the number ofmisses in the right
category. As shown in Table 3, MQ has 2,646k misses in the
right category, 36 percent fewer than LRU. Similarly to the
FBR algorithm, MQ also has somemisses in the left category.
However, the number of such misses is so small that it
contributes to only 10 percent of the total number of misses.
Overall, the MQ algorithm performs better than others.

7.1.3 Comparison with Recently Proposed Algorithms

We have also compared MQ with two recently proposed
algorithms, LIRS [19] and ARC [28]. The LIRS simulator is
provided by the original author and the ARC algorithm is
implemented by ourselves. Fig. 8 presents the results for
two traces: the HP Disk Trace and the Auspex Server Trace.

Our results show that MQ outperforms both LIRS and
ARC, especially with small L2 buffer caches. For example,
for the HP Disk Trace with a 32MB storage cache, MQ gives
a 36.4 percent hit ratio, whereas LIRS and ARC yield
27.6 percent and 23.4 percent hit ratios, respectively. Our
results also show that LIRS is slight better than ARC.

7.2 Evaluation of Global Algorithms

To evaluate the global multilevel buffer cache management
scheme, we have integrated the four operations of the
global scheme into four trace-driven cache simulators that
respectively use LRU, FBR, 2Q, and MQ as the local
replacement policy. All cache simulators can run with two
options: the pure local algorithm and the integrated global
algorithm. The goal of our simulation evaluation is to find
out the improvement of the global scheme on hit ratios, so
we did not simulate disk accesses and network accesses.

The extra overheads introduced by the global scheme are

discussed in detail in Section 6.2.2. However, these over-

heads are reflected in our implementation results on a real

system (see Section 8).
Fig. 9 compares the hit ratios between the pure-local and

integrated-global algorithms for four different cache repla-

cements with the MS-SQL-Large trace. GL-LRU denotes the

global LRU algorithm, and other abbreviations are similar.

Fig. 10 shows the hit ratios for all three traces. The overall

results for the other two traces are similar.
As shown in Fig. 9, a global algorithm always performs

better than its corresponding local algorithm. In many

cases, the gap between these two is quite substantial. For

example, GL-LRU has 10 percent to five times higher hit

ratios than LRU. The improvements for FBR and 2Q are also

significant, up to a factor of 2.
The effects of the global scheme are different for various

baseline replacement algorithms. For example, with a

512 MByte L2 buffer cache, GL-FBR outperforms FBR by

49 percent andGL-2Q outperforms 2Q by 59 percent, but GL-

MQoutperformsMQbyonly15percent. The improvement of

GL-MQoverMQ is relative small (11 to 80 percent) compared

to other local algorithms becauseMQ is designed specifically

for second-level buffer caches and it is already aware of the

long reuse distance access pattern at L2.
The gap between the global and local algorithms is more

pronounced for smaller cache sizes. For example, in the MS-

SQL-Large trace with a 128 MByte L2 buffer cache, GL-2Q

has a hit ratio of 9.8 percent, whereas 2Q achieves a hit ratio

of 5.9 percent. But, with 2 GBytes of storage cache, they

have similar cache hit ratios. The reason is that, when an

L2 buffer cache is small, it is very wasteful to replicate some

of L1s’ blocks in an L2. A global algorithm completely

eliminates replicas between L1 and L2 and, therefore, can

much more effectively use an L2 buffer cache than its

corresponding local algorithm. However, when an L2 buffer

cache is reasonably large, the negative effect of block

replication on cache hit ratios is reduced. Therefore, the

difference between a global algorithm and a local algorithm

becomes smaller. But, in all cases, a global algorithm is

never worse than its corresponding local algorithm.
Among all local and global algorithms, GL-MQ can

achieve the best hit ratios for L2 in most cases. In a few

exceptions, GL-2Q has better cache hit ratios than GL-MQ,

but the difference is small.
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Fig. 8. Comparison with the ARC and LIRS algorithms. (a) HP Disk
Trace and (b) Auspex Server Trace.

Fig. 9. Improvement of global algorithms (MS-SQL-Large trace).



8 EVALUATION ON REAL SYSTEM

To evaluate the local and global algorithms in a practical
setting, we have implemented the MQ, LRU, GL-LRU, and
GL-MQ in a storage system. The storage system is an
industrial-strength system and has been tested by custo-
mers for more than six months [50]. We use OLTP
workloads running on commercial database servers includ-
ing Microsoft SQL Server and Oracle Servers to evaluate the
effects of these caching algorithms on end application
performance. We have also evaluated different approaches
to implement global algorithms.

8.1 Experimental Testbeds

The storage system runs on a PC cluster similar to other
clustered storage system [38]. We have used two hardware
platforms in our experiments, one connected with Oracle
Server and the other connect with Microsoft SQL Server.
These two platforms have similar architecture. In each
platform, the storage system manages multiple virtual
volumes (virtual disks). A virtual volume can be imple-
mented using a single or multiple physical disk partitions.
Our previous study [50] also gives a detailed description of
the architecture.

All PCs are connected together using a Giganet cLan
network. Clients communicate with storage server nodes
using the Virtual Interface (VI) communication model [45].
The peak communication bandwidth is about 100 to
113 MBytes/sec and the one-way latency for a short
message is about 5 to 10 microseconds. Data transfer from
the database’s buffer to the storage buffer uses direct
DMA without memory copying. Each PC runs Windows
NT 4.0 or 2000 operating system. The interrupt time for
incoming messages is 10 to 20 microseconds. The
bandwidth of data transfers between disk and host
memory is about 15 Mbytes/sec and the access latency
for random read/writes is about 9 milliseconds. Each PC
in our storage system has a large buffer cache to speed up
I/O accesses. Logging disk data is not cached in the
storage system. The storage system employs a write-
through cache policy. But, blocks written by front-ends

are still cached in the storage cache. We can also use a
write-back policy, but this has little effects on our
replacement algorithm evaluation.

The storage systems are connected to a database server
running either Oracle 8i Server (Platform 1) or Microsoft
SQL Server (Platform 2). Performance results are evaluated
using the TPC-C benchmark [25]. The hardware and
software setups are similar to those used for collecting the
Oracle Miss Trace-128M or the MS-SQL-Large. The data-
base server runs on a separate PC, serving as a client to the
storage system. It accesses raw partitions directly. All raw
I/O requests from the database server are forwarded to the
storage system through Giganet. The parameters of the
database server are well tuned to achieve the best TPC-C
performance. Each test runs the TPC-C script on a database
client machine for two hours. The database client also runs
on a separate PC which connects to the database server
through Fast Ethernet. It simulates 48 clients, each of which
generates transactions to the database server. Our database
contains 256 warehouses and occupies 100 GBytes disk
space excluding logging disks.

We have implemented MQ, LRU, GL-MQ, and GL-LRU
in the storage cache The parameters of the MQ algorithm
are the same as described in the previous section. We have
also evaluated two different approaches to implementing
global algorithms. One approach modifies a database server
(Microsoft SQL Server) source code to transfer evicted
blocks to the storage cache, whereas the other approach
uses the Client Content Tracking (CCT) table described in
Section 6.2.1 to estimate L1 eviction information and reload
data from disks.

Platform 1 is used to evaluate the MQ replacement
algorithm and Platform 2 is used to evaluate the effects of
global algorithms. Table 4 lists the difference between these
two platforms.

8.2 Evaluation of MQ Replacement Algorithm

Fig. 11 shows the hit ratios of the storage buffer cache with
the MQ and LRU replacement algorithms. The difference
between the implementation and simulation results is less
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than 10 percent, which validates our simulation study. The
small difference is mainly caused by two factors. The first is
that the timing is different in the real system due to
concurrency. The second is the interaction between cache
hit ratios and request rates. When the cache hit ratio
increases, more I/O requests are forwarded to storage.

As shown in Fig. 11, MQ achieves much higher hit ratios
than LRU. For a 512 MByte storage buffer cache, MQ has a
12.65 percent higher hit ratio than LRU. In fact, in order for
LRU to achieve the same hit ratio as MQ, its cache size
needs to be doubled. The hit ratio of MQ with a 128 MByte
cache is slightly greater than that of LRU with a 256 MByte
cache. The hit ratio of MQ with a 256 MBytes cache is about
the same as LRU with a 512 MBytes cache.

Fig. 12 shows the end performance of the MQ and LRU
algorithms. For all three buffer cache sizes, MQ improves
the TPC-C end performance over LRU by 8 to 11 percent.
Due to certain license problems, we are not allowed to
report the absolute performance in terms of transaction rate.
Therefore, all performance numbers are normalized to the
transaction rate with a 128 MByte buffer cache using the
LRU replacement algorithm. Because of the high hit ratios,
the MQ algorithm improves the transaction rates over LRU
by 8 percent, 12 percent, and 10 percent for 128 MByte,
256 MByte, and 512 MByte cache sizes, respectively.

Similar to the cache hit ratio improvement, using the
MQ algorithm is equivalent to using LRU with a double
sized cache. With a 128 MByte buffer cache, MQ increases
the transaction rate by 8 percent. MQ with a 256 MByte
cache achieves a similar transaction rate to LRU with a
512 MByte cache.

8.3 Evaluation of Global Algorithms

Fig. 13 compares the storage cache hit ratios and normal-
ized transaction rates for local and global algorithms. RAW-
GL means that it uses global algorithm without any
optimizations to hide reload overheads; OPT-GL means
that it uses a global algorithm with optimization to reduce
reload overhead. The results for the global algorithms are

presented using the second implementation that does not
require any modification to the database server. At the end
of this section, we will compare this implementation with
the other implementation that modifies Microsoft SQL
Server to send evicted data to the storage cache.

The raw global algorithms without optimization has the
highest storage cache hit ratios. For example, RAW-GL-LRU
can improve LRU’s hit ratio by a factor of 1.49, and RAW-
GL-MQ improves MQ by a factor of 1.32. Similar to the
simulation results, global algorithms’ improvement on
storage cache hit ratios is more pronounced for LRU than
for MQ.

Unfortunately, RAW-GL’s improvement on cache hit
ratios does not fully translate into improvement on end
transaction rate. For example, RAW-GL-LRU only outper-
forms the access-based placement by 7 percent. RAW-GL-
MQ does not have any improvement at all. The main reason
is the high overheads for reloading data from disks, which
significantly offsets the benefit of improved cache hit ratios.
In RAW-GL-MQ, the overheads are so large that they cancel
out the 32 percent improvement on cache hit ratios.

However, after reducing the reload overheads by
eliminating unnecessary reloads and prioritizing demand
requests over reloads, the optimized GL can achieve much
higher transaction rates. For example, OPT-GL-LRU im-
proves the transaction rate of LRU by 21 percent. OPT-GL-
MQ has a speedup of 1.13 over MQ.

To understand the effects of optimizations for reducing
reload overheads, we have examined the impact of these
optimizations on cache hit ratios, average response time
(average miss penalty) of demand disk requests, reload
traffic, and application transaction rate by varying the
reload threshold value. Fig. 14 plots these impacts for
OPT-GL-LRU. All numbers are, respectively, normalized
to the ones achieved using RAW-GL-LRU. When the
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TABLE 4
Difference of Two Experimental Platforms

Fig. 11. Storage buffer cache hit ratios (%).

Fig. 12. Normalized TPC-C transaction rate with different storage cache

sizes (all numbers are normalized to the one achieved by LRU with a

128 MByte storage cache).

Fig. 13. Storage cache hit ratios and normalized transaction rates. All
transaction rates are normalized to the ones achieved using local LRU.



reload threshold value increases, the number of reloads is
significantly reduced, leading to less contention on disks.
As a result, the average disk response time for demand
requests becomes smaller.

However, reducing the number of reloads also has a
negative impact. It decreases storage cache hit ratios. For
example, increasing the reload threshold value from 0 to 64,
thestoragecachehit ratio is reducedby15percent.Combining
the gain (decrease in disk traffic) and the loss (decrease in
cache hit ratios) into the formula:

AverageAccessTime ¼HitTime �HitRatio

þMissPenalty � ð1�HitRatioÞ;

the impact on application performance varies. The perfor-
mance peaks when the threshold value is 32.

Implementation Trade Offs. To evaluate the trade offs
between of the two different implementations of global
algorithms, we also implement the other approach that
sends evicted (even clean) blocks from Microsoft SQL
Server’s buffer cache to the storage cache. For convenience
of description, we call this implementation the demote
implementation. And, we call the default implementation
that estimates L1’s eviction information and reload evicted
blocks from disks as the reload implementation.

Fig. 15 compares the performance of the two implementa-
tions under three different configurations of network
bandwidth. We vary the database-storage network band-
width in a range from 40MB/s to 113MB/s. Since the VI
network in our platform can provide 113 MB/s user-to-user
bandwidth, we have to run a simple ping-pong VI test
program on the side to generate network traffic to utilize 1/3
or 2/3 of the VI bandwidth. The test program is very simple
and introduces little processor overheads.

When the available client-storage network bandwidth is
high compared to the client workloads, the two implemen-
tations perform similarly. However, when the network
bandwidth is low, the reload implementation outperforms
the demote implementation by 20 percent, even though
both approaches have similar cache hit ratios. This is
because the former does not impose extra database-storage
(L1-L2) network traffic, whereas the latter can potentially
double the L1-L2 traffic. These results indicate that the
reload implementation would be a better alternative when
the L1-L2 network is heavily utilized.

9 RELATED WORK

A large body of literature has examined cache replacement
algorithms.Examplesof buffer cache replacement algorithms
include theLRU [12], [7],GCLOCK [42], [30], First in FirstOut
(FIFO), MRU, LFU, Random, FBR [34], LRU-k [31], 2Q [20],
LFRU [24], LIRS [19], andARC [28]. In the spectrumof offline

algorithms, Belady’s OPT algorithm and WORST algorithm
[5], [27] arewidelyused toderive a lower andupperboundon
the cache miss rate. Other closely related works include
Muntz and Honeyman’s file server caching study [29] and
Willick et al.’s disk cache study [47].

Cache replacement policies have been intensively stu-
died in various contexts in the past, including processor
caches [40], paged virtual memory systems [42], [6], and
disk caches [41]. Although several studies [4], [46], [21] have
explored two-level processor cache design issues, their
conclusions do not apply to software-based L2 buffer cache
designs because the former has more restrictions. Some
analytical models of the storage hierarchies have been given
in [17], [23].

Many past studies have used metrics such as LRU stack
distance [27], marginal distribution of stack distances [1], or
distance string models [43] to analyze the temporal locality
of programs. Phalke recently proposed the interreference
gap (IRG) model [33] to characterize temporal localities in
program behavior. But, this model looks at each address
separately. Therefore, it cannot capture global access
behavior well.

Our work also builds upon many other previous studies
[10], [16], [29], [51], [47], [48]. Dan et al. conducted a
theoretical analysis of hierarchical buffering in a shared
database environment [10]. Franklin et al. also explored
global memory management in database systems [16]. Our
work is also related to work on hardware victim caches [21],
which is used to keep a few recently evicted blocks from
set-associative processor caches.

Our work is related to but different from previous work
on cooperative caching or global memory management [8],
[15], [37] because those works focus on multiple buffer
caches at the same level and managed by the same software
(e.g., distributed file systems). Our work studies the
multilevel buffer cache hierarchy.

10 CONCLUSION

This paper reported our study on second-level buffer cache
management. More specifically, it presents a new local
replacement algorithm called MQ and a global cache
management scheme to effectively manage second-level
buffer caches. These algorithms are based on our study of
second-level buffer cache access patterns.

We have evaluated these algorithms using both simula-
tions and implementations on a real storage system that is
connected to commercial database servers (Microsoft SQL
Server and Oracle Server) running OLTP benchmarks. Our
results show thatMQperforms better than nine existing local
algorithms and that it is robust for different workloads and
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Fig. 14. Effects of optimizations for reducing reload overhead. Fig. 15. Comparison of the two implementations of global algorithms
with different L1-L2 bandwidth (all transaction rates are normalized to
their corresponding rate with 113MB/s network bandwidth).



cache sizes. The implementation results of the TPC-C bench-
mark on a 100 GBytes database show that the MQ algorithm
hasmuch better hit ratios than LRU and improves the TPC-C
transaction rate by 8 to 12 percent over LRU. For LRU to
achieve a similar level of performance, the cache size needs to
be doubled. Our results also show that the global algorithms
can improve local algorithms’ cache hit ratios by 10 to
500 percent for second-level buffer caches and improve the
end application transaction rate by 20 percent. Even though
our experiments are conductedon storage systems,we expect
the main results are similar on other systems with second-
level buffer caches that are not significantly larger than their
first-level buffer caches.
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