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Introduction

Throughout all rings have identity elements and all modules are unital.

De�nitions

i) A right R-module M is called prime in case M 6= 0 and
annR (M) = annR (N) for every non-zero submodule N of M .
ii) A right R-module M will be called a second module provided M 6= 0
and annR (M) = annR (M/N) for every proper submodule N of M. .

By a prime submodule of M, we mean a submodule P such that
the module M/P is prime.
By a second submodule of M, we mean a submodule which is also a
second module.

In [S.Annin Attached primes over noncommutative rings, J. Pure
Appl. Algebra 212 (2008), 510-521.] second modules are called
coprime.
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Prime submodules

Prime modules and prime submodules of modules have been studied by
various authors over the past 30 years
�J. Dauns, Prime modules, J. Reine Angew Math. 298 (1978), 156-181.
�C.-P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti
Pauli 33 (1984), 61-69.
�R. L. McCasland and P. F. Smith, Prime submodules of Noetherian
modules, Rocky Mtn. J. 23 (1993), 1041-1062.
�Y. Tiras, A, Harmanci and P. F. Smith, A characterization of prime
submodules, J. Algebra 212 (1999), 743-752.
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Second modules

The study of second modules and second submodules of modules have
been instigated by
�S. Yassemi, The dual notion of prime submodules. Arch. Math. Brno,
37 (2001), 273-278.
�S. Annin, Attached primes over noncommutative rings, J. Pure Appl.
Algebra 212 (2008), 510-521.
�H. Ansari-Toroghy and F. Farshadifar, The dual notions of some
generalizations of prime submodules, Algebra Colloq. 19 (1) 2012,
1109-1116.
�S. Ebrahimi-Atani, On secondary modules over Dedekind domains,
Southeast Asian Bull. Math. 25 (1) (2001), 1-6.
�S. Ebrahimi-Atani, Submodules of secondary modules, Int. J. Math.
Math. Sci. 31 (2002), 321-327.



Introduction Second Modules Examples of second modules Homomorphic images

Second modules

The study of second modules and second submodules of modules have
been instigated by
�S. Yassemi, The dual notion of prime submodules. Arch. Math. Brno,
37 (2001), 273-278.
�S. Annin, Attached primes over noncommutative rings, J. Pure Appl.
Algebra 212 (2008), 510-521.
�H. Ansari-Toroghy and F. Farshadifar, The dual notions of some
generalizations of prime submodules, Algebra Colloq. 19 (1) 2012,
1109-1116.
�S. Ebrahimi-Atani, On secondary modules over Dedekind domains,
Southeast Asian Bull. Math. 25 (1) (2001), 1-6.
�S. Ebrahimi-Atani, Submodules of secondary modules, Int. J. Math.
Math. Sci. 31 (2002), 321-327.



Introduction Second Modules Examples of second modules Homomorphic images

Let R be a commutative ring and let M be a non-zero R-module.
Given any element r 2 R , let µr : M ! M denote the endomorphism of
M de�ned by µr (m) = rm (m 2 M).

M is prime if and only if for each r 2 R either µr is zero or a
monomorphism.

M is prime if and only if for any r in R and m in M , rm = 0
implies that m = 0 or rM = 0.

M is second if and only if for each r 2 R either µr is zero or an
epimorphism.

M is second if and only if for any r in R , either rM = 0 or
rM = M .
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The fundamental concepts of the second modules

If R is any ring and M is a second R-module then P = annR (M) is
a prime ideal of R
because if MAB = 0, for some ideals A and B of R , and 0 6= MA then
we get that M = MA and so MB = 0.

In this case, M is called a P-second module.
Clearly a simple modules are both prime and second modules.
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More generally, a homogeneous semisimple modules are both prime and
second.
If R is a simple ring then every non-zero module is a prime second
module.
Conversely, every ring R such that the right R-module R is a second
module is simple.
Clearly every non-zero submodule of a prime module is prime and every
non-zero homomorphic image of a second module is second.
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Lemma

Let R be a ring such that every prime ideal is maximal. Then a right
R-module M is prime if and only if M is second.
Moreover, if R is commutative then the module M is second if and only
if M is homogeneous semisimple.

Proof.

Suppose �rst that M is prime. Then M 6= 0 and P = annR (M) is a
prime, and hence maximal ideal of R .Let N be any proper submodule of
M . Then P � annR (M/N) � R , so that P = annR (M/N). It
follows that M is a second module.
Conversely, if M is a second module then again P = annR (M) is a
maximal ideal of R .For each non-zero submodule L of M we have
P � annR (L) � R and hence P = annR (L). Thus M is a prime
module.
Now suppose that R is commutative. If M is a second module then
MP = 0 for some maximal ideal P of R so that M is homogeneous
semisimple.
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The Results

Corollary

Let R be either a commutative von Neumann regular ring or a right
perfect ring . Then a non-zero module M is second if and only if M is
homogeneous semisimple.

Lemma

Let R be a ring such that R/P is right Artinian for every right primitive
ideal P . Then the following statements are equivalent for a module M .

1 M is a prime module which contains a simple submodule.

2 M is a second module which contains a maximal submodule.

3 M is homogeneous semisimple.
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Lemma

The following statements are equivalent for a non-zero module M .

1 M is a second module.

2 For every ideal A of R either MA = 0 or M = MA.

3 M = MA for every ideal A of R not contained in annR (M).

4 M = MA for every ideal A of R properly containing annR (M).

Proof.

(i)) (ii) Suppose that M 6= MA for any ideal A of R . Then MA is a
proper submodule. If B = annR (M/MA) then (i) gives that MB = 0.
But we know that A � B and hence MA = 0.
(ii)) (iii)) (iv) Clear.
(iv)) (i)Let N be a proper submodule and let C = annR (M/N).
Then annR (M) � C and MC � N 6= M so that C = annR (M) and
MC = 0. Thus annR (M) = annR (M/N) and henceM is second.



Introduction Second Modules Examples of second modules Homomorphic images

Lemma

The following statements are equivalent for a non-zero module M .

1 M is a second module.

2 For every ideal A of R either MA = 0 or M = MA.

3 M = MA for every ideal A of R not contained in annR (M).

4 M = MA for every ideal A of R properly containing annR (M).

Proof.

(i)) (ii) Suppose that M 6= MA for any ideal A of R . Then MA is a
proper submodule. If B = annR (M/MA) then (i) gives that MB = 0.
But we know that A � B and hence MA = 0.
(ii)) (iii)) (iv) Clear.
(iv)) (i)Let N be a proper submodule and let C = annR (M/N).
Then annR (M) � C and MC � N 6= M so that C = annR (M) and
MC = 0. Thus annR (M) = annR (M/N) and henceM is second.



Introduction Second Modules Examples of second modules Homomorphic images

Lemma

The following statements are equivalent for a non-zero module M .

1 M is a second module.

2 For every ideal A of R either MA = 0 or M = MA.

3 M = MA for every ideal A of R not contained in annR (M).

4 M = MA for every ideal A of R properly containing annR (M).

Proof.

(i)) (ii) Suppose that M 6= MA for any ideal A of R . Then MA is a
proper submodule. If B = annR (M/MA) then (i) gives that MB = 0.
But we know that A � B and hence MA = 0.
(ii)) (iii)) (iv) Clear.
(iv)) (i)Let N be a proper submodule and let C = annR (M/N).
Then annR (M) � C and MC � N 6= M so that C = annR (M) and
MC = 0. Thus annR (M) = annR (M/N) and henceM is second.



Introduction Second Modules Examples of second modules Homomorphic images

Lemma

The following statements are equivalent for a non-zero module M .

1 M is a second module.

2 For every ideal A of R either MA = 0 or M = MA.

3 M = MA for every ideal A of R not contained in annR (M).

4 M = MA for every ideal A of R properly containing annR (M).

Proof.

(i)) (ii) Suppose that M 6= MA for any ideal A of R . Then MA is a
proper submodule. If B = annR (M/MA) then (i) gives that MB = 0.
But we know that A � B and hence MA = 0.
(ii)) (iii)) (iv) Clear.
(iv)) (i)Let N be a proper submodule and let C = annR (M/N).
Then annR (M) � C and MC � N 6= M so that C = annR (M) and
MC = 0. Thus annR (M) = annR (M/N) and henceM is second.



Introduction Second Modules Examples of second modules Homomorphic images

Lemma

The following statements are equivalent for a non-zero module M .

1 M is a second module.

2 For every ideal A of R either MA = 0 or M = MA.

3 M = MA for every ideal A of R not contained in annR (M).

4 M = MA for every ideal A of R properly containing annR (M).

Proof.

(i)) (ii) Suppose that M 6= MA for any ideal A of R . Then MA is a
proper submodule. If B = annR (M/MA) then (i) gives that MB = 0.
But we know that A � B and hence MA = 0.
(ii)) (iii)) (iv) Clear.
(iv)) (i)Let N be a proper submodule and let C = annR (M/N).
Then annR (M) � C and MC � N 6= M so that C = annR (M) and
MC = 0. Thus annR (M) = annR (M/N) and henceM is second.



Introduction Second Modules Examples of second modules Homomorphic images

Lemma

The following statements are equivalent for a non-zero module M .
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Consequences

Let P be a prime ideal of a ring R and let N be a submodule of a
module M such that the modules N and M/N are both P-second.
Then M is P-second if and only if MP = 0.

Let M be a P-second module for some prime ideal P of R . Then
every non-zero pure submodule of M is P-second.

Let A be an ideal of a ring R and let M be a R-module such that
MA = 0. Then the R-module M is a second module if and only if
the (R/A)-module M is a second module.

Let P be a prime ideal of a commutative ring R . Then the sum of
any non-empty collection of P-second submodules of a R-module X
is also a P-second submodule of X .
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Lemma

Let R be a prime right Goldie ring. Then

1 every non-zero divisible right R-module is a second module.

2 every non-zero injective right R-module is a second module

Lemma

Let P be a prime ideal of a ring R such that the ring R/P is right Goldie
and let X be a non-zero injective right R-module. Then X contains a
P-second submodule if and only if xP = 0 for some 0 6= x 2 X .
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The Theorems

Let R be a ring such that R/P is a left bounded left Goldie ring for
every prime ideal P of R . Then

1 a module M is a second module if and only if Q = annR (M) is
a prime ideal of R and M is a divisible right (R/Q)-module.

2 a module M is a prime second module if and only if
Q = annR (M) is a prime ideal of R and M is a torsion-free
injective right (R/Q)-module.

3 Let M be a second R-module such that every homomorphic
image of M is a �at module. Then M is semisimple.
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For an arbitrary ring R, let M be a Bass R-module,(i.e, every proper
submodule is contained in a maximal submodule)
Let P be an attached prime of M . There exists a proper submodule N of
M such that M/N is P-second.
Let L be a maximal submodule of M such that N � L. Then
P = annR (M/N) = annR (M/L) and hence P is a right primitive
ideal of R . Thus every attached prime ideal of a Bass module is right
primitive.
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Propositions

Let R be a semilocal ring. Then every Bass R-module has a �nite
number of attached prime ideals.

Let M be a non-zero R-module such that there exists an ideal P of
R maximal in the collection of ideals A of R such that M 6= MA.
Then P is an attached prime ideal of M and M/MP is a P-second
module.

Let M be a non-zero R-module. Then there exists a proper
submodule N of M such that M/N is a second module if and only
if there exist a proper submodule L of M and a prime ideal P of R
such that P is maximal in the collection of ideals A of R such that
M 6= MA+ L.
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A second submodule L of a module M is called a maximal second
submodule if L is not contained in another second submodule of M .

Let Ni (i 2 I ) be chain of second submodules of a right modules
M. Then N = [i2INi is a second submodule of M.
Then every second submodule of a nonzero module M is contained
in a maximal second submodule of M.

Every non-zero Artinian module contains a maximal second
submodules.
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Theorem

Every non-zero Artinian module contains only a �nite number of
maximal second submodules.

Proof.

Suppose the result is false.
Let M be a non-zero Artinian right R-module such that M does not
contain a �nite number of maximal second submodules.
Let N be a non-zero submodule of M minimal with respect to the
property that N does not contain a �nite number of maximal second
submodules.
Clearly N is not a second module.
Then there exists an ideal A of R such that NA 6= 0 and N 6= NA.
Let L = fx 2 N : xA = 0g. Then L is a submodule of N such that
LA = 0 and hence L 6= N .
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Proof.

Suppose that L 6= 0. By the choice of N , L contains only a �nite
number of maximal second submodules Li (1 � i � n), for some
positive integer n, and NA contains only a �nite number of maximal
second submodules Kj (1 � j � t), for some positive integer t.
Let H be a maximal second submodule of N . Then we get that either
HA = 0 or H = HA.
If HA = 0 then H � L and hence H � Li for some 1 � i � n and it
follows that H = Li .
If H = HA then H � NA so that H � Kj for some 1 � j � t. In this
case, H = Kj .
Thus every maximal second submodule of N belongs to the list
L1, . . . , Ln,K1, . . . ,Kt of submodules of N .
Thus N has at most n+ t maximal second submodules, a contradiction.
Now suppose that L = 0. In this case, H = Kj for some 1 � j � t and
again N has at most a �nite number of maximal second submodules.
The result follows.
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