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Perovskite structure is one of the five symmetry families suitable for exhibiting topological in-
sulator phase. However, none of the halides and oxides stabilizing in this structure exhibit the
same. Through density functional calculations on cubic perovskites (CsSnX3; X = Cl, Br, and I),
we predict a band insulator - Dirac semimetal - topological insulator phase transition with uniform
compression. With the aid of a Slater-Koster tight binding Hamiltonian, we show that, apart from
the valence electron count, the band topology of these perovksites is determined by five parameters
involving electron hopping among the Sn-{s, p} orbitals. These parameters monotonically increase
with pressure to gradually transform the positive band gap to a negative one and thereby enable
the quantum phase transition. The universality of the mechanism of phase transition is established
by examining the band topology of Bi based oxide perovskites. Dynamical stability of the halides
against pressure strengthens the experimental relevance.

I. INTRODUCTION

With the discovery of invariant conducting edge states
in insulating CdTe-HgTe-CdTe quantum well[1, 2], and
conducting surface states in insulating Bi1−xSbx bulk al-
loys [3–5], there is a renewed interest in the area of band
topology. In this context, using the high throughput
means, Yang et al. [6] have come up with five different
symmetry families that have potential to exhibit topolog-
ical insulator phase either in their equilibrium structure
or under certain mechanical deformations. Four of them
are inter-metallic alloys formed by heavier elements (e.g.
Bi, Pb, Sb, Te and Se) having stronger spin-orbit cou-
pling (SOC) [7–10] and largely constitute the topological
insulator class. The fifth one which is the family of cubic
halide perovskites (CsZX3; Z = Sn, Pb, and X = Cl, Br,
I) is unique with SOC inactive elements, Cs and X, con-
stitute the major fraction of the chemical composition.
All of these compounds are normal insulators (NI) un-
der ambient conditions [11, 12]. Employing a continuum
model, primarily applicable for (Bi, Sb)2(Se, Te)3 fam-
ily, Freeman et al.[7, 13] have suggested that by tuning
certain interaction parameters, TI phase can be realized
in CsPbI3 and CsSnI3[13–15].
Realization of TI phase in (pseudo)cubic systems, with

halogens and oxygen as constituents, will bring several
families of compounds, beyond the inter-metallic alloys,
into the domain of research on band topology. Further-
more, experimentally it is more feasible to construct het-
erostructures out of cubic lattice. This will allow to
explore rich varieties of emerging phenomena such as
Weyl and Dirac semi-metal as well as phase transition
among them by synthesizing TI-TI and TI-Normal in-
sulator interfaces[16]. Since, in addition to structural
symmetries, the band topology is determined by chemi-
cal bonding, bond lengths need to be tuned in order to
achieve NI-TI phase transition. Pressure is a natural ex-
ternal stimuli to vary the bond length while maintaining
the cubic symmetry.

In this work, to formulate an universal mechanism
that enable the NI-TI phase transition, we have con-
sidered the family of halide perovskites CsSnX3 which
stabilize in the cubic phase at higher temperature (300 -
500 K). The studies are carried out through DFT calcu-
lations, using full potential linearized augmented plane
wave method, and parametric diagonlaization of appro-
priate Slater-Koster tight-binding Hamiltonian. The sur-
face states are estimated using the Wannier formalism.
The dynamical stability of these compounds against pres-
sure are verified through phonon studies. The universal
mechanism developed from this study are validated on
the family of cubic perovskite oxides ABiO3, where A is
a group-I and II element.

FIG. 1. Spider chart illustrating the pressure induced
topological phase transition in CsSnX3 in a configure space
spanned by five one-electron hopping parameters tAs and ǫAs
as defined through Eq. 1. The radially increasing equi-
pressure contours are shown in black solid lines. The pa-
rameters are expressed in terms of their zero-pressure values.

We have identified five interaction parameters, which
influence the second neighbor electron hopping among
the Sn-{s, p} states, account for the band topology of
the CsSnX3 family. As sketched in Fig. 1, these pa-
rameters increase monotonically with pressure. Beyond
a critical pressure, the s− p band inversion occurs at the
time reversal invariant momentum (TRIM) to make a
transition from NI to TI. At critical pressure the system
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is an accidental Dirac semimetal[17, 18].

II. STRUCTURAL AND COMPUTATIONAL

DETAILS OF CsSnX3

The family of CsSnX3 exhibit different structural
phases at different temperature range. At room tem-
perature, while CsSnBr3 and CsSnCl3 have cubic crystal
structures, CsSnI3 has lowered its symmetry and stabi-
lizes in orthorhombic structure [19]. However, CsSnI3
makes a transition to cubic structure (space group pm-
3m) at 425K. [20, 21]. In this work, we have examined
the band structure of halide family in cubic phase, with
the lattice parameter listed in Table I. To obtain the
band structure, we have carried out DFT+SOC (spin-
orbit coupling) calculations through the full-potential lin-
earized augmented plane-wave (FP-LAPW) method [22]
as implemented in the WIEN2k package[23]. The gener-
alized gradient approximation (through PBE formalism
[24]) combined with modified Becke-Johnson (mBJ) ex-
change potential [25, 26] is used for the description of
exchange-correlation potentials. Augmented plane waves
in the interstitial region and localized orbitals inside the
muffin-tin sphere are used to construct the basis set. The
largest vector in the plane wave expansion is obtained by
setting RKmax to 7.0. A 12 × 12 × 12 k-mesh, yield-
ing 84 irreducible k-points, is used for the Brillouin zone
integration.
Hydrostatic pressure was applied to the experimental

cubic lattice to study the change in the band topology.
The pressure is calculated using Birch-Murnaghan equa-
tion of state[27, 28]. The bulk moduli as well as the
band gaps of the family of CsSnX3 obtained from the
DFT+GGA, DFT+GGA+mBJ and GW[12] calculations
are listed in Table I. While GW provides a better estima-
tion of band gap, GGA with mBJ correction reproduces
the trend and provide reasonable values of Eg to extract
the underlying physics of band topology in these materi-
als.
Ab-initio Molecular Dynamics (AIMD) simulations

were performed using VASP simulation package [29, 30]
to study the temperature dependence of structural sta-
bility of the above said compounds. To account for the
effect of exchange and correlation, PBE-GGA functional
is used[24]. A 2×2×2 super cell was considered to cre-
ate force and displacement data sets. The k-mesh was
set to 2×2×2, with plane wave cutoff energy 500 eV.
ALAMODE[31] software is used to get the force con-
stants by fitting force and displacement data. Phonon
band dispersions were obtained by solving the dynamical
matrix with given wave vectors. The phonon band struc-
ture of CsSnCl3 with and without compression are shown
in Fig. 2(a, b). Absence of negative frequencies suggests
the stability of cubic CsSnCl3 under compression. Simi-
lar observations are made for CsSnBr3 and CsSnI3. (see
Fig. 9 of appendix-B.)
We have calculated the surface states with the use of

Wannier formalism. First, the maximally localized Wan-
nier functions (MLWF) as well as the strength of the hop-
ping integral between these functions, are obtained from
the bulk DFT calculations using Wannier90[32]. Tak-
ing MLWF as the elements of the basis, a tight-binding
model was employed on a slab structure to calculate the
surface Green’s function through an iterative method as
implemented in WannierTools package[33]. The imag-
inary part of the surface Green’s function is the local
density of state LDOS (k, E)[34–36].

TABLE I. The experimental lattice parameter(a)[11, 12],
bulk modulus(B) and its first order pressure derivative
(B′), bulk band gaps (Eg) as obtained from DFT+GGA,
DFT+GGA+mBJ and GW calculations and experimental
studies

. The parameters B and B′ are instrumental in calculating
the pressure as function of volume compression using the

Birch-Murnaghan equation of state.

Compound a(A0) B (GPa) B’ Eg (eV)

GGA mBJ GW Expt

CsSnCl3 5.56 25.23 2.63 0.44 1.09 2.69 -

CsSnBr3 5.80 20.83 3.09 0.04 0.41 1.38 1.75 [21]

CsSnI3 6.22 16.04 2.14 0.0 0.15 1.00 -

*The GW values are taken from [12]

III. RESULTS AND DISCUSSION

A. DFT study

The bulk spin-orbit coupled (SOC) band structure of
CsSnX3 at zero-pressure, shown in Fig. 2, provides the
following salient features. (i) The Fermi energy (EF ) is
occupied by four highly dispersive bands. The lower non-
degenerate band, henceforth called as singlet, lie below
EF and constitute the valence band maximum (VBM)
at R. Three other nearly degenerate bands, henceforth
called as triplet, are positioned above EF and form the
conduction band minimum (CBM) at R. The gap be-
tween VBM and CBM decreases as we move from X =
Cl (Eg = 1.1 eV) to X = I (Eg = 0.15 eV). (ii) A similar
set of dispersive bands are seen in the energy window EF

- 8 to EF - 4 eV creating the band minimum and band
maximum at Γ. They are well separated in the case of
I. But in the case of Cl and Br, the band minimum and
maximum touch each other. (iii) A group of five weakly
dispersed bands occupy the energy space between these
two sets of highly dispersive bands. The band structure
of CsSnX3 have a great resemblance with that of the
family of perovskite oxides ABiO3[37–39].
The universality in the perovskite band structures can

be understood from the molecular orbital picture (MOP)
(see Fig. 2(d)) emerging out of stronger nearest-neighbor
Sn-{s, p} - X-p covalent interactions. As these interac-
tions involve four orbitals of Sn and nine orbitals of three
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FIG. 2. Room temperature phonon band structure of CsSnCl3: (a) at zero pressure and (b) at 4.72 GPa ( V
V0

= 0.84). (c)

The cubic lattice with SnO6 octahedra, and the bulk and surface Brillouin zone for CsSnX3. (d) The molecular orbital picture
summarizing the effect of nearest neighbor chemical bonding[37]. (e - g) The band structure of CsSnX3 with and without
compression. The compressed structures exhibit s-p band inversion at the TRIM point R (π/a, π/a, π/a).

X atoms, they yield a set of four bonding bands, dom-
inated by X-p characters and a set of four antibonding
bands, dominated by Sn-{s, p} characters. Remaining
five bands are nearly flat and are occupied by the X-
p electrons. The band gap arises between the singlet
and the triplet bands. Depending on the valence elec-
tron count (VEC), the gap in the anti-bonding spectrum
either appears at EF (VEC = 20) or above it.

In spite of identical MOP of cubic ABiO3 and CsSnX3,
there is a significant difference between their band struc-
tures. The SOC driven s-p band inversion at R, between
the lower singlet and upper triplet in the anti-bonding
spectrum, is not observed for CsSnX3, while it is present
for the family of ABiO3[37, 38]. Therefore, unlike ABiO3,
the family of CsSnX3 do not have topologically protected
surface states at ambient conditions.

Next, we will see if compressing CsSnX3 can introduce
band inversion as we may note that the lattice parameter
of cubic ABiO3 lies in the range 4.2 to 4.5 Å[40], where as
for CsSnX3 it is greater than 5.5 Å. The band structure
of CsSnX3 with a compressed volume of 0.84V0, shown
in Fig. 2(e - g), suggests the following changes with re-
spect to that of the uncompressed compounds. (i) There
is an upward shift in the band energies, as expected, due
to a net increase in the repulsive interaction leading to
higher eigen energies for one electron states. (ii)The zero-
pressure band gap vanishes. (iii) The Sn-s and p dom-
inated antibonding bands occupying the EF are more
dispersed than the X-p dominated bonding bands, which

imply that the second neighbor Sn-{s, p} - Sn-{s, p} in-
teractions are more sensitive to the pressure. The VBM
and CBM overlapped to create s-p band inversion and
the SOC opens a narrow band gap. Since such a gap oc-
curs with overlapping of bands, it is defined as a negative
band gap [3, 7, 41, 42].

B. Tight Binding Model

Slater-Koster tight-binding (TB) models are useful in
exploring the underlying quantum mechanical process
which occurs due to the structural deformation. While
the band structure of CsSnX3 requires a thirteen band
TB Hamiltonian involving nine p-orbitals of three X
atoms, and s and p orbitals of Sn, we have earlier shown
that the four antibonding bands in the vicinity of R and
EF are dominated by Sn-{s, p} orbitals. Therefore, a
four band TB Hamiltonian of Eq. 1, is found to be suffi-
cient to study the band topology of CsSnX3 as a function
of pressure. A more technical justification of the appro-
priateness of this four-band Hamiltonian is presented in
the appendix-A.

HTB =

(

H↑↑ H↑↓

H†
↓↑ H↓↓

)

, H↑↓ =











0 0 0 0

0 0 0 λ

0 0 0 −iλ

0 λ −iλ 0











.
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FIG. 3. (a-e) Bulk SOC band structure of CsSnCl3 in the vicinity of EF as a function of pressure. (f - j) The Sn-s and p
orbital weights of band-1 (solid line) and band-2 or band-4 (dotted line). (k - o) The surface states, calculated using Wannier
formalism, are plotted along the path Γ̄-M̄ -Γ̄. Together, the figures show that as we increase the pressure, the bands yield a
negative band gap associated with s-p band inversion and thereby create surface Dirac-TI states.

H↑↑ = (H↓↓)
† =











ǫAs + f0 2itAspSx 2itAspSy 2itAspSz

−2itAspSx ǫAp + f1 −iλ 0

−2itAspSy iλ ǫAp + f2 0

−2itAspSz 0 0 ǫAp + f3











(1)

f0 = 2tAss(cos(kxa) + cos(kya) + cos(kza))

f1 = 2tAppσcos(kxa) + 2tAppπ(cos(kya) + cos(kza))

f2 = 2tAppσcos(kya) + 2tAppπ(cos(kxa) + cos(kza)) (2)

f3 = 2tAppσcos(kza) + 2tAppπ(cos(kxa) + cos(kya))

Here, ǫAs and ǫAp are the band center of the singlet and
triplet antibonding bands respectively (see Fig. 3(a)),
and λ is the SOC for p orbitals. While Sx stands for
sin(kxa), the functions f0, f1, f2 and f3 are the k− de-
pendent hopping integrals. The TB bands are fitted with
the DFT bands to extract the strength of the hopping pa-
rameters and the effective on-site energies. For the zero
pressure condition, these values are listed in Table II.
The relative change in these parameters with change in
the pressure can be observed from Fig. 5. From the fig-
ure we gather that the effective on-site energy ǫs is very
sensitive to the pressure. Concerning the hopping pa-
rameters, we find that compared to tppπ and tss and tppσ
vary negligibly with pressure.
The pressure dependent DFT and TB band structure

TABLE II. Interaction parameters (ǫAs and tAs) and SOC
strength λ in units of eV at zero pressure. For definitions see
Eq. 1 and 3.

Compound ǫAs ǫAp tAss tAsp tAppσ tAppπ λ

CsSnCl3 2.44 7.63 -0.32 0.47 0.73 0.1 0.16

CsSnBr3 2.26 6.9 -0.31 0.49 0.8075 0.1075 0.16

CsSnI3 2.12 6.06 -0.23 0.45 0.8433 0.0933 0.174

of CsSnCl3, in the vicinity of EF and along the path
M − R − X are shown in Fig. 3 (a - e). The k− de-
pendent orbital contribution for the relevant bands, as
obtained from the TB calculations, are plotted in the
middle panel. We find that the upward shifting of the
singlet band (band-1) due to pressure is large compared
to that of the triplet which results in reducing the band
gap. Beyond a critical value of compression, the overlap
between band-1 and 2 occurs leading to s-p band inver-
sion and due to the effect of SOC, a new narrow band
gap opens up (Fig. 3(c)). Such inversion creates class-I
topological insulators as defined for the perovskites[37].
On further increasing the pressure, nature of band in-
version changes and a relatively wider band gap is real-
ized (see Fig. 3(e)). Now the band inversion is between
band-1 and 4 which results in formation of class-II topo-
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FIG. 4. (a) Schematic illustration of orbital manifestation in
CsSnX3 under pressure. (b - c) The variation of the energy
eigenstates Ei(R) of Eq. 3 with pressure for CsSnX3. The
crossover between E1 and E2, and between E1 and E3,4 are
associated with the topological phase transitions.

logical insulators. We have made similar observations for
CsSnBr3 and CsSnI3 and the results are shown in Fig.
10 of appendix-B.
In Fig. 3 (k - o),the local density of state LDOS (k, E),

which is an imaginary part of the [001] surface Green’s
function [34–36], is plotted as a function of pressure for
CsSnCl3. The colour gradient is a measure of LDOS.
Deep red and blue correspond to highest and lowest
LDOS. The white color reflects the bulk band structure.
The resulted surface states illustrate the phase transition
from NI to TI phase with compression. For the Dirac
Semimetal, while the bulk VBM and CBM touches at
EF , the surface states create a gap.
The underlying physics of the quantum phase transi-

tion from NI to TI can be obtained from the structure of
the Hamiltonian at the TRIM point R. The diagonaliza-
tion of Eq. 1 at R yields the following eigenvalues.

E1(R) = ǫAs − 6tAss
E2(R) = ǫAp − 2λ− 2tAppσ − 4tAppπ

E3(R) = E4(R) = ǫAp + λ− 2tAppσ − 4tAppπ (3)

The variation of Ei(R) with respect to volume compres-
sion are shown in Fig. 4. With compression, the bond
length decreases and thereby the strength of the interac-
tions increases.
At zero pressure, E2 −E1 defines the band gap. With

increase in pressure, the gap reduces and at a critical
compression γ1c, E1 crosses E2 to form a negative band
gap. Therefore, the first band inversion occurs between s
orbital dominated E1 and p orbital dominated E2 to form
the class-I TI phase. On further compression E1 crosses
the double degenerate E3 and E4 at another critical point
γ2c to create a new negative band gap to form the class-II
TI phase. However, the band inversion is still between E1

and E2 with the doublet E3 and E4 lying in the middle.
The compression required to achieve the phase transition
is inversely proportional to the zero-pressure band gap.
Therefore, while for CsSnI3, the first crossover occurs at
γ = 0.974 for CsSnCl3 it occurs at γ = 0.866. As dis-
cussed in appendix-D, the Eg is very much dependent on
the exchange-correlation functional used in the calcula-
tion. However, we find that, the slope of the Eg ∼ lattice
parameter curve is nearly independent of the exchange
correlation functional (see Fig. 13). Therefore, if the ac-
curate band gap is known for a given lattice parameter,
then by using the slope, the band gap for a given pressure,
can be obtained and hence the critical pressures at which
the transitions occur can be estimated with reasonably
accuracy.
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eters at pressure P and at zero pressure (experimental equi-
librium structure respectively.)

To gain more insight into the physics of topological
transition, in Fig. 5, we have plotted each right hand
side term of Eq. 3, except λ, as a function of pressure.
The SOC (λ) does not depend on pressure. Through
the figure, we reveal that with pressure, the effective
on-site parameters, ǫs and ǫp, increase nearly equally
and hence do not affect the band topology significantly.
On the other hand, among the hopping interactions
-6tss increases significantly, compared to the rest, with
pressure. Following Eq. 3, as the absolute value of tss
increases, it pushes E1 to cross E2 to induce class-I
transition. With further increase in tss, E1 crosses E3

to induce class-II transition.
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IV. UNIVERSALITY OF PHASE TRANSITION

AND BAND STRUCTURE OF ABiO3

γ = 1.0
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FIG. 6. Band structure of KBiO3 and BaBiO3 with volume
expansion. While the equilibrium structure has s-p band in-
version at R, with expansion, the inversion vanishes and a
normal band gap is realized. Here EF is set to zero.

It is desirable to examine the universality of the con-
ditions imposed through Eq. 3 to form pressure induced
symmetry protected TI Dirac states. Since, Eq. 3 is valid
only for the cubic perovskite symmetry, we shall exam-
ine the family of cubic perovskites ABiO3 to establish the
universality. However, unlike CsSnX3, ABiO3 exhibit the
Dirac states in their equilibrium structure[37]. As men-
tioned earlier, the equilibrium lattice parameters of the
ABiO3 are smaller to that of CsSnX3 approximately by
25%. Hence, we shall apply the negative pressure (ex-
pansion) and examine the band topology. Fig. 6 plots
the band structure in the vicinity of R for BaBiO3 and
KBiO3 as a function of expansion. With expansion, the
non-trivial band gap created through s-p band inversion
reduces to form a Dirac semimetal state and on further
expansion the trivial band gap appears. The other mem-
bers of ABiO3 behave identically as can be seen from
their pressure-dependent band structure shown in Fig.
12 of the appendix-C.

To further reconfirm the universality, in Fig. 7, we
have plotted the eigenvalues Ei(R), defined in Eq. 3,
with respect to relative change in volume γ(= V

V0

). As in
the case of CsSnX3, here also we observe two critical val-
ues of γ at which the crossover of the eigenvalues occurs.
For KBiO3, at the equilibrium structure (γ = 1), E1 is
greater than E2 but lower than E3 to favour the class-I
TI phase. Therefore, compression stabilizes the class-II
TI phase at the transition point γ2C . Similarly, with
expansion, the NI state stabilizes beyond the transition
point γ1c. However, in the case of BaBiO3, the class-II
TI phase (E1 > E3 > E2) is observed in the equilibrium
structure. Hence, with expansion we observe class-II to
class-I transition at γ2C and class-I to NI transition at

γ1C . Other members of ABiO3 either follow the trend of
KBiO3 or BaBiO3 depending on whether they stabilize
in class-I TI phase or class-II TI phase with the equilib-
rium structure. The results are not shown here to avoid
repetition.
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of KBiO3 and BaBiO3. At V = V0, KBiO3 shows class-I TI
state and BaBiO3 shows class-II TI states. With volume ex-
pansion of the unit cell, band inversion disappears making it
trivial insulation state.

V. SUMMARY AND CONCLUSION

To summarize, we carried out electronic structure
calculations to unravel pressure as a controlling pa-
rameter to stabilize several electronic phases in cubic
perovskite ABX3 stoichiomistry, where A is a group-I
and II element, B is a spin-orbit coupled active group-V
and VI element and X is either a halogen or oxygen.We
show that with pressure, normal insulator to topological
insulator quantum phase transition can be achieved
and a universal mechanism governs this transition.
Furthermore, from the chemcial bonding analysis, we
find that five interaction parameters, namely, ǫAs , ǫAp ,

tAss, tAppσ, and tAppπ of Eq. 3, emerging out of second
neighbor electron hopping among the B-{s, p} states,
determine the band topology in this family. However,
the second neighbor B-s - B-s interaction is found to
be the driving force for the observed phase transition.
The high temperature dynamical stability of these
cubic halides against pressure suggests that the phase
transition can be realized experimentally.

ACKNOWLEDGMENT: The authors acknowl-
edge the computational resources provided by HPCE,
IIT Madras. This work is supported by Department
of Science and Technology, India through Grant No.
EMR/2016/003791.
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Appendix A: Appropriateness of a four band tight binding model

Beyond the DFT calculations, Slater-Koster tight binding (TB) model [43] is an useful tool to gain insight into the
electronic structure of crystalline systems. The general TB Hamiltonian is given by

H =
∑

i,α

ǫiαc
†
iαciα +

∑

ij;α,β

tiαjβ(c
†
iαcjβ + h.c) + λL · S (A1)

Here, i (j) and α (β ) are site and the orbitals indices respectively. The parameters ǫiα and tiαjβ respectively represent
the on-site energy and hopping integrals. In the case of CsSnX3, the molecular orbital picture shown in Fig. 2(d) of
the main text infers that, a thirteen orbitals basis (one Sn-s, three Sn-p and nine X-p ) is needed to understand the
complete band structure of this family.
Thus, the spin independent TB Hamiltonian matrix, with the basis set in the order {|sSn〉, |pSn

x 〉, |pSn
y 〉, |pSn

z 〉,

|pX1
x 〉, |pX1

y 〉, |pX1
z 〉, |pX2

x 〉, |pX2
y 〉, |pX2

z 〉, |pX3
x 〉, |pX3

y 〉, |pX3
z 〉}, can be written as

H =







MSn−Sn
4×4 MSn−X

4×9

(MSn−X
4×9 )† MX−X

9×9






(A2)

.
The individual blocks of this matrix are as follows,

MSn−Sn
4×4 =











ǫs + g1 2itSn−Sn
spσ sin(kxa) 2itSn−Sn

spσ sin(kya) 2itSn−Sn
spσ sin(kza)

−2itSn−Sn
spσ sin(kxa) ǫp1 + g2 0 0

−2itSn−Sn
spσ sin(kya) 0 ǫp1 + g3 0

−2itSn−Sn
spσ sin(kza) 0 0 ǫp1 + g4











(A3)

MSn−X
4×9 =











tSn−X
spσ Sx 0 0 0 tSn−X

spσ Sy 0 0 0 tSn−X
spσ Sz

tSn−X
ppσ Cx 0 0 tSn−X

ppπ Cy 0 0 tSn−X
ppπ Cz 0 0

0 tSn−X
ppπ Cx 0 0 tSn−X

ppσ Cy 0 0 tSn−X
ppπ Cz 0

0 0 tSn−X
ppπ Cx 0 0 tSn−X

ppπ Cy 0 0 tSn−X
ppσ Cz











(A4)

Analyzing the partial density of states obtained from the density functional calculations, we have found that, X-p
dominated bands are very narrow (< 1.0 eV), suggesting negligible X-{p}-X-{p} second interactions. Hence the block

MX−X
9×9 can be approximated as

MX−X
9×9 =

































ǫp2 0 0 0 0 0 0 0 0

0 ǫp2 0 0 0 0 0 0 0

0 0 ǫp2 0 0 0 0 0 0

0 0 0 ǫp2 0 0 0 0 0

0 0 0 0 ǫp2 0 0 0 0

0 0 0 0 0 ǫp2 0 0 0

0 0 0 0 0 0 ǫp2 0 0

0 0 0 0 0 0 0 ǫp2 0

0 0 0 0 0 0 0 0 ǫp2

































(A5)

Here, ǫs, ǫp1 and ǫp2 are on-site energies of Sn-s, Sn-p and X-p orbitals respectively. The terms Cx and Sx are short
notations for 2 cos(kxa/2) and 2i sin(kxa/2) respectively. The dispersion term gi (i = 1, 2, 3, 4), arising from Sn-Sn
second neighbour interactions, are given by

g1 = 2tSn−Sn
ss (cos(kxa) + cos(kya) + cos(kza))

g2 = 2tSn−Sn
ppσ cos(kxa) + 2tSn−Sn

ppπ [cos(kya) + cos(kza)]

g3 = 2tSn−Sn
ppσ cos(kya) + 2tSn−Sn

ppπ [cos(kxa) + cos(kza)] (A6)

g4 = 2tSn−Sn
ppσ cos(kza) + 2tSn−Sn

ppπ [cos(kxa) + cos(kya)]
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The analytic expression for eigen values at time reversal invariant momentum (TRIM) R (π
a
, π
a
, π
a
) are obtained as

E1[1] =
(EX

p + ESn
s )

2
− 3tSn−Sn

ss −

√

(EX
p − ESn

s + 6tSn−Sn
ss )2 + 48(tSn−X

sp )2

2
(A7)

E2[8] = EX
p (A8)

E3[3] = ESn
p − 2tSn−Sn

ppσ − 4tSn−Sn
ppπ (A9)

E4[1] =
(EX

p + ESn
s )

2
− 3tSn−Sn

ss +

√

(EX
p − ESn

s + 6tSn−Sn
ss )2 + 48(tSn−X

sp )2

2
(A10)

The number in square bracket indicates the degeneracy of the eigenvalues. As a case study, the thirteen band model
is applied to CsSnI3 and corresponding bands are fitted with DFT bands to obtain on-site and hopping interactions
which are listed in Table III. The DFT and TB bands are shown in Fig. 8, suggesting the excellent agreement.

CsSnI3

EF

M Γ X M R X

2.0

4.0

0.0

DFT TB

−2.0

−4.0

−6.0

−8.0

−10.0

E
n
e
rg

y
 (

e
V

)

FIG. 8. Full basis TB band structure of CsSnI3 and DFT band structure.

TABLE III. On-site and hopping parameters of CsSnI3 in units of eV

ESn−s ESn−p EX−p tSn−X
sp tSn−X

ppσ tSn−X
ppπ tSn−Sn

ss tSn−Sn
spσ tSn−Sn

ppσ tSn−Sn
ppπ λ

-5.99 0.95 -2.45 -1.08 1.9 -0.5 -0.014 -0.2 0.239 0.014 0.16

The bands which are forming the VBM and CBM at TRIM point are primarily formed by the four Sn-{s, p}
orbitals. From our calculations we have found that, the contribution to each of these bands by the Sn-{s, p} orbitals
is more than 70%. This is true for CsSnCl3 and CsSnBr3 as well. Since, the band topology of CsSnX3 are determined
at R, it is prudent to construct a minimal basis set TB Hamiltonian involving these four anti-bonding bands. The
SOC incorporated four band TB Hamiltonian in the matrix form can be written as

H =





























ǫAs + f0 Sx Sy Sz 0 0 0 0

Sx ǫAp + f1 −iλ 0 0 0 0 λ

Sy iλ ǫAp + f2 0 0 0 0 −iλ

Sz 0 0 ǫAp + f3 0 λ −iλ 0

0 0 0 0 ǫAs + f0 Sx Sy Sz

0 0 0 λ Sx ǫAp + f1 iλ 0

0 0 0 iλ Sy −iλ ǫAp + f2 0

0 λ iλ 0 Sz 0 0 ǫAp + f3





























(A11)
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Here, ǫAs are band centers of the anti-bonding bands and tAs are the second neighbour hopping integrals. The
dispersion functions fi (i = 1, 2, 3, 4) are expressed in Eq. 2. The TB bands obtained from this four band model are
shown in the Fig. 3 of the main text, and they completely match with DFT bands in the vicinity of the TRIM point
R.

Appendix B: Effect of Hydrostatic Pressure on CsSnBr3 and CsSnI3 Band Structure

As discussed in the main text, the normal insulator (NI) - topological insulator (TI) phase transition can achieved
by applying hydrostatic pressure. Fig. 9 shows the phonon band structure of cubic CsSnBr3 (at T = 300K) and
CsSnI3 (at T = 425K) with and without compression. The absence of negative frequencies proves the dynamical
stability of these compounds in cubic phase.

γ = 0.84γ = 0.84

CsSnBr 3
CsSnI 3

−1
)

Fr
eq

ue
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y 
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m
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)
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20
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100

MΓ M R Γ X Γ R Γ X

FIG. 9. Phonon band dispersions of CsSnX3 (X=Br, I)

. Here, γ = V
V0

Like CsSnCl3 (see Fig. 3 of the main text), the CsSnBr3 and CsSnI3 also undergo NI-TI phase transition. The Fig.
10, where we have plotted bulk and surface band structure as a function of pressure, establishes this phase transition.
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FIG. 10. First and second row show the bulk and surface band structure of CsSnBr3 respectively. Third and fourth row
shows the same for CsSnI3. With pressure the positive band gap transforms to a negative band gap, which induces s-p band
inversion. As a consequence topologically protected surface states are formed at point M̄ (whose equivalent point is R in bulk
Brillouin zone). For details see the main text.

Fig. 11 shows the band gap Eg and applied pressure P as a function of volume compression γ. The value of
pressure is obtained using Birch-Murnaghan equation[27, 28]. The yellow and white regions identify the NI and TI
phase respectively. The border between these two phases stabilizes the Dirac semimetal state. Owing to the large
bulk band gap CsSnCl3 requires more pressure to induce the NI-TI phase transition. Similarly due to narrow band
gap CsSnI3 requires less pressure for the same.

FIG. 11. Variation of energy gap and pressure with volume compression of different halide perovskites.
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Appendix C: TI-NI phase transition in ABiO3

In section-IV, we have made a discussion about how there is a universal mechanism that governs pressure induced
NI-TI phase transition. To further reconfirm the universality of the transition phenomena, in Fig. 12, we shown
pressure dependent band structure of four more perovskites, namely, CsBiO3, NaBiO3, RbBiO3 and SrBiO3. The
figure shows that, with expansive pressure, the non-trivial band gap mediated by s-p band inversion vanishes and a
normal band gap appears.
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FIG. 12. The band structure of ABiO3 as a function of volume expansion. The orbital contributions, around the high symmetry
point R, to the lower two bands are indicated in the upper panel. With expansion, the s-p band inversion vanishes to create a
normal band gap.

Appendix D: Effect of Exchange Correlation functionals on NI-TI Phase Transition

The hydrostatic pressure required to drive the NI-TI phase transition solely depend on value of the band gap.
However, the band gap values of the halide perovskites, as shown in Table I are highly sensitive to the exchange
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correlation functionals used in the calculations. This makes it difficult to have a quantitative estimation of the critical
pressure values at which the transition occurs.
To find a plausible solution to this issue, we have examined the band gap variation as a function of lattice parameter

for three different exchange-correlation functionals, namely, GGA-PBE, GGA+mBJ and HSE06. For the case of
CsSnCl3 and CsSnBr3, the results are plotted in Fig. 13. Interestingly, we find that, the slopes are nearly same
for all the three exchange-correlation functionals. This suggests that if the accurate band gap is known (by some
means: experimental or theoretical) for a given lattice parameter, then the band gap for a given pressure, within an
acceptable error limit, can be generated through extrapolation. Hence, the critical pressures at which the transitions
occur can be estimated with reasonably accuracy.
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FIG. 13. Exchange-correlation functional dependent band gap of CsSnCl3 and CsSnBr3 as a function of lattice parameter. The
slopes are found to be nearly same for each functionals. The HSE06 results are obtained using pseudpotential method through
VASP simulation package[29, 30].
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