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Abstract. An optimal control problem for a semilinear elliptic partial differential equation is
discussed subject to pointwise control constraints on the control and the state. The main novelty
of the paper is the presence of the L1-norm of the control as part of the objective functional that
eventually leads to sparsity of the optimal control functions. Second-order sufficient optimality
conditions are analyzed. They are applied to show the convergence of optimal solutions for vanishing
L2-regularization parameter for the control. The associated convergence rate is estimated.
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1. Introduction. In this paper, we study the optimal control problem

(Pν) min
u∈Uad

Jν(u),

where

Jν(u) =
1

2

∫
Ω

(yu(x)− yd(x))
2 dx+

ν

2

∫
Ω

u2(x) dx + κ

∫
Ω

|u(x)| dx,(1.1)

Uad = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β for a.a. x ∈ Ω , |yu(x)| ≤ γ ∀x ∈ Ω},
and yu is the solution of the Dirichlet problem

(1.2)

{
Ay + a(x, y) = u in Ω,

y = 0 on Γ.

In this setting, yd ∈ L2(Ω) and real constants ν ≥ 0, κ > 0, −∞ < α < 0 <
β < +∞, and γ > 0 are given. The Dirichlet problem is considered in a bounded
Lipschitz domain Ω ⊂ R

n, n ∈ {2, 3}, with boundary Γ = ∂Ω. Moreover, A is a
uniformly elliptic linear differential operator to be specified below, while yd is fixed
in L2(Ω).

Thanks to the presence of the L1-norm in the objective functional, a convex but
not differentiable functional is to be minimized. This term accounts for sparsity of
optimal controls: With increasing parameter κ, the support of the optimal controls
shrinks to finally have the measure zero for sufficiently large κ.
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STATE CONSTRAINED SPARSE CONTROLS 1011

Recently, such effects of sparsity attracted increasing interest. The first paper
addressing this issue in the context of PDE control was [22], where the case of a
linear elliptic equation was considered with the focus on numerical aspects. The
associated analysis was extended in [25]. Later, the control of semilinear elliptic
equations was investigated in [7] and [8]. For parabolic equations, sparsity can occur in
different ways with respect to time and space variables. In particular, striped sparsity
patterns (directional sparsity) can be obtained by suitable formulations of the cost
functional. This type of sparsity was introduced in [19] in the context of linear elliptic
and parabolic equations. Sparsity in time and space turned out to be important
for (nonlinear) reaction-diffusion equations of Schlögl and FitzHugh–Nagumo type;
cf. [12]. By admitting measures as controls instead of integrable control functions,
the support of the optimal control can even have a zero Lebesgue measure; see [5],
[6], and [14].

The main novelty of our contribution is the study of sparsity under the presence
of pointwise state constraints, in particular the discussion of second-order sufficient
optimality conditions and the convergence analysis with respect to a vanishing regular-
ization parameter ν. Second-order conditions were investigated for problems without
sparsity in many papers; see the references in [24, p. 352]. For sparse control problems,
the nondifferentiability of the objective functional causes new difficulties. This was
addressed in [7] for the case without state constraints. Complementing the control
constraints by state constraints in our paper further increases the level of difficulty.
Moreover, our results even extend the whole theory of second-order conditions for state
constrained problems. In particular, we allow for a vanishing Tikhonov parameter and
compare various formulations of second-order conditions known in the literature.

We also discuss the stability of optimal solutions of the problems (Pν) for ν →
0. We show that, under a second-order sufficient optimality condition for (P0), the
optimal solutions of (Pν) converge strongly, and we estimate the order of convergence.

The plan of our paper is as follows: After stating the main assumptions in section
2.1, we shall discuss the well-posedness of the optimal control problem and investi-
gate the differentiability properties of the control-to-state mapping. In section 2.2, we
derive first-order necessary optimality conditions in a fairly standard way, while sec-
tion 3 is devoted to second-order sufficient optimality conditions. Here, we distinguish
between the cases ν > 0 and ν = 0. Finally, we perform a convergence analysis for
the optimal control problem when ν tends to zero. The second-order and convergence
analysis of sections 3 and 4 constitute the main novelty of our paper, although the
first-order necessary optimality conditions are also new.

2. Assumptions and preliminary results.

2.1. Notation and main assumptions. Let us fix right here the following
sets:

Uα,β = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β for a.a. x ∈ Ω},
Yγ = {y ∈ C0(Ω) : |y(x)| ≤ γ ∀x ∈ Ω}.

Moreover, to shorten the notation, we introduce for ν ≥ 0 the family of functionals
Fν : L2(Ω) → R+ and the functional j : L2(Ω) → R+ defined by

Fν(u) :=
1

2

∫
Ω

(yu(x) − yd(x))
2 dx+

ν

2

∫
Ω

u2(x) dx,

j(u) :=

∫
Ω

|u(x)| dx
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1012 EDUARDO CASAS AND FREDI TRÖLTZSCH

so that we have

Jν(u) = Fν(u) + κ j(u).

Notice that j is convex and continuous but not differentiable.
On the state equation (1.2), we impose the following assumptions.
Assumption 1. A is the linear operator

Ay = −
n∑

i,j=1

∂xj [aij(x) ∂xiy]

with aij ∈ L∞(Ω), and there exists some Λ > 0 such that

n∑
i,j=1

aij(x) ξi ξj ≥ Λ |ξ|2 for a.a. x ∈ Ω and ∀ξ ∈ R
n.

Assumption 2. a : Ω × R −→ R is a Carathéodory function of class C2 with
respect to the second variable, with a(·, 0) ∈ Lp̄(Ω) for some p̄ > n

2 , and satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂a

∂y
(x, y) ≥ 0 for a.a. x ∈ Ω and ∀y ∈ R,

∀M > 0 ∃CM > 0 such that

2∑
j=1

∣∣∣∣∂ja

∂yj
(x, y)

∣∣∣∣ ≤ CM for a.a. x ∈ Ω and |y| ≤ M.

Moreover, we assume some uniform continuity of ∂2a
∂y2 : For every M > 0 and ε > 0,

there exists ρε,M > 0 such that∣∣∣∣∂2a

∂y2
(x, y2)− ∂2a

∂y2
(x, y1)

∣∣∣∣ < ε if |yi| ≤ M and |y2 − y1| < ρε,M for a.a. x ∈ Ω.

We finish this section by recalling some known properties of the functional j. Since
j is convex and Lipschitz, the subdifferential in the sense of convex analysis and the
generalized gradients introduced by Clarke coincide. Moreover, a simple computation
shows that λ ∈ ∂j(u) if and only if λ is measurable and satisfies

(2.1)

⎧⎪⎨
⎪⎩
λ(x) = +1 if u(x) > 0,

λ(x) = −1 if u(x) < 0,

λ(x) ∈ [−1,+1] if u(x) = 0

holds a.e. in Ω. Further, j has directional derivatives given by

(2.2) j′(u; v) = lim
ρ↘0

j(u + ρ v)− j(u)

ρ
=

∫
Ω+

u

v dx −
∫
Ω−

u

v dx+

∫
Ω0

u

|v| dx

for u, v ∈ L1(Ω), where Ω+
u , Ω−

u , and Ω0
u represent the sets of points where u is

positive, negative, or zero, respectively. Finally, the following relation holds:

(2.3) max
λ∈∂j(u)

∫
Ω

λ v dx = j′(u; v) ≤ j(u+ ρ v)− j(u)

ρ
∀ 0 < ρ ≤ 1.
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STATE CONSTRAINED SPARSE CONTROLS 1013

We refer to Clarke [15, Chapter 2] and Bonnans and Shapiro [2, section 2.4.3] for
more details.

Remark 2.1. By (Pν) , we discuss a simplified version of the control problem
for better readability. Our theory can be extended to more general formulations
by obvious modifications. This includes the case of state constraints of the type
γ1(x) ≤ y(x) ≤ γ2(x), where one of the equalities might be missing. Instead of
assuming α < 0, sparsity can be also obtained for α = 0; see [12]. Notice that
in many applications only nonnegative controls are meaningful. Finally, the more
general cost functional

Fν(u) =

∫
Ω

L(x, yu(x)) dx +
ν

2

∫
Ω

u2(x) dx + κ

∫
Ω

|u(x)| dx

can be treated in an analogous way; see [7].

2.2. Well-posedness of the optimal control problem and first-order op-
timality conditions. We start with known properties of the control-to-state map-
ping associated with the state equation (1.2).

Theorem 2.2. Under Assumptions 1 and 2, to each u ∈ L2(Ω) there exists
a unique solution yu ∈ H1

0 (Ω) ∩ C(Ω̄) of the state equation (1.2). The mapping
G : u �→ yu is twice continuously Fréchet differentiable from L2(Ω) to H1

0 (Ω) ∩C(Ω̄).
Its derivative zv := G′(u)v is given by the solution z of

(2.4)

⎧⎨
⎩Az +

∂a

∂y
(x, yu)z = v in Ω,

z = 0 on Γ,

while the second derivative zv1,v2 := G′′(u)(v1, v2) associated with directions vi ∈
L2(Ω), i = 1, 2, is the solution z of

(2.5)

⎧⎨
⎩Az +

∂a

∂y
(x, yu)z = −∂2a

∂y2
(x, yu)zv1zv2 in Ω,

z = 0 on Γ,

where the functions zvi are defined by (2.4) above.
The proof of the existence, uniqueness, and regularity of yu is well known; see

[24, section 4.2] and the references therein. Let us show the differentiability of G. We
set

V = {y ∈ H1
0 (Ω) : Ay ∈ Lq(Ω)}

with q = min{2, p̄}. Endowed with the graph norm, V is a Banach space. Moreover,
we deduce from [18, Theorem 8.30] that V is embedded in C(Ω̄). Now, we consider

F : V × L2(Ω) −→ Lq(Ω), F(y, u) := Ay + a(x, y)− u.

Due to Assumption 2, F is well defined. Moreover, it is easy to check that F is of
class C2, F(yu, u) = (0, 0) for every u ∈ L2(Ω), and

∂F
∂y

(yu, u) : V −→ Lq(Ω),
∂F
∂y

(yu, u)z = Az +
∂a

∂y
(x, yu)z

defines an isomorphism. Now, the implicit function theorem yields that G is of class
C2 and (2.4) and (2.5) are fulfilled.
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1014 EDUARDO CASAS AND FREDI TRÖLTZSCH

From Theorem 2.2 and the chain rule, we obtain the following differentiability
property of Fν .

Theorem 2.3. The functional Fν : L2(Ω) −→ R is of class C2 and the first and
second derivatives are given by

F ′
ν(u) v =

∫
Ω

(ϕu + ν u) v dx,

F ′′
ν (u)(v1, v2) =

∫
Ω

{[
1− ∂2a

∂y2
(x, yu)ϕu

]
zv1zv2 + ν v1 v2

}
dx,

where zvi = G′(u) vi, i = 1, 2, and ϕu ∈ H1
0 (Ω) ∩ L∞(Ω) is the adjoint state defined

as the unique solution of

⎧⎨
⎩A∗ϕ+

∂a

∂y
(x, yu)ϕ = yu − yd in Ω,

ϕ = 0 on Γ

with A∗ being the adjoint operator of A.
For (1.2), we know that if uk ⇀ u weakly in L2(Ω), then G(uk) = yuk

→ yu =
G(u) strongly in H1

0 (Ω)∩C(Ω̄). Indeed, by using a classical approach, see [23, Theo-
rems 4.1 and 4.2], along with the monotonicity of a(x, y) with respect to y, we can get
a uniform bound for {yuk

}k in L∞(Ω). Then, [18, Theorem 8.29] shows the bound-
edness of {yuk

}k in a space of Hölder functions Cθ(Ω̄) for some 0 < θ < 1. The
compactness of the embedding Cθ(Ω̄) ⊂ C(Ω̄) implies the convergence yuk

→ yu in
C(Ω̄). Finally, since the embedding L2(Ω) ⊂ H−1(Ω) is compact, uk → u strongly
in H−1(Ω), which allows us to conclude the strong convergence yuk

→ yu in H1
0 (Ω).

This property implies that u ∈ Uad if {uk}k ⊂ Uad. Hence, by the continuity and
convexity of the integrals in (1.1) involving the control, we get the following existence
result in a standard way.

Theorem 2.4. Let Uad be nonempty. Then, for every ν ≥ 0, problem (Pν) has
at least one optimal solution denoted by uν .

Notice that (Pν) is a nonconvex problem, and hence more than one optimal
solution might exist for fixed ν. The assumption Uad �= ∅ is satisfied in particular if
a(x, 0) = 0 holds for a.a. x ∈ Ω; then u = 0 belongs to Uad. Throughout the paper,
we use the notation yν := yuν .

To establish first-order necessary optimality conditions of Karush–Kuhn–Tucker
type, we assume the following linearized Slater condition.

Assumption 3 (linearized Slater condition). For given ν, there exists us,ν ∈ Uα,β

such that

(2.6) |yν(x) + zus,ν−uν (x)| < γ ∀x ∈ Ω,

where zus,ν−uν := G′(uν)(us,ν − uν).
We shall prove later that this assumption is satisfied for all sufficiently small ν > 0

if it holds for ν = 0; see Theorem 4.3.
Let us now recall the first-order necessary optimality conditions for a given opti-

mal solution uν which are a straightforward consequence of an abstract result proved
by Bonnans and Casas in [1, Theorem 2.1].

Theorem 2.5. Suppose that Assumption 3 holds. Let uν be optimal for (Pν)
and let yν be the associated optimal state. Then there exist a regular Borel measure
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STATE CONSTRAINED SPARSE CONTROLS 1015

μν , an adjoint state function ϕν ∈ W 1,s
0 (Ω) for all s < n/(n − 1), and a function

λν ∈ ∂j(uν) ⊂ L∞(Ω) such that the following conditions are fulfilled:{
Ayν + a(x, yν) = uν in Ω,

yν = 0 on Γ,
(2.7)

⎧⎨
⎩A∗ϕν +

∂a

∂y
(x, yν)ϕν = yν − yd + μν in Ω,

ϕν = 0 on Γ,

(2.8)

∫
Ω

(y − yν) dμν ≤ 0 ∀y ∈ Yγ ,(2.9)

∫
Ω

λν(u− uν) dx+

∫
Ω

|uν | dx ≤
∫
Ω

|u| dx ∀u ∈ L1(Ω),(2.10)

∫
Ω

(ϕν + νuν + κλν)(u − uν) dx ≥ 0 ∀u ∈ Uα,β .(2.11)

In this theorem, (2.8) is the adjoint equation, μν denotes the Lagrange multiplier
associated with the state constraint, (2.9) accounts for the complementary slackness
condition, (2.10) expresses the subdifferential relation for ∂j(uν), and (2.11) is the
variational inequality for uν .

The next relations that we formulate for the cases ν > 0 and ν = 0 are immediate
conclusions of (2.10) and (2.11).

Case ν > 0. There holds for a.a. x ∈ Ω

uν(x) = P[α,β]

(
− 1

ν
[ϕν(x) + κλν(x)]

)
,(2.12)

uν(x) = 0 iff |ϕν(x)| ≤ κ,(2.13)

λν(x) = P[−1,1]

(
− 1

κ
ϕν(x)

)
,(2.14)

where P[s,t] : R → R is the projection function on the interval [s, t]. We refer to
Casas, Herzog, and Wachsmuth [7]. From (2.12) and (2.14) we deduce the following
regularity results for uν and λν . In what follows, we denote by M(Ω) the Banach
space of all real and regular Borel measures on Ω.

Theorem 2.6. Let (uν , yν , ϕν , μν , λν) satisfy the optimality system (2.7)–(2.11)
with uν ∈ Uad and ν > 0. Then, uν and λν belong to H1

0 (Ω).
The proof of this theorem is based on the following result that is proved in [16,

Theorem 10.1 and equation (2.22)]; see also [10].
Lemma 2.7. Given μ ∈ M(Ω), let y ∈ W 1,s

0 (Ω) for all s < n/(n − 1) be the
solution of {

Ay + a0y = μ in Ω,

y = 0 on Γ,

a0 ≥ 0 belonging to L∞(Ω). Then, P[−M,M ](y) belongs to H1
0 (Ω) for every M > 0

and

Λ‖∇P[−M,M ](y)‖2L2(Ω) ≤ M‖μ‖M(Ω).
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Proof of Theorem 2.6. The regularity λν ∈ H1
0 (Ω) is an immediate consequence

of Lemma 2.7 and (2.14). To establish the regularity of uν from identity (2.12), we
cannot directly use Lemma 2.7 because ϕν + κλν is not necessarily a solution to an
elliptic equation with a measure on the right-hand side. To overcome this difficulty
we select M > κ+ νmax{−α, β} and ϕM

ν (x) = P[−M,+M ](ϕν(x)). Then, once again
Lemma 2.7 implies that ϕM

ν ∈ H1
0 (Ω). From the definition of M and (2.12) it is easy

to check that

uν(x) = P[α,β]

(
− 1

ν
[ϕν(x) + κλν(x)]

)

= P[α,β]

(
− 1

ν
[ϕM

ν (x) + κλν(x)]

)
∈ H1

0 (Ω).

For the limit case ν = 0, we introduce the following notation:

ū := u0, ϕ̄ := ϕ0, ȳ := y0, λ̄ := λ0, μ̄ := μ0.

Case ν = 0. Here, the following implications hold true for a.a. x ∈ Ω:

|ϕ̄(x)| < κ ⇒ ū(x) = 0,(2.15)

ϕ̄(x) > κ ⇒ ū(x) = α,(2.16)

ϕ̄(x) < −κ ⇒ ū(x) = β,(2.17)

ϕ̄(x) = κ ⇒ ū(x) ≤ 0,(2.18)

ϕ̄(x) = −κ ⇒ ū(x) ≥ 0,(2.19)

λ̄(x) = P[−1,1]

(
− 1

κ
ϕ̄(x)

)
.(2.20)

This result was shown in [4]. Using once again Lemma 2.7, we get that λ̄ ∈ H1
0 (Ω).

From (2.9) we get the following well known property of μν . If we consider the
Jordan decomposition μν = μ+

ν − μ−
ν , then we have

supp(μ+
ν ) ⊂ {x ∈ Ω : yν(x) = +γ} and supp(μ−

ν ) ⊂ {x ∈ Ω : yν(x) = −γ};
see, for instance, [3].

In what follows, we shall use for short the notation

zsν := zus,ν−uν .

Next, we prove the boundedness of the adjoint states, uniform with respect to ν and
an extra regularity property of μν . The next theorem is inspired by a recent regularity
result by Pieper and Vexler [21]; see also [9] for a posterior extension to the semilinear
case. They considered the Poisson equation with measures as controls and observed
that the optimal control enjoysH−1(Ω) regularity. It became clear to us that we could
extend this approach to analyze the regularity of the Lagrange multiplier μν and the
corresponding adjoint state. The reader is also referred to [10], where the authors
have obtained recently a similar result for more general pointwise state constraints
and a linear state equation.

Theorem 2.8. Let (uν , yν , ϕν , μν , λν) satisfy the optimality system (2.7)–(2.11)
with uν ∈ Uad. Assume that α ≤ a(x, 0) ≤ β, a(x,+γ) > α, and a(x,−γ) < β hold
a.e. in Ω. Then, there exists Mν > 0 such that

(2.21) ‖ϕν‖L∞(Ω) + ‖ϕν‖H1
0 (Ω) ≤ Mν .

Moreover, μν is contained in H−1(Ω) ∩M(Ω).
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We prepare the proof of this theorem by some auxiliary results. The next re-
sult permits one to invoke certain regularity properties for the Laplace operator in
investigating the Dirichlet problem for A.

Lemma 2.9. Let μ ∈ M(Ω) be a positive measure with a compact support in Ω
and gA be the Green’s function corresponding to the Dirichlet problem associated with
A+a0I, a0 ≥ 0 belonging to L∞(Ω). Define yμ and zμ as the solutions to the problems{

Ay + a0y = μ in Ω,
y = 0 on Γ

and

{ −Δz = μ in Ω,
z = 0 on Γ.

Then, for every ε > 0 there exists a compact set Kε and a constant Cε > 0 such that
supp(μ) ⊂ Kε ⊂ Ω and

(2.22)

{
1
Cε

zμ(x) ≤ yμ(x) ≤ Cε zμ(x) for a.a. x ∈ Kε,

yμ(x) + zμ(x) < ε for a.a. x ∈ Ω \Kε.

In particular, it holds that yμ ∈ L∞(Ω) iff zμ ∈ L∞(Ω). Define further

y∗μ(x) :=
∫
Ω

gA(x, ξ) dμ(ξ) ∀x ∈ Ω.

Then it holds that y∗μ(x) = yμ(x) a.e. in Ω and

yμ ∈ L∞(Ω) ⇔ sup
x∈supp(μ)

y∗μ(x) < ∞.

Proof. First, let us observe that the function y∗μ defined in the statement of the
lemma is a particular function in the L1(Ω)-equivalence class of the solution yμ; see,
for instance, [23, Theorem 9.4] or [20]. The same holds for zμ and the function z∗μ
defined by

z∗μ(x) :=
∫
Ω

g(x, ξ) dμ(ξ) ∀x ∈ Ω,

where g is the Green’s function in Ω associated with the operator −Δ. Therefore, y∗μ
and z∗μ are univocally defined at every point x ∈ Ω, possibly being infinite at some
points. However, yμ and zμ are only defined almost everywhere.

Observe that the positivity of μ implies that yμ and zμ are nonnegative almost
everywhere in Ω. Moreover, since Ayμ + a0yμ = Δzμ = 0 in the open set Ω \ supp(μ)
and yμ = zμ = 0 on Γ, we deduce that yμ, zμ ∈ C(Ω̄ \ supp(μ)). Therefore, given
ε > 0 we can choose a compact set Kε such that supp(μ) ⊂ Kε ⊂ Ω and the second
inequality of (2.22) holds. Let us prove the first inequality of (2.22). We know from
[23, p. 252] that there exists a positive number Cε such that

1

Cε
g(x, y) ≤ gA(x, y) ≤ Cε g(x, y) ∀x, y ∈ Kε.

Integration with respect to μ and taking into account that μ ≥ 0 and supp(μ) ⊂ Kε

yields for all x ∈ Kε

1

Cε
z∗μ(x) =

1

Cε

∫
Ω

g(x, ξ)dμ(ξ) =
1

Cε

∫
Kε

g(x, ξ)dμ(ξ) ≤
∫
Kε

gA(x, ξ)dμ(ξ)

=

∫
Ω

gA(x, ξ)dμ(ξ) = y∗μ(x) ≤ Cε

∫
Kε

g(x, ξ)dμ(ξ) = Cε z
∗
μ(x).

These inequalities imply the first inequality of (2.22).
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1018 EDUARDO CASAS AND FREDI TRÖLTZSCH

By the first part of our proof, we have

yμ ∈ L∞(Ω) ⇔ zμ ∈ L∞(Ω) ⇔ sup
x∈supp(μ)

z∗μ(x) < ∞,

where the last equivalence is due to a result by Pieper and Vexler [21].
Finally, the inequalities

1

Cε
z∗μ(x) ≤ y∗μ(x) ≤ Cεz

∗
μ(x) ∀x ∈ supp(μ) ⊂ Kε

and the above equivalences imply that

sup
x∈supp(μ)

y∗μ(x) < ∞ ⇔ sup
x∈supp(μ)

z∗μ(x) < ∞ ⇔ zμ ∈ L∞(Ω) ⇔ yμ ∈ L∞(Ω).

Lemma 2.10. Let μ ∈ M(Ω) be given and let μ = μ+ − μ− be its Jordan
decomposition. Assume that there exist compact and disjoint sets K+ and K−, both
contained in Ω, such that suppμ+ ⊂ K+ and supp μ− ⊂ K−. Let yμ be the unique
solution of

(2.23)

{
Ay + a0y = μ in Ω,

y = 0 on Γ

and denote analogously by yμ+ , yμ− , y|μ| the solution of (2.23) with right-hand side
μ+, μ−, |μ|, respectively. Then we have the following implications:

(i) yμ ∈ L∞(Ω) ⇔ yμ+ and yμ− ∈ L∞(Ω) ⇔ y|μ| ∈ L∞(Ω).
(ii) If yμ belongs to L∞(Ω), then it holds that yμ ∈ H1

0 (Ω) and μ belongs to
H−1(Ω). Moreover, the following inequality holds:

(2.24) Λ‖∇yμ‖2L2(Ω) ≤ ‖yμ‖L∞(Ω)‖μ‖M(Ω).

Proof. (i) Assume yμ ∈ L∞(Ω). We fix disjoint open subsets Ω+, Ω− of Ω such
that K+ ⊂ Ω+ and K− ⊂ Ω−. Then a result by Stampacchia [23, Theorem 9.3 and
its proof] yields yμ+ ∈ C(Ω−) and yμ− ∈ C(Ω+). We obtain

‖yμ+‖L∞(Ω+) ≤ ‖yμ‖L∞(Ω+) + ‖yμ−‖L∞(Ω+) < ∞,

because the first term is bounded by our assumption and the second is also bounded
thanks to the result by Stampacchia quoted above. Therefore, yμ+ belongs to L∞(Ω+).
By Lemma 2.9, we even have yμ+ ∈ L∞(Ω). In the same way, one shows yμ− ∈ L∞(Ω).
The remaining statements of (i) are obvious.

(ii) We set K := ‖yμ‖L∞(Ω); then Lemma 2.7 implies

yμ(x) = P[−K,K] (yμ(x)) ∈ H1
0 (Ω),

and (2.24) holds. Now it is obvious that μ belongs to H−1(Ω).
Proof of Theorem 2.8. Let us write ϕν = ϕ0

ν +ϕ+
ν −ϕ−

ν , where ϕ
0
ν , ϕ

+
ν and ϕ−

ν are
the solutions of the adjoint equation (2.8) with right-hand side equal to yν − yd, μ

+
ν ,

and μ−
ν , respectively. Since yν − yd ∈ L2(Ω), we know that ϕ0

ν ∈ H1
0 (Ω) ∩ C(Ω̄). We

will prove that ϕ+
ν and ϕ−

ν belong to L∞(Ω). First, we observe that both functions
are nonnegative. Thus, we only need to prove that they are bounded from above.
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STATE CONSTRAINED SPARSE CONTROLS 1019

Let us define

Ω+
ν :=

{
x ∈ Ω : yν(x) >

γ

2

}
, Ω−

ν :=
{
x ∈ Ω : yν(x) < −γ

2

}
.

Recall that supp(μ+) ⊂ Ω+
ν and supp(μ−) ⊂ Ω−

ν . Then, following Stampacchia

[23, Theorem 9.3 and proof], we know that ϕ−
ν ∈ C(Ω+

ν ), ϕ+
ν ∈ C(Ω−

ν ), and

∃Kγ > 0 such that max(‖ϕ−
ν ‖C(Ω+

ν )
, ‖ϕ+

ν ‖C(Ω−
ν )
) ≤ Kγ ‖μν‖M(Ω).

We shall prove below that

(2.25) ess sup
x∈Ω

ϕ+
ν (x) ≤ M+

ν := max(1, ν)|α|+Kγ ‖μν‖M(Ω) + κ+ ‖ϕ0
ν‖L∞(Ω).

Then we have

ϕν(x) ≤ ϕ0
ν(x) + ϕ+

ν (x) ≤ ‖ϕ0
ν‖L∞(Ω) +M+

ν a.e. in Ω.

Analogously, we deduce

(2.26) ess sup
x∈Ω

ϕ−
ν (x) ≤ M−

ν := max(1, ν)|β|+Kγ ‖μν‖M(Ω) + κ+ ‖ϕ0
ν‖L∞(Ω),

and hence

ϕν(x) ≥ ϕ0
ν(x)− ϕ−

ν (x) ≥ −‖ϕ0
ν‖L∞(Ω) −M−

ν a.e. in Ω.

Altogether, we obtain the desired L∞-bound

(2.27) ‖ϕν‖L∞(Ω) ≤ Mν := max(M+
ν ,M−

ν ) + ‖ϕ0
ν‖L∞(Ω).

The estimate for ϕν in H1
0 (Ω) follows from (2.24). The regularity of μν is a

consequence of Lemma 2.10.
Therefore, it remains to prove (2.25). We proceed by contradiction and assume

that ϕ+
ν is not bounded from above by M+

ν . Define

ϕ∗+
ν (x) =

∫
Ω

gA(x, ξ)dμ
+
ν (ξ) and ϕ∗−

ν (x) =

∫
Ω

gA(x, ξ)dμ
−
ν (ξ),

and ϕ∗
ν = ϕ0

ν +ϕ∗+
ν −ϕ∗−

ν . It follows from Lemma 2.9 that there exists x0 ∈ suppμ+
ν

such that

ϕ∗+
ν (x0) > M+

ν .

The function ϕ∗+
ν is lower semicontinuous. This follows from Fatou’s lemma and the

integral representation of ϕ∗+
ν . (Indeed, as any Green’s function, gA is nonnegative

and continuous for x �= ξ and limx′→x gA(x
′, x) = gA(x, x) = +∞.) In view of this,

there exists a ρ > 0 such that

ϕ∗+
ν (x) > M+

ν ∀x ∈ Bρ(x
0) and Bρ(x

0) ⊂ Ω+
ν .

This is possible due to

suppμ+
ν ⊂ {x ∈ Ω : yν(x) = γ}.
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1020 EDUARDO CASAS AND FREDI TRÖLTZSCH

This implies

ϕ∗
ν(x) = ϕ0

ν(x) + ϕ∗+
ν (x) − ϕ∗−

ν (x) > −‖ϕ0
ν‖L∞(Ω) +M+

ν − sup
x∈Ω

+
ν

ϕ∗
ν(x)

≥ −‖ϕ0
ν‖L∞(Ω) +M+

ν −Kγ ‖μν‖M(Ω) = max(1, ν)|α|+ κ ∀x ∈ Bρ(x
0).

Therefore, since ϕν(x) = ϕ∗
ν(x) holds for almost all x ∈ Ω and ‖λν‖L∞(Ω) ≤ 1, we

have

(2.28) ϕν(x) + κλν(x) > max(1, ν)|α| for a.a. x ∈ Bρ(x
0).

Now we distinct between the cases ν > 0 and ν = 0.
Case ν > 0. Here, it holds that

uν(x) = P[α,β]

(
− 1

ν
[ϕν(x) + κλν(x)]

)
= α,

and we are able to continue by

Ayν = uν − a(x, 0) + [a(x, 0)− a(x, y)] ≤ α− a(x, 0) ≤ 0 a.e. in Bρ(x
0).

Notice that a(x, 0) ≥ α holds by assumption and that yν is positive in Ω+
ν . From the

maximum principle for elliptic equations, we deduce

γ = yν(x0) ≤ max
x∈B̄ρ(x0)

= max
x∈∂Bρ(x0)

yν(x) ≤ γ,

and then yν(x) ≡ γ in B̄ρ(x
0). Hence, we have

a(x, γ) = Ayν + a(x, yν) = uν = α in Bρ(x
0),

which contradicts the fact that α < a(x, γ) in Ω.
Case ν = 0. We have

ϕν(x) > |α|+ κ for a.e. x ∈ Bρ(x
0).

Consequently, (2.16) leads to uν(x) = α a.e. in Bρ(x
0). Then, we have again

Ayν ≤ α− a(x, 0) ≤ 0 a.e. in Bρ(x
0),

and we continue in the same way as above to get the contradiction.

3. Second-order sufficient optimality conditions. In order to perform the
second-order analysis of the control problem (Pν), we introduce the Lagrangian func-
tion Lν : L2(Ω)×M(Ω) → R defined by

(3.1) Lν(u, μ) := Fν(u) +

∫
Ω

yu dμ.

From Theorems 2.2 and 2.3, we obtain that L is of class C2 and

∂Lν

∂u
(u, μ)v = F ′

ν(u)v +

∫
Ω

zv dμ =

∫
Ω

(ϕu + νu)v dx,(3.2)

∂2Lν

∂u2
(u, μ)v2 =

∫
Ω

{[
1− ∂2a

∂y2
(x, yu)ϕu

]
z2v + νv2

}
dx,(3.3)
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STATE CONSTRAINED SPARSE CONTROLS 1021

where ϕu ∈ W 1,s
0 (Ω) for all s < n

n−1 is the solution of

(3.4)

⎧⎨
⎩A∗ϕ+

∂a

∂y
(x, yu)ϕ = yu − yd + μ in Ω,

ϕ = 0 on Γ.

According to (3.2), the variational inequality (2.11) can be written in the form

(3.5)
∂Lν

∂u
(uν , μν)(u− uν) + κ

∫
Ω

λν(u− uν) dx ≥ 0 ∀u ∈ Uα,β .

Moreover, from (2.2) we also have

(3.6)
∂Lν

∂u
(uν , μν)(u − uν) + κj′(uν ;u− uν) dx ≥ 0 ∀u ∈ Uα,β.

In this section, uν will denote an element of Uad satisfying with (yν , ϕν , λν , μν)
the optimality system (2.7)–(2.11). Associated with uν , we introduce the following
cone of critical directions for every τ ≥ 0:

Cτ
uν

=

{
v ∈ L2(Ω) :

∂Lν

∂u
(uν , μν) v + κj′(uν ; v) ≤ τ ‖v‖L2(Ω),(3.7)

v(x)

{ ≥ 0 if uν(x) = α,
≤ 0 if uν(x) = β,

(3.8)

zv(x)

{ ≤ τ ‖v‖L2(Ω) if yν(x) = γ,
≥ −τ ‖v‖L2(Ω) if yν(x) = −γ,

(3.9)

∫
Ω

|zv| d|μν | ≤ τ ‖v‖L2(Ω)

}
.(3.10)

In the case τ = 0, we simply write Cuν instead of C0
uν
. As proved in [7, Lemma 3.5],

if v ∈ L2(Ω) satisfies (3.8), then

(3.11)
∂Lν

∂u
(uν , μν) v + κj′(uν ; v) ≥ ∂Lν

∂u
(uν , μν) v + κ

∫
Ω

λνv dx ≥ 0.

As a consequence of this, for τ = 0 we have

Cuν =

{
v ∈ L2(Ω) :

∂Lν

∂u
(uν , μν) v + κj′(uν ; v) = 0,(3.12)

v(x)

{ ≥ 0 if uν(x) = α,
≤ 0 if uν(x) = β,

(3.13)

zv(x)

{ ≤ 0 if yν(x) = +γ,
≥ 0 if yν(x) = −γ,

(3.14)

∫
Ω

|zv| d|μν | = 0

}
.(3.15)

In the second-order analysis, we will distinguish between two cases depending on
whether the parameter ν is strictly positive or zero.
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3.1. Case ν > 0. The role played by the Tikhonov regularization term in the
cost functional is crucial for the second-order analysis; see [11] for κ = 0. Indeed,
surprisingly some formulations of the second-order sufficient optimality conditions are
equivalent, which is not true for general optimization problems in infinite dimension.
In particular, this is not true for ν = 0. The next theorem states these equivalent
formulations.

Theorem 3.1. The following statements are equivalent:

∂2Lν

∂u2
(uν , μν)v

2 > 0 ∀v ∈ Cuν \ {0},(3.16)

∃σ > 0 and ∃τ > 0 such that
∂2Lν

∂u2
(uν , μν)v

2 ≥ σ‖v‖2L2(Ω) ∀v ∈ Cτ
uν
,(3.17)

∃σ > 0 and ∃τ > 0 such that
∂2Lν

∂u2
(uν , μν)v

2 ≥ σ‖zv‖2L2(Ω) ∀v ∈ Cτ
uν
,(3.18)

where zv = G′(uν)v.
Proof. From the inequality ‖zv‖L2(Ω) ≤ C‖v‖L2(Ω), it is obvious that (3.17)

implies (3.18) with the same τ and replacing σ by σ/C2 in (3.18). The implication
(3.18)⇒(3.16) is obvious. To prove (3.16)⇒(3.17), we proceed by contradiction. We
assume that (3.16) holds but (3.17) is false. Then, for every integer k ≥ 1, there exists

an element vk ∈ C
1/k
uν such that

∂2Lν

∂u2
(uν , μν)v

2
k <

1

k
‖vk‖2L2(Ω).

We divide vk by its L2(Ω)-norm and, selecting a subsequence if necessary, we obtain
an element v ∈ L2(Ω) such that

(3.19) ‖vk‖L2(Ω) = 1,
∂2Lν

∂u2
(uν , μν)v

2
k <

1

k
∀k ≥ 1, and vk ⇀ v in L2(Ω).

Let us prove that v ∈ Cuν . First we observe that v satisfies (3.13) because every
vk does it. Now, since the functional L2(Ω) � v �→ j′(uν ; v) ∈ R is convex and
continuous, and vk satisfies (3.7) with τ = 1/k, we can pass to the limit below, see
(3.2), and deduce

∂Lν

∂u
(uν , μν) v + κj′(uν ; v) ≤ lim inf

k→∞

{
∂Lν

∂u
(uν , μν) vk + κj′(uν ; vk)

}
≤ 0.

This inequality and (3.11) imply that (3.12) holds for v. Moreover, the weak conver-
gence vk ⇀ v implies the strong convergence zvk → zv in C0(Ω). Therefore, it is easy
to pass to the limit in (3.9) and (3.10) for vk and τ = 1/k and to obtain (3.14) and
(3.15). This completes the proof of v ∈ Cuν . On the other hand, we can pass to the
limit in (3.19), see (3.3), and get

∂2Lν

∂u2
(uν , μν)v

2 ≤ lim inf
k→∞

∂2Lν

∂u2
(uν , μν)v

2
k ≤ 0.

According to the assumption (3.16), this is only possible if v = 0. This implies that
zvk → 0 strongly in C0(Ω). Hence, using again the expressions (3.3) and (3.19), it
follows that

ν = lim
k→0

∂2Lν

∂u2
(uν , μν)v

2
k ≤ 0.

Since ν > 0, we have a contradiction.
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STATE CONSTRAINED SPARSE CONTROLS 1023

Theorem 3.2. Assume that uν satisfies (3.16). Then there exist δ > 0 and ε > 0
such that

(3.20) Jν(uν) +
δ

2
‖u− uν‖2L2(Ω) ≤ Jν(u) ∀u ∈ Uad ∩Bε(uν),

where Bε(uν) denotes the L2(Ω)-ball centered at uν with radius ε.
Proof. Let us fix τ > 0 and σ > 0 such that (3.17) holds. We prove this theorem

by contradiction and assume that there exists a sequence {uk}∞k=1 ⊂ Uad with

(3.21) ‖uk − uν‖L2(Ω) <
1

k
and Jν(uk) < Jν(uν) +

1

2k
‖uk − uν‖2L2(Ω).

We shall show the existence of kτ > 0 such that there holds

uk − uν ∈ Cτ
uν

∀k ≥ kτ ,

i.e., uk − uν belongs to the critical cone for all sufficiently large k. For this purpose,
we have to confirm the conditions (3.7)–(3.10). To verify (3.7), we observe first that
(2.9) implies ∫

Ω

(yk − yν) dμν ≤ 0 ∀k ≥ 1.

By a Taylor expansion, it follows from (3.21) and (2.3) that

1

2k
‖uk − uν‖2L2(Ω) > Jν(uk)− Jν(uν) ≥ Lν(uk, μν)− Lν(uν , μν) + κ (j(uk)− j(uν))

≥ ∂Lν

∂u
(uν , μν)(uk − uν) + κ j′(uν ;uk − uν)

+
1

2

∂2Lν

∂u2
(uν + ϑk(uk − uν), μν)(uk − uν)

2

with some ϑk ∈ (0, 1). This implies

∂L
∂u

(uν , μν)(uk − uν) + κ j′(uν ;uk − uν)

≤ C ‖uk − uν‖2L2(Ω) ≤
C

k
‖uk − uν‖L2(Ω) < τ‖uk − uν‖L2(Ω)

if k > C/τ . Thus, the inequality (3.7) holds. It is obvious that condition (3.8) is
satisfied for v = uk − uν .

Next, let us verify condition (3.9). We have the equations

A (yk − yν) +
∂a

∂y
(x, yν)(yk − yν) = uk − uν − 1

2

∂2a

∂y2
(x, yν + ϑk(yk − yν))(yk − yν)

2,

A zuk−uν +
∂a

∂y
(x, yν)zuk−uν = uk − uν

for some measurable function ϑk : Ω → (0, 1). Define wk ∈ H1
0 (Ω) by

Awk +
∂a

∂y
(x, yν)wk = −1

2

∂2a

∂y2
(x, yν + ϑk(yk − yν))(yk − yν)

2.

D
ow

nl
oa

de
d 

07
/0

9/
14

 to
 1

93
.1

44
.1

85
.2

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1024 EDUARDO CASAS AND FREDI TRÖLTZSCH

Then it holds that

‖wk‖L∞(Ω) ≤ C ‖yk − yν‖2L∞(Ω) ≤ C ‖uk − uν‖2L2(Ω).

If yν(x) = γ, then we have

0 ≥ yk − yν = zuk−uν + wk

and it follows for k > C/τ

(3.22) zuk−uν (x) ≤ −wk(x) ≤ C

k
‖uk − uν‖L2(Ω) ≤ τ‖uk − uν‖L2(Ω).

This is the upper condition of (3.9). The lower one is verified in the same way.
It remains to check (3.10). Using again (3.21) and a Taylor expansion, we get

with the help of (2.3)

F ′
ν(uν)(uk−uν)+

1

2
F ′′
ν (uν+ϑk(uk−uν))(uk−uν)

2+κj′(uν ;uk−uν) ≤ 1

k
‖uk−uν‖2L2(Ω)

for some ϑk ∈ (0, 1). Therefore

(3.23) F ′
ν(uν)(uk − uν) + κj′(uν ;uk − uν) ≤ C‖uk − uν‖2L2(Ω).

Now, we proceed as follows:∫
Ω

|zuk−uν | d|μν | =
∫
Ω

|zuk−uν | dμ+
ν +

∫
Ω

|zuk−uν | dμ−
ν

=

∫
zuk−uν

>0

yν=γ

zuk−uν dμ
+
ν −

∫
zuk−uν

<0

yν=−γ

zuk−uν dμ
−
ν

−
∫

zuk−uν
<0

yν=γ

zuk−uν dμ
+
ν +

∫
zuk−uν

>0

yν=−γ

zuk−uν dμ
−
ν

≤ C

k
‖μ+

ν ‖M(Ω) ‖uk − uν‖L2(Ω) +
C

k
‖μ−

ν ‖M(Ω) ‖uk − uν‖L2(Ω)

−
∫

zuk−uν
<0

yν=γ

zuk−uν dμ
+
ν +

∫
zuk−uν

>0

yν=−γ

zuk−uν dμ
−
ν

≤ C

k
‖μν‖M(Ω)‖uk − uν‖L2(Ω) −

∫
zuk−uν

<0

yν=γ

zuk−uν dμ
+
ν

+

∫
zuk−uν

>0

yν=−γ

zuk−uν dμ
−
ν .

In the last estimates, we have used inequality (3.9) with τ ≤ C
k as proved in (3.22).

We observe that, due to uk ∈ Uα,β , (3.6) leads to

(3.24)
∂Lν

∂u
(uν , μν)(uk − uν) + κ j′(uν ;uk − uν) ≥ 0.

According to the first identity in (3.2) with v = uk − uν, the derivative of Lν

contains the term∫
Ω

zuk−uν dμν =

∫
zuk−uν

>0

yν=γ

zuk−uν dμ
+
ν −

∫
zuk−uν

<0

yν=−γ

zuk−uν dμ
−
ν

+

∫
zuk−uν

<0

yν=γ

zuk−uν dμ
+
ν −

∫
zuk−uν

>0

yν=−γ

zuk−uν dμ
−
ν .
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We move the last two terms to the other side of (3.24) and use (3.23) to deduce

−
∫

zuk−uν
<0

yν=γ

zuk−uν dμ
+
ν +

∫
zuk−uν

>0

yν=−γ

zuk−uν dμ
−
ν ≤ C

k
‖μν‖M(Ω)‖uk − uν‖L2(Ω)

+ F ′(uν)(uk − uν) + κj′(uν ;uk − uν) ≤ C

k
‖uk − uν‖L2(Ω).

This shows (3.10), and altogether we have shown uk − uν ∈ Cτ
uν

for k large enough.
Next, we derive the contradiction to our initial hypotheses. We proved above that

1

2k
‖uk − uν‖2L2(Ω) >

∂Lν

∂u
(uν , μν)(uk − uν) + κ j′(uν ;uk − uν)

+
1

2

∂2Lν

∂u2
(uν + ϑk(uk − uν), μν)(uk − uν)

2.

With (3.6) we obtain

1

2

∂2Lν

∂u2
(uk + ϑk(uk − uν), μν)(uk − uν)

2 <
1

2k
‖uk − uν‖2L2(Ω).

We rewrite the left-hand side of this inequality and apply (3.17) to deduce

1

2

∂2Lν

∂u2
(uk + ϑk(uk − uν), μν)(uk − uν)

2

=
1

2

∂2Lν

∂u2
(uν , μν)(uk − uν)

2

+
1

2

[
∂2Lν

∂u2
(uk + ϑk(uk − uν), μν)− ∂2Lν

∂u2
(uν , μν)

]
(uk − uν)

2

(3.25) ≥ σ

2
‖uk − uν‖2L2(Ω) + I,

where

(3.26) I =

∫
Ω

[
1− ϕϑk

∂2a

∂y2
(x, yϑk

)

]
z2ϑk

dx−
∫
Ω

[
1− ϕν

∂2a

∂y2
(x, yν)

]
z2uk−uν

dx,

where yϑk
and ϕϑk

denote the state and adjoint state associated with uν+ϑk(uk−uν),
and zϑk

= G′(uν+ϑk(uk−uν))(uk−uν). To proceed with our estimation, we consider
the following equations:

Azϑk
+

∂a

∂y
(x, yϑk

) zϑk
= uk − uν ,

A zuk−uν +
∂a

∂y
(x, yν) zuk−uν = uk − uν .

Subtracting the two equations, we obtain

A (zϑk
− zuk−uν ) +

∂a

∂y
(x, yν)(zϑk

− zuk−uν ) = −∂2a

∂y2
(x, ŷϑk

)(yϑk
− yν)zϑk

with ŷϑk
being intermediate functions between yϑk

and yν . Therefore, it follows that

‖zϑk
− zuk−uν‖L2(Ω) ≤ c‖yϑk

− yν‖L∞(Ω)‖zϑk
‖L2(Ω)

≤ c‖uk − uν‖L2(Ω)‖zϑk
‖L2(Ω) ≤ c

k
‖zϑk

‖L2(Ω)(3.27)
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1026 EDUARDO CASAS AND FREDI TRÖLTZSCH

and

‖zϑk
‖L2(Ω) ≤ ‖zϑk

− zuk−uν‖L2(Ω) + ‖zuk−uν‖L2(Ω) ≤ c

k
‖zϑk

‖L2(Ω) + ‖zuk−uν‖L2(Ω).

This estimate yields for k > c

(3.28) ‖zϑk
‖L2(Ω) ≤

(
1− c

k

)−1

‖zuk−uν‖L2(Ω).

Next, we estimate the term I defined in (3.26). To this aim, we first consider the term
z2ν − z2uk−uν

:∫
Ω

∣∣z2ϑk
− z2uk−uν

∣∣ dx ≤ ‖zϑk
+ zuk−uν‖L2(Ω) ‖zϑk

− zuk−uν‖L2(Ω)

≤ c

k

(‖zϑk
‖L2(Ω) + ‖zuk−uν‖L2(Ω)

) ‖zϑk
‖L2(Ω)

≤ c

k
‖zuk−uν‖2L2(Ω),(3.29)

where we have used (3.27) and (3.28). For the other part of the integrand, we find∫
Ω

∣∣∣∣ϕϑk

∂2a

∂y2
(x, yϑk

) z2ϑk
− ϕν

∂2a

∂y2
(x, yν) z

2
uk−uν

∣∣∣∣ dx
≤

∫
Ω

|ϕϑk
− ϕν |

∣∣∣∂2a

∂y2
(x, yϑk

)
∣∣∣ z2ϑk

dx+ II + III,(3.30)

where

II :=

∫
Ω

|ϕν |
∣∣∣∂2a

∂y2
(x, yϑk

)− ∂2a

∂y2
(x, yν)

∣∣∣ z2ϑk
dx,(3.31)

III :=

∫
Ω

|ϕν |
∣∣∣∂2a

∂y2
(x, yν)

∣∣∣ |z2ϑk
− z2uk−uν

| dx.(3.32)

To further estimate the terms (3.30)–(3.32), we subtract the equations

A∗ ϕϑk
+

∂a

∂y
(x, yϑk

)ϕϑk
= yϑk

− yd + μν ,

A∗ ϕν +
∂a

∂y
(x, yν)ϕν = yν − yd + μν

and get with some intermediate function ŷϑk

A∗(ϕϑk
− ϕν) +

∂a

∂y
(x, yν)(ϕϑk

− ϕν) = yϑk
− yν − ∂2a

∂y2
(x, ŷϑk

)(yϑk
− yν)ϕϑk

.

Therefore, we can estimate ϕϑk
− ϕν by

‖ϕϑk
− ϕν‖L∞(Ω) ≤ c

(‖yϑk
− yν‖L2(Ω) + ‖yϑk

− yν‖L∞(Ω)‖ϕϑk
‖L2(Ω)

)
≤ c ‖uk − uν‖L2(Ω) ≤ c

k
.(3.33)

For deriving the last line, we have considered the equations

Ayϑk
+ a(x, yϑk

) = uν + ϑk (uk − uν) and Ayν + a(x, yν) = uν .
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STATE CONSTRAINED SPARSE CONTROLS 1027

The estimates (3.28) and (3.33) imply∫
Ω

|ϕϑk
− ϕν |

∣∣∣∂2a

∂y2
(x, yϑk

)
∣∣∣ z2ϑk

dx ≤ c

k
‖zuk−uν‖2L2(Ω).

Now we consider the terms II and III: From Assumption 2 and yk, yν ∈ Yγ , we
know that for every ε > 0 there exists ρε,γ > 0 such that

∣∣∣∂2a

∂y2
(x, yϑk

(x)) − ∂2a

∂y2
(x, yν(x))

∣∣∣ < ε if |yϑk
(x)− yν(x)| < ρε,γ .

Therefore, with (3.28) it holds that

|II| ≤
∥∥∥∥∂2a

∂y2
(·, yϑk

)− ∂2a

∂y2
(·, yν)

∥∥∥∥
L∞(Ω)

‖zuk−uν‖2L2(Ω),

where the L∞-norm above tends to zero as k → ∞.
The estimate of III is an immediate consequence of (3.29). With all obtained

estimates, we found

σ

2
‖uk − uν‖2L2(Ω) ≤ εk ‖zuk−uν‖2L2(Ω) ≤ Cεk ‖uk − uν‖2L2(Ω),

where εk → 0. This is only possible if uk = uν holds for all sufficiently large k, which
contradicts (3.21).

3.2. Case ν = 0. In this section, the functions L0, J0, and F0 are simply de-
noted by L, J , and F , respectively. Let ū ∈ Uad be a control that satisfies the
first-order necessary optimality system together with (ȳ, ϕ̄, λ̄, μ̄). For ν = 0, the
second-order conditions (3.16)–(3.18) are not equivalent. The issue is to find out if
any of these three conditions is sufficient for local optimality of ū. The assumption
(3.16) is too weak; see [17] for an example. The condition (3.17) is too strong and it
is never fulfilled when ν = 0; see [4]. The correct assumption is (3.18), as stated in
the next theorem.

Theorem 3.3. If the second-order condition (3.18) is satisfied, then there exist
ε > 0 and δ > 0 such that

(3.34) J(ū) +
δ

2
‖zu−ū‖2L2(Ω) ≤ J(u) ∀u ∈ Uad with ‖u− ū‖L2(Ω) < ε.

The proof of this theorem follows the lines of the proof of Theorem 3.2 just
changing uk − ū by zuk−ū when necessary. For instance, (3.21) must be substituted
by

‖uk − ū‖L2(Ω) <
1

k
and J(uk) < J(uν) +

1

2k
‖zuk−ū‖2L2(Ω).

The inequality (3.25) has to be replaced by

1

2

∂2L
∂u2

(uk + ϑk(uk − ū), μ̄)(uk − ū)2 ≥ σ

2
‖zuk−ū‖2L2(Ω) + I.

The final contradiction admits the form

σ

2
‖zuk−ū‖2L2(Ω) ≤ εk ‖zuk−ū‖2L2(Ω).
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1028 EDUARDO CASAS AND FREDI TRÖLTZSCH

Corollary 3.4. Under the assumptions of Theorem 3.3, there exists δ̄ > 0 such
that

(3.35) J(ū) +
δ̄

2
‖yu − ȳ‖2L2(Ω) ≤ J(u) ∀u ∈ Uad ∩Bε(ū).

This is an immediate consequence of Theorem 3.3. It is enough to use that

‖yu − ȳ‖L2(Ω) ≤ c ‖zu−ū‖L2(Ω)

and to take δ̄ = δ/c2; cf. Casas [4].

4. Stability analysis with respect to ν. In this section, we investigate the
behavior of a sequence of optimal controls uν of (Pν) as ν → 0. Under natural
assumptions, we expect the convergence uν → u0, where u0 is an optimal solution of
(P0). We recall our notation u0 := ū and y0 := ȳ.

Let now {uν}ν>0 be a sequence of solutions to (Pν), where ν = 1/k with k ∈ N. By
the boundedness of Uα,β , we can assume without loss of generality that uν converges
weakly∗ in L∞(Ω) to some ū ∈ Uα,β. Therefore, we also have yν → ȳ inH1

0 (Ω)∩C0(Ω̄).
Theorem 4.1.

(i) The weak*-limit ū of uν is a solution to (P0).
(ii) The sequence {uν} converges strongly in L2(Ω).
Proof. For all u ∈ Uad, there holds

J(ū) ≤ lim inf
ν→0

J(uν) ≤ lim inf
ν→0

Jν(uν) ≤ lim sup
ν→0

Jν(uν) ≤ lim sup
ν→0

Jν(u) = J(u).

Because ū obviously belongs to Uad, this shows that ū solves (P0) and hence (i) is
proved.

Let us now show (ii). From

J(ū) +
ν

2
‖uν‖2L2(Ω) ≤ J(uν) +

ν

2
‖uν‖2L2(Ω) = Jν(uν) ≤ Jν(ū) = J(ū) +

ν

2
‖ū‖2L2(Ω),

it follows that

(4.1) ‖uν‖L2(Ω) ≤ ‖ū‖L2(Ω) ∀ν > 0.

On the other hand, we find

‖ū‖L2(Ω) ≤ lim inf
ν→0

‖uν‖L2(Ω) ≤ lim sup
ν→0

‖uν‖L2(Ω) ≤ ‖ū‖L2(Ω),

where (4.1) was used in the last inequality. This shows the convergence of norms
‖uν‖L2(Ω) → ‖ū‖L2(Ω) that, together with the weak convergence uν ⇀ ū in L2(Ω),
yields the strong convergence in L2(Ω). This shows II.

Let us prove a converse result.
Theorem 4.2. Let ū be a strict local minimum of (P0) in the L2(Ω) sense. Then,

there exists a sequence {uν}ν>0 of local minima of problems (Pν) such that uν → ū
strongly in L2(Ω).

Proof. Since ū is a strict local minimum of (P0), there exists ε > 0 such that ū is
the unique solution of

(Pε) min
u∈Uad∩B̄ε(ū)

J(u),
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STATE CONSTRAINED SPARSE CONTROLS 1029

where B̄ε(ū) denotes the L
2(Ω)-closed ball with center at ū and radius ε. Analogously,

for every ν > 0 we consider the problems

(Pν,ε) min
u∈Uad∩B̄ε(ū)

Jν(u).

For every ν > 0 there exists at least one solution uν of (Pν,ε). We can apply The-
orem 4.1 and deduce that, for a subsequence if necessary, {uν} converges strongly
in L2(Ω) to a solution of (Pε). But the only solution of (Pε) is ū, and hence the
whole sequence {uν} converges strongly to ū in L2(Ω). For ν sufficiently small,
‖uν − ū‖L2(Ω) < ε, and consequently uν is a local solution of (Pν) .

Assumption 4 (linearized slater condition). There exists us ∈ Uα,β such that

(4.2) |(ȳ + zus−ū)(x)| < γ ∀x ∈ Ω,

where zus−ū = G′(ū)(us − ū). In what follows, we write for short zν,s := zν,us−uν .
Theorem 4.3. Under Assumption 4, there exists some νs > 0 such that

(4.3) |(yν + zν,s)(x)| < γ ∀x ∈ Ω ∀ν < νs,

where zν,us−uν is the solution to⎧⎨
⎩ Az +

∂a

∂y
(x, yν) z = us − uν in Ω

z = 0 on Γ.

Proof. The sequence {yν}ν converges to ȳ, uniformly in Ω. Therefore, it suffices
to prove that ‖zν,s − zus−uν‖C0(Ω) → 0 for ν → 0.

Subtracting the equations for zν,s and zus−uν , we obtain with some ϑk ∈ (0, 1)

A (zν,s − zus−ū) +
∂a

∂y
(x, ȳ) (zν,s − zus−ū)

= −∂2a

∂y2
(x, ȳ + ϑk(yν − ȳ)) (yν − ȳ) zν,s + ū− uν.

This implies

‖zν,s − zus−uν‖C0(Ω) ≤ C
(‖yν − yū‖C0(Ω)‖zν,s‖L2(Ω) + ‖ū− uν‖L2(Ω)

) → 0 if ν → 0.

Notice that ‖zν,s‖L2(Ω) is obviously bounded.
This result is the basis for proving the following one.
Theorem 4.4. Under Assumption 4, for all ν < νs there exist μν ∈ M(Ω),

λν ∈ L2(Ω), and ϕν ∈ W 1,s(Ω) for all s < n/(n− 1) such that

A∗ϕν +
∂a

∂y
(x, yν)ϕν = yν − yd + μν in Ω,

ϕν = 0 on Γ,
(4.4)

∫
Ω

(y − yν) dμν ≤ 0 ∀y ∈ Yν ,(4.5) ∫
Ω

λν (u− uν) dx+

∫
Ω

|uν | dx ≤
∫
Ω

|u| dx ∀u ∈ L1(Ω),(4.6) ∫
Ω

(ϕν + ν uν + κλν) (u− uν) dx ≥ 0 ∀u ∈ Uα,β .(4.7)
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Moreover, there is some μ̄ in M(Ω) such that, for ν → 0,

μν
∗
⇀ μ̄ in M(Ω) and ‖μν‖M(Ω) → ‖μ̄‖M(Ω),(4.8)

yν → ȳ in H1
0 (Ω) ∩ C(Ω̄),(4.9)

ϕν → ϕ̄ in W 1,s(Ω),(4.10)

λν → λ̄ in L2(Ω)(4.11)

(all limits for subsequences, if necessary). Finally, (ū, ȳ, ϕ̄, μ̄, λ̄) satisfies the optimal-
ity system of (P0).

Proof. The relations (4.4)–(4.7) constitute the necessary optimality conditions
for the problem (Pν), which follow from the linearized Slater condition. Therefore, it
remains to show the convergence properties.

(i) Boundedness of {(uν, yν , ϕν , λν , μν)}ν>0: The boundedness of {(uν , yν)} in
L∞(Ω) × [H1

0 (Ω) ∩ C(Ω̄)] is obvious. The identity (2.14) shows the boundedness of
{λν} in L∞(Ω). If we prove the boundedness of {μν}, then the boundedness of {ϕν}
follows from (2.8). Let us study the sequence {μν}. Let νs > 0 be as defined in
Theorem 4.3.

Inequality (4.5) can be written

(4.12) γ‖μν‖M(Ω) = sup
y∈Yγ

∫
Ω

y dμν =

∫
Ω

yν dμν ∀ν < νs.

From the convergence (yν , zν,s) → (ȳ, zus−ū) in C0(Ω) × C0(Ω), we deduce the exis-
tence of ν0 ∈ (0, νs] such that

ρν = γ − ‖yν + zν,s‖C0(Ω) ≥ ρ

2
=

1

2

(
γ − ‖ȳ + zus−ū‖C0(Ω)

) ∀ν < ν0.

Therefore, there holds

yν + zν,s + z ∈ Yγ ∀z ∈ B̄ρ/2(0) ⊂ C0(Ω) and ∀ν < ν0.

From this and (4.12), we deduce∫
Ω

(zν,s + z) dμν =

∫
Ω

[(yν + zν,s + z)− yν ] dμν ≤ 0 ∀z ∈ B̄ρ/2(0) ∀ν < ν0,

and hence

(4.13)
ρ

2
‖μν‖M(Ω) = sup

z∈B̄ρ/2(0)

∫
Ω

z dμν ≤ −
∫
Ω

zν,s dμν ∀ν < ν0.

From (3.2) and (3.5), we get

F ′
ν(uν)(u− uν) + κ

∫
Ω

λν (u− uν) dx+

∫
Ω

zν,u−uν dμν ≥ 0 ∀u ∈ Uα,β .

Now, taking u = us, we find

−
∫
Ω

zν,s dμν ≤ F ′
ν(uν)(us − uν) + κ

∫
Ω

λν (us − uν) dx ≤ C ∀ν < ν0.

By (4.13), this implies the desired boundedness of {μν}. Therefore, taking a subse-

quence, if necessary, we have that μν
∗
⇀ μ̄ in M(Ω).
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(ii) Convergence in the optimality system: Passing to the limit ν → 0 in (4.5) and
using that yν → ȳ in C0(Ω), it follows that∫

Ω

(y − ȳ) dμ̄ ≤ 0 ∀y ∈ Yγ .

This shows that μ̄ is a Lagrange multiplier for (P0). Moreover, from (4.12), we get

γ‖μν‖M(Ω) =

∫
Ω

yν dμν →
∫
Ω

ȳ dμ̄ = γ‖μ̄‖M(Ω),

which completes the proof of (4.8).
It is known that for every f ∈ W−1,s′(Ω) with s′ > n, the solution z of

Az +
∂a

∂y
(x, yν) z = f in Ω,

z = 0 on Γ

belongs to Cθ(Ω̄) for some 0 < θ < 1. Moreover, ‖z‖Cθ(Ω̄) ≤ C‖f‖W−1,s′(Ω) holds,

where C is independent of f ; see [23, Theorem 7.3]. Then, the compactness of the
embedding Cθ(Ω̄)∩C0(Ω) ↪→ C0(Ω) implies that the linear mapping f �→ z is compact
from W−1,s′(Ω) to C0(Ω). By transposition we obtain that the solution mapping
associated with (4.4) is compact from M(Ω) to W 1,s

0 (Ω). Hence, the convergence
ϕν → ϕ̄ is strong in W 1,s

0 (Ω). Since W 1,s(Ω) is continuously embedded in L2(Ω) for
s close enough to n/(n− 1), we obtain by (2.14) and (2.20)

‖λν − λ̄‖L2(Ω) ≤ 1

κ
‖ϕν − ϕ̄‖L2(Ω) → 0, as ν → 0.

Finally, it is easy to pass to the limit in (4.7). Thus, we have proved that (ū, ȳ, ϕ̄, μ̄, λ̄)
obeys the optimality system of (P0).

Corollary 4.5. For all ν < νs, the adjoint states ϕν belong to L∞(Ω) ∩H1
0 (Ω)

and the estimates

‖ϕν‖L∞(Ω) + ‖ϕν‖H1
0(Ω) ≤ M

are satisfied with some M > 0. Therefore, ϕ̄ obeys the same estimates also. Conse-
quently, μν ⇀ μ̄ in H−1(Ω) and ϕν ⇀ ϕ̄ in H1

0 (Ω).
This corollary is an obvious consequence of Theorems 2.8 and 4.4. Indeed,

it is enough to observe that, according to (2.25)–(2.27) and the boundedness of
{(uν , yν , ϕν , λν , μν)}ν>0 established in the above theorem, Mν is uniformly bounded
by a constant M independent of ν.

Let us finally estimate the convergence rate for yν → ȳ in L2(Ω). For this pur-
pose, we assume that ū is a local solution of (P0) that, together with some multiplier
μ̄, fulfills the second-order sufficient optimality conditions (3.18). Therefore, the (gen-
eralized) quadratic growth condition

J(ū) +
δ̄

2
‖yu − ȳ‖2L2(Ω) ≤ J(u) ∀u ∈ Uad ∩Bε(ū)

is satisfied with some positive δ̄ and ε; see Corollary 3.4.
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We now select a sequence {uν} of local solutions to (Pν) converging strongly in
L2(Ω) to ū. Thanks to Theorem 4.2, this selection is possible. Next, we estimate with
(3.35)

J(ū) +
δ̄

2
‖yν − ȳ‖2L2(Ω) +

ν

2
‖uν‖2L2(Ω) ≤ J(uν) +

ν

2
‖uν‖2L2(Ω) = Jν(uν)

≤ Jν(ū) = J(ū) +
ν

2
‖ū‖2L2(Ω).

Subtracting the term J(ū) from both ends of this chain of inequalities and using (4.1),
we find

‖yν − ȳ‖2L2(Ω) ≤
ν

δ̄

(
‖ū‖2L2(Ω) − ‖uν‖2L2(Ω)

)
=

ν

δ̄

(‖ū‖L2(Ω) + ‖uν‖L2(Ω)

) (‖ū‖L2(Ω) − ‖uν‖L2(Ω)

)
≤ ν

δ̄

(‖ū‖L2(Ω) + ‖uν‖L2(Ω)

) ‖ū− uν‖L2(Ω)

≤ 2

δ̄
‖ū‖L2(Ω)‖ū− uν‖L2(Ω)ν.

Finally, this implies the convergence rate

(4.14) lim
ν→0

‖yν − ȳ‖L2(Ω)√
ν

= 0.
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an improvement with respect to the strong convergence stated in (4.10).
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Collège de France Seminar, H. Brezis and J.L. Lions, eds., Longman Scientific & Technical,
Harlow, UK, 8 (1988), pp. 69–86.

[2] F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-
Verlag, New York, 2000.

[3] E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. Control
Optim., 24 (1986), pp. 1309–1318.

[4] E. Casas, Second order analysis for bang-bang control problems of PDEs, SIAM J. Control
Optim., 50 (2012), pp. 2355–2372.

[5] E. Casas, C. Clason, and K. Kunisch, Approximation of elliptic control problems in measure
spaces with sparse solutions, SIAM J. Control Optim., 50 (2012), pp. 1735–1752.

[6] E. Casas, C. Clason, and K. Kunisch, Parabolic control problems in measure spaces with
sparse solutions, SIAM J. Control Optim., 51 (2013), pp. 28–63.

[7] E. Casas, R. Herzog, and G. Wachsmuth, Optimality conditions and error analysis of semi-
linear elliptic control problems with L1 cost functional, SIAM J. Optim., 22 (2012), pp. 795–
820.

[8] E. Casas, R. Herzog, and G. Wachsmuth, Approximation of sparse controls in semilinear
equations by piecewise linear functions, Numer. Math., 122 (2012), pp. 645–669.

[9] E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces,
SIAM J. Control Optim., 52 (2014), pp. 339–364.

[10] E. Casas, M. Mateos, and B. Vexler, New regularity results and improved error estimates
for optimal control problems with state constraints, ESAIM Control Optim. Calc. Var., to
appear.
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