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ABSTRACT

We develop stochastic expansions with remainder op(n=%"), where 0 < p < 1/2,
for a standardised semiparametric GLS estimator, a standard error, and a studentized
statistic, in the linear regression model with heteroskedasticity of unknown form. We
calculate the second moments of the truncated expansion, and use these approxima-
tions to compare two competing estimators and to define a method of bandwidth

choice.



1. INTRODUCTION

Heteroskedasticity is frequently found in residuals from estimated econometric
models, in both cross-sectional and time series datasets. There are two predominant
strategies for dealing with this problem. In the first approach, one specifies a paramet-
ric model for the heteroskedasticity, estimates all parameters by maximum likelihood,
and conducts testing under this assumption. In the second, one estimates under the
presumption of homoskedasticity, but employs standard errors that consistently es-
timate the relevant sampling variability that pertains when heteroskedasticity is in
fact present. The latter methodology originates with Eicker (1968) and White (1980).
If the parametric model is correctly specified, the first method provides optimal es-
timation and testing. However, it is not robust: in particular, test statistics with
asymptotically incorrect size will result from misspecification of the second moments.
The second method provides valid inference regardless of the form of the heteroskedas-
ticity, but at the cost of a loss of efficiency and local power relative to an approach
based on a correctly specified parametric model.

An alternative that appears to offer the advantages of both these procedures is
to use semiparametric methods to account for the heteroskedasticity. In some cases,
this approach involves no asymptotic efficiency loss relative to the MLE (and hence
test statistics with maximum local asymptotic power result) from a correctly speci-
fied parametric model — whatever that may be. In the context of a linear regression
model with heteroskedasticity of unknown form, Carroll (1982) and Robinson (1987)
use a feasible GLS procedure in which the weights are nonparametric estimators of
the conditional variance o?(e) to estimate the mean parameters 3. These estimators
of § are asymptotically equivalent to the infeasible GLS estimator that uses the un-

known variances to weight the observations. Therefore, when the errors are normal,
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they are efficient. This would suggest that the semiparametric approach dominates
the other two. However, this judgement is based exclusively on first order asymptotic
approximations, whose validity is not entirely supported by the monte carlo evidence
presented in Hsieh and Manski (1987), Stock (1989) and Stoker (1993) for related
situations. Rothenberg (1984b) shows that the magnitude of the second order correc-
tions for parametric GLS estimators generally increases with the number of nuisance
parameters one has estimated to construct the GLS weights. The semiparametric
procedure implicitly estimates an infinite number of nuisance parameters and there-
fore may be expected to have rather poor small sample properties. A second problem
is that the first order theory does not reflect the bandwidth h(n) that determines the
amount of smoothing employed (i.e. the number of nuisance parameters being fitted)
in the nonparametric procedure. This quantity can materially affect the magnitude
of estimators and test statistics.

We propose using higher order asymptotic expansions to address these problems.
This methodology has a long tradition of successful application in the econometric
literature, starting with Nagar (1959), see inter alia Sargan (1975,1976), Phillips
(1977ab), and Anderson and Sawa (1979), see Rothenberg (1984a) for a review. We
derive an op(n~?*) stochastic expansion, where 0 < p < 1/2, for two standardised
competing semiparametric GLS estimators, a standard error and a Wald statistic. We
calculate approximations to the first two moments of the truncated expansions; these
depend on the bandwidth h(n) used in the kernel estimation of o*(e). We use our
approximations to calibrate the likely small sample cost of this estimation strategy in
a number of examples. We also use this formula to calculate an optimal bandwidth,
which can be used as a method of bandwidth choice. Our work is related to that
of Carroll and Hérdle (1989), Cavanagh (1989), Hérdle, Hart, Marron and Tsybakov
(1992) and Linton (1993) for related semiparametric situations.

In section 2 we describe the sampling scheme we examine, while in section 3 we



describe the estimators and test statistics. In section 4 we develop the asymptotic
expansion, and give formulae for the second order approximations to the MSE of the
various quantities. In section 5 we discuss optimality and bandwidth choice, while
section 6 contains the results of a small simulation experiment. Section 7 concludes,
while the Appendix contains an outline proof.

A word on notation. We use = to denote convergence in distribution, £ means
convergence in probability, while the symbol ~ denotes asymptotic equivalence in

probability, all holding as n — oo.

2. SAMPLING SCHEME

We examine the following linear regression model:

Y = ﬂTxi + Ui 5 Uy = €;04, 1= 1727 - N, (1)

where ¢; is iid zero mean, variance one, skewness k3 and kurtosis x4, while the fixed
design regressors {z;}"; have support a bounded domain T C R”. The conditional
variance 0? = o%(z;) > o > 0, where 0%(e) is of unknown functional form, possesses
at least three continuous partial derivatives in each direction. We further require of

the design that there be a positive differentiable density f, such that for any bounded

continuous function v(e),

n

n 'Y w(z) — /v(x)f(x)dx. 2)

i=1

We do not exclude stochastic regressors from our treatment. If z; were iid with density
f, then (2) holds with probability 1. In this case, the approximations developed in
this paper also hold with probability 1.



Carroll (1982) and Robinson (1987) both consider sampling schemes where (27, y)
are iid; they examine estimator performance unconditionally. In our case, however,
the marginal distribution of the regressors contains no information about the param-

eter 3. Therefore, conditioning on them is more in line with conventional statistical

practice — see Cox and Hinkley (1974, p33).

3. ESTIMATION
3.1 Semiparametric GLS

We examine the behavior of the following feasible GLS estimators:

8= [Z %’%T&\;Q]fl[z 2;y;0; 7] ; 3= [Z %‘%‘T&;Q]fl[z x5, ], (3)
i1 i1 i1 i1

~2 ~2 ~9 2 2
where 67 = 32, ; wi;uf and 67 = 35, wiys — (3220 Wiy

are nonparametric estima-
tors of o7 of the "leave one out” type, where {w;; }i_ is a sequence of weights defined
below, while {@;}"_, are the least squares residuals. Carroll (1982) and Robinson
(1987) both establish the first order asymptotic theory for 3, although Robinson
(1987) also indicates the feasibility of /3.

We now turn to the choice of nonparametric weights {w;;}. Carroll (1982) em-
ployed a Nadaraya-Watson kernel estimator, while Robinson (1987) used nearest
neighbors. See Hérdle and Linton (1993) for a comparison of these and other nonpara-
metric regression smoothers. We use the fixed window local linear regression method
suggested in Stone (1977) and further examined in Fan (1992). This procedure has
several advantages: there are no boundary effects, and the interior pointwise bias

does not, asymptotically, depend on the design density (Fan (1992) calls this latter
property design adaptation). This method is motivated by the following argument.



A smooth regression function g(z) can be expanded in a Taylor series, so that
for ; in a neighborhood N(z;) of x; = (w1, .., zip)?, g(z;) ~ 7' 2, where z; =
(1,251 — i1, .., xjp — 2ip)" and 7; = (g(x;),0g/0x1;, .., 0g/Oxp)". Therefore, in N(x;)
we have an approximate linear regression in which the explanatory variables are z;;,
and 7; are "hyper-parameters’. Therefore, we take w;; to be the (1,j)th element of

the P + 1 by n regression weighting matrix

(2] K:Z,)™' Z} K, (4)

where Z; = (21, .., zin) T, while K; is a diagonal matrix with j’th element k((x;—x;)/h)
and i'th equal to zero. Here, k(e) is a P—dimensional probability density function
with bounded support and one continuous partial derivative in each direction, while
h(n) is a scalar bandwidth satisfying h — 0 and nh®” — oo. The rate at which h

converges to zero is determined in the sequel.
3.2. Standardised Quantities

Both B and 5 approximate, provided only h — 0 and nhY — 0, the infeasible
GLS estimator

8= [i xz‘%TUfz]fl[i ;07 %], (5)
=1 =1

which satisfies /n(3 — 8) = N(0, M), where M,, = n=' 7, z;27 0, 2. Therefore,
the common asymptotic distribution of the semiparametric estimators does not de-
pend on the bandwidth. We examine the higher order properties of B and B, which
do depend on h. For convenience, we work with the scalar standardised quantities
T = /nc™ (B — B)/s and T' = /nc"(§ — B)/s, where s? = ¢ M7 ¢ and ¢ is any P
by 1 vector. We also consider a standardised standard error S = /n(S — s)/s, where
52 = ("M, *c with M, = n~ ' Y%, 2,276;%. Finally, we also consider a Wald statistic

W = \/ﬁcT(B — (B0)/3 that can be used to test the hypothesis Hy: ¢’'3 = ¢’ (3. An



important special case is where ¢ = (0, ..,0,1,0,.,0)T upon which W is the standard

t-test for the significance of the corresponding regressor.

4. SECOND ORDER APPROXIMATIONS

We give second order stochastic expansions for T, 77, S, and W and further ap-
proximate the second moments of the truncated expansions. In section 4.1 we derive
the stochastic expansion for 7', while in section 4.2 we present formulae for its asymp-
totic moments and justify their interpretation. In section 4.3 we compare the approx-
imations for T" and 7", while in section 4.4 we give the expansions and asymptotic

moments for S and W.
4.1 Stochastic Expansion

By a geometric series expansion, 7' can be written as

XDMn_lXN_l_XDMn_lXDMn_lXN}_‘_ R
Vn n ny/n

where Xy =n V2" zu;67% and Xp =n V2" 22l (672 — 07?), while

1= 7

T=s"'c"M Xy - =T+ R}, (6)

R=c"M;'XpM7' Xp M7 " Xp M7 Xy

We write

~—2 -2 _ ~-2 ~k—2 ~x—2
o, —o0,"=0;,"—0;, “+0;

—2 | =2 )
-0, +to;"—0;7,

*—

~x2 _ 2 =2 _ 2 PN, B R
where 07 = 32, ,; wiyu; and o7 = 35, 4, wi;os. We first drop 0;~ —o; "1 it is of smaller

1

order in probability. Then we expand ;2 about @; > and 7, 2 about o; * to the third

term, so that



G I e (= B =t LR e =
1 7 7
72_o2 72_o2 9,52 g2
Tl = o {5 - B T ()T

i i

Then let w} and @W; be the first two terms in the respective expansions, and
n n n
Xy =023 zao7? + 072w (wf + @) 5 Xp =072yl (W] +@).
i=1 i=1 i=1
Then let T** be the corresponding truncation of 7™ with X3 and X7, replacing Xy

and Xp, and let Rj* be the grand remainder that includes R} as well as the remainders

from replacing Xy and Xp by X3 and X7,.
4.2 Asymptotic Moments of T

In this section we compute approximations to the first two moments' of 7%*. Let
MSE(h) denote n times the asymptotic mean squared error of B, ie. MSE(h) =
E[T**?]. Then

MSE(h) ~ 14 {O(h*) + O(n~*h~ )},

where the term in curly brackets we call the second order effect. The order of magni-
tude of the second order effect is minimised by setting h so that h* ~ n=th=% which
requires h(n) = O(n™™), where 7 = 1/(P+4), and results in MSE = 1+0O(n"?*) (in
fact, E[T*] = O(n"Y%) and Var[T*] = 1 + O(n~2#)), where u = 2/(P + 4) (when
P=1,7=1/5and u = 2/5). The second order effect on MSE is then O(n™2"), is
dominated by variance, and is strictly larger than the O(n~1) effect typically found
in parametric models — see Rothenberg (1984b).

1These are uniformly bounded under moment conditions on &;, see Linton (1993).



PROPOSITION 1A. When h = O(n™™), R} = op(n~**). Furthermore, E[T*] =
O(n='2) and

Var[T*] =1+ h*B+n" 'RV 4 o(n™2"), (7)
where

CTMgl[PQ — Fan’lfl]Mn’lc
c'M-te

TAr—1nr* -1
MMM e
IMe

B = ; V= (K5 + 2+ Ky)

where My; = n=' Y wwl o) % pi, with p; = nh' 3 wl = O(1) uniformly in i, while
'y = T1(0?) and Ty = Dy(02), where for any function g, T1(g) = n* X", z2T B;(g)o; "
and Ty(g) = n 2 ", z2T B2(g)o;C | where

Bi(g) = [; wig(x;) — g(:)]/h? = O(1).

REMARK. The quantity ¢ M, *M*M, *c/cT M, ‘c depends on both the kernel k
and on the design. It is positive, and V > 0. Furthermore, B > 0 by the Cauchy-
Schwarz inequality. Therefore, the asymptotic (second order) variance of B is not
less than that of 3 — regardless of the error distribution. This contrasts with the
results obtained by Carroll, Wu, and Ruppert (1988) for parametric GLS estimators
in non-normal error situations. Their expansions indicate situations where a feasible

(parametric) GLS estimator can have a lower asymptotic variance than GLS.

REMARK. We interpret the moments of 7** as approximations to the moments
of T. When &; ~ N(0,1), then Sup,E[T?] < oo, and E[T? = E[T*?*] + o(n™*),
see Carroll and Hérdle (1989) and Rothenberg (1984b). However, when the original



statistic does not possess moments, it is desirable to establish slightly stronger reg-
ularity on the remainder terms than merely R = op(n2*). If, for some positive

constant 0,

Pr[n* log n|R;¥| > 8] = o(n™?"), (8)

then, following Sargan and Mikhail (1971) — see also Robinson (1988a) — the dis-
tribution of the truncated quantity agrees with that of the original statistic to order
n~2*. In this case, the asymptotic moments can be interpreted as the moments of
a random variable whose distribution is close to that of the original quantity — see
the discussion in Rothenberg (1984a) and Robinson (1988a). Condition (8) can be

established under smoothness and moment conditions, see Linton (1992,1993).

By further asymptotic approximation

_ P P 5202

Bi(o7) = ;geaém(%% (9)
where 6,5 are constants depending on the kernel — see the appendix for details. The
special case where the design is equally spaced on the unit interval provides especially

simple formulae. In this case, M is proportional to M,,. Furthermore, when the errors

are normal (and ¢ = 1),

Var(T™) ~ 1+ o (023, g — 2]+ —ay (k) (10)
ar ~ 4 aq n Y2 Mn nha2 s
where a;(k) = [#2k(t)dt and ay(k) = [ k(t)%dt, while v = n=' S0 220,425 (x,)

62 0.2
Ox?

and 7, = n ! Y7 o207

171

(7;)]?. The kernel constants can be evaluated for stan-

dard choices of k. For example, when k(t) = 3(1—¢*)I(|¢t| < 1), a; = 0.2 and ay = 0.6.
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When the errors are homoskedastic?, Var[T**] ~ 1+ 2n th lay(k), which suggests a
quite modest variance inflation in this case.

We now calculate the correction for some simple heteroskedastic regressions that
Carroll (1982) used in simulations. He examined the following design: y; = ¢; + €;0;,
i=1,2,..,n =60, where ¢; = 3y + f1z; with z; equally spaced® on (—1/2,1/2), while

¢; were iid N(0,1). Three models for the variance were considered:
(M1) 02 = &; + 6207

(M2) 0 = b1exp[ba|d]]

(M3) 0; = drexp[8267],

where F; = 50 and 3; = 60 throughout, and: (6; = 100, 6, = 0.25), (6; = 0.25,62 =
0.04), and (6 = 0.25,6, = 1/3200) in (M1), (M2), and (M3) respectively, while
k(t) = 2(1 — |¢))?I(|t| < 1) and h = 0.13. We focus on ;. Figures 1-3 show the
relationship, predicted from (7), between Var[T**] and bandwidth for the Carroll
designs (M1-M3). Our approximations predict a percentage variance inflation of 23%
in each case? relative to the variance of 3, at the Carroll bandwidth h = 0.13 — i.e.
Var[B,] should be 162.6, 0.878, and 0.10 in M1-3 respectively. Carroll (1982) gives
(in his Table 1) 144.46, 0.8034, and 0.0888 respectively from 500 replications. We
were puzzled by the discrepancy and carried out a simulation experiment on model 1.
We found, from 10,000 replications®, the monte carlo variance of Bl to be 181.39 and

of B, to be® 133.69. These numbers are in closer agreement with our second order

20r if the nonparametric estimates are undersmoothed — i.e. hAn™ — 0.

3Carroll actually chose a random design with x; uniformly distributed on (—1/2,1/2).

4For the given parameters, B is very small.

5The different results obtained by Carroll may be largely explained by the small number of

replications he used.
6We also investigated the OLS estimator and found its monte carlo variance to be 172.03 which

agees quite closely with the 172.07 reported in Carroll’s Table 1.
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theory, although (10) apparently understates” the true variance of B, a bit.
4.8 Comparison with T'

Using the same method as in section 4.1, we obtain a stochastic expansion for

T'. Let T"™* be the truncated version of T”; then T"** is identical to T** except that
2

52 — 02 is replaced by 2 — 2. Therefore, h = O(n~™) is optimal for /3 too, and

PROPOSITION 1B. Let h = O(n™™). Then E[T"™*] = O(n="/?) and

Var[T™*] =1+ h*B +nh™ PV + o(n™2), (11)

where B' is the same as B, except that B;(g), where g(z;) = E[y?] = o(x;)+ T 22T 3,

replaces B;(c?).

It may appear that ﬁ dominates ﬁ, since o2

1

imposes the parametric restriction on
the mean function that 2 ignores. However, our second order approximations do
not completely support this argument. In the appendix we obtain the asymptotic

approximation

where the O(1) quantity ¥ depends only on the kernel and on 8. Therefore, I'1(g) ~
[1+A; and Ty(g) =~ Ta+As+2A3, where Ay = In 2 S walor ™t Ay = 920t 0wl ",

7

and Az = 9n 'S 22T Bi(0?)o;°. Combining, we obtain

“This may be due to the fact that our approximations relate to a local linear estimator, while we,
in replicating the Carroll study, chose a Nadaraya-Watson estimator. In this case, boundary effects

- see Linton (1991) - may be causing additional variation.
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Tao(g) —T1(9)M;'T1(g9) ~ Ty — T M 'Ty + Ay — AL M YA+ 2A3 — 20, M.

Now, by the Cauchy-Schwarz inequality, Ay — A M 1A, > 0. Therefore, if

Az — A M;T, >0, (12)

then, asymptotically, E[T"**?] > E[T**]. In the special case that o%(z) is a convex
quadratic function of z, and hence B;(c?) ~ § > 0, (12) holds by the Cauchy-Schwarz
inequality. In general, however, it is possible that A3 — A;M T} < 0, and even
E[T™*?] < E[T*2].

Although we cannot uniformly rank the two estimators, the tendency would appear

to be in favour of B
4.4. Asymptotic moments of S and W

Robinson (1989), Andrews (1989b) and Stoker (1989) establish the consistency
of standard errors and test statistics in semiparametric situations. However, little is
known about their small sample properties. Chesher and Jewitt (1987) and Chesher
(1989) have shown that robust standard errors and test statistics based on them can
have finite sample properties quite different from their limiting behavior. We suspect
the usual asymptotic approximations may be even worse for the semiparametric stan-
dard errors and test statistics. Furthermore, the numerical value of standard errors
and test statistics can vary considerably with bandwidth. Therefore, it is important
to take account of the second order effects when designing testing procedures for
empirical work.

In the sequel, we restrict attention to standard errors and test statistics derived

from 2. Assuming that Xp = Op(1), we have

13



~ T n]?[{lf]VI;lc 3[cT n]?[{lf]w;lc2 —
\/ﬁ(s - 8) = [ \g[_cg“]nglc]l/Q )] - [ 4$_EECTJM’”—1€]3/2)] + OP(n 1)

\/ﬁ(ﬂfl . Mfl) _ —Mn’lXDMn*l 4 NI{lXDA%lXlegl + Op(nfl)'

Let S** be the Op(n™!) truncation

AIMIAX M e TMIIXEMIIXEM e 3[e! M7 XM )

S** [
2cT M, 1e 2y/ncT M, 1c 4\/nlcT M, 1c]?

with X} replacing Xp. Then S** has mean O(y/nh?) + O(n~Y2h=F) and variance
O(1) + O(h?) + O(n~'h~T). Therefore, the squared bias dominates the correction to
E[S**?], and can be exceptionally large to the extent that s is not y/n consistent for
any bandwidth, unless® P = 1, although it will be consistent for any dimension.

The bandwidth that minimises E[S**?] sets h* ~ n 'h™F; it is h(n) = O(n™™ ),
where % = 1/(P+2), which is narrower than O(n~"). In this case, E[S**] = O(n™""),
where p* = (2 — P)/(4 + 2P) (when P = 1, 7* = 1/3 and pu* = 1/6). Clearly, the

second order effects are larger for s than for ﬁ and 3.

80r unless a bias reduction technique, such as higher order kernels (Robinson (1988b)), higher
order polynomial regression (Fan (1992)), or the multiplicative bias correction method of Linton and

Nielsen (1994), is used.
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PROPOSITION 2. Let h=0O(n"™ ). Then

M T M, e
2c"M-1e

MMM e
2c"M1c

E[S$**] = h*\/n n V2P (kg 4 2) +o(n™*") (13)

and Var[S*] = O(1) 4+ o(n=%").

REMARK: When P > 1, this proposition still applies, although it may be prefer-
able to express the results for § itself, which is Op(1), rather than S. The ex-

pansion argument has to be suitably modified — i.e. a different normalization for

n~ 13" x2T (672 — 07 ?) should be used, such as h—2, instead of \/n.

7

The first term in (13) has the same sign as B;(0?) — under homoskedasticity it is
zero. The second quantity is negative and depends on the error kurtosis, on a design
effect, and on the number of nuisance parameters (nh’’) used up. Either term could
dominate, and the standard error could be? an upward or downward biased estimate
of s. We suspect that a downward bias is quite frequent in applications — except in
cases of extreme curvature or when a very large bandwidth is used, the second term
in (13) should dominate.

We now turn to the behavior of the test statistic W. The large biases in the stan-
dard error can adversely affect the test statistic, especially when the same bandwidth

of order n~™ is used to estimate both 8 and s. Since n='/2S = Op(h?), we have

TS
= 71/2 71 — _———— /72}1/ .
W =T{l1+n "/=S} T \/H—FOP(W )

Substituting 7' = T** + Op(n™2*) and S = S** + Op(n~%"), we obtain

9Note that from (7), s itself provides an underestimate of the sampling variability of 3

15



X5 M1X3 _ X3NS5
Vn vn
Then, using the fact that Cov{ X}, n Y2X 5 E[S**]} = O(h?), the second order effect

W=s"te"M; X5 — } 4+ Op(n™2) = W* + Op(n™).

on the variance of W is of order n=*. This is considerably larger than in (7) and (11).

PROPOSITION 3A. Let a single bandwidth h = O(n~™) be used in estimating 3 and
s. Then E[W*] = O(n~Y%) and

2 M T M, e

TN[—1
ctM;te

Var[W*] =1 - +o(n™"), (14)

Therefore, when the curvature of o%(e) is large and positive, the first order theory
overestimates the variability of the Wald statistic because it neglects the upward bias
in 5. In this case, we get under-rejection when the null hypothesis is true.

These approximations suggest it may be advantageous to use different bandwidths
for the estimator and its standard error. Let hy = O(n™™) be used to construct 3 and
let the narrower bandwidth hy = O(n™™" ) be used for 8. The behavior of the standard
error still dominates, although an improved rate is obtained. In this case, the second

order effect on E[W**]is O(n "), where p** = 1/(P +2) (when P =1, u** = 1/3).

PROPOSITION 3B. Let hy = O(n™™) be used to construct § and let hy = O(n™™")
be used for s. Then

TMT M, e
"M te

T -1 * -1
MMM e
"M e

Var[W] = 1-h2° 7 g (kg +2) Fo(n~2"). (15)
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Under homoskedasticity, the second term in (15) dominates and the test statistic
tends to over-reject under the null. When the design is equally spaced on the unit
interval and the errors are normally distributed, Var[W**] ~ 1 + 2asn~*hy*, under

homoskedasticity.

5. SECOND ORDER OPTIMALITY AND BANDWIDTH CHOICE

In this section we consider second order optimal estimation of 5. We restrict atten-
tion to the class of semiparametric GLS estimators based on a local linear estimator
52(x) of the variance function with bandwidths of the form yn=", for v > 0.

The optimal value'® of v can be found by calculus to be

Yo = [PV /4B 4+, (16)

and at this bandwidth,

E[T*] = 1+ n~2{[P/4)YO+F) 4 [4) PJF/HEN Y/ AP gP/A+E) (17)

Since B and V depend on o?(e), we cannot calculate vy when the regression func-

tions are unknown. However, we can estimate these quantities by

TAT—1A7+«A7—1
c Mn MnMn c

TAf-1
ct'M e

MY Dy — Dy M M e

TAf-1
ctM; e

B\:

; 17:(R§+2+E4)

Y

10The optimal bandwidth for estimating 3 differs from the optimal bandwidth for estimating o2 (z),
although the difference is at the level of constants. The optimal bandwidths and MSE corrections
are of the same order of magnitude in both estimation problems. Also the quadratic kernel is optimal

for both estimation problems — see Miiller (1988).
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where k3 and k4 are the sample third and fourth cumulants respectively, M) =
—1xwm T~—2 ™ _ . —-1xwm TR ~—4 . —1lxwm T R2~—6
n Yt xx; o, pi, Iy =nT Y0 xx; Bio; T, and 'y =n~" 300z Bro; ”, where

B, is an estimate of B;(02). One then plugs V and B into (16). We suggest two
different estimators of B;(0?). Firstly,

Bi(6°) = [3_ wi(h*)5} — 57]/n*, (18)
JF

in which h* — 0 is any bandwidth sequence and 67 is a preliminary estimate of o*(z;).
Note that one may need to use bias reduction methods to estimate 67 in order to
achieve consistent estimation of B;(02). An alternative approach is to replace B;(0?)
by its limit (9), and then to estimate the relevant derivatives either by higher order
local polynomial regression as discussed in Linton (1993) or by the series method dis-
cussed in Andrews (1991a). Under smoothness and moment conditions, the resulting
estimator Jy will consistently estimate vy, and 3(h), where h = Jgn/*) | should
achieve the optimal second moment bound (17) — as shown in Linton (1993) for a
related example.

The plug-in method constitutes an alternative to the cross-validation scheme con-
sidered in Robinson (1991a). Although it is not fully automatic — estimating V
and Brequires selection of a preliminary bandwidth — evidence presented in Park
and Marron (1990) and Sheather and Jones (1991) suggests that the final estimate
may be little affected by the preliminary choice of bandwidth. The so-called rule of
thumb approach, see Silverman (1986), offers an alternative plug-in implementation
that does not require a preliminary bandwidth to be chosen. In this approach one
specifies, for the purposes of bandwidth choice only, a parametric model for o2(e)
such as making it a quadratic function of x. Parametric procedures are then used
to get a preliminary fit 52 and derivatives thereof which are then plugged into (9).

This method achieves the more modest objective of being second order optimal for
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the particular model chosen for o(e), although the correct order of magnitude for &

is guaranteed for all o%(e).

6. SIMULATIONS

We generated 5000 samples of size n =100 from

(MC2) 02 = 0.0592 — 0.229z; + 0.0025422,

where e; were independent standard normals. The chosen parameters were those
estimated (by least squares) from the household survey dataset analyzed in Anand,
Harris and Linton (1993) in which y is food share and z is the log of total expenditure
per capita. The full dataset contained 7465 observations; we retained the 100 per-
centiles of a’s distribution as our design. Figure 4 plots o?(x), while Figure 5 shows
the design density estimated by a standard kernel procedure. We implemented the
local linear procedure in rank space, i.e. the dataset was ordered by x, and the non-
parametric regressions were estimated using i/n in place of z; in (4). A normal kernel
k(t) = (2m)~1/2 exp(—0.5t?) was used throughout. The approximations of Proposition
1A are still valid for our implementation.

Firstly, we investigate how the semiparametric GLS estimator performed at a grid
of bandwidths: h =0.05, 0.1,.., 1.0. Figures 6 and 7 show the simulation variance
of B compared with the asymptotic approximations predicted from (7) and with the

exact, variance of the OLS estimators. Although poor for large or small bandwidths,
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the asymptotic approximations are excellent for a range of bandwidths located close
to the optimum. Also note that up to a 25% efficiency gain over OLS is possible
for these bandwidths. These simulations emphasize the importance of bandwidth
selection, which we now turn to.

Taking as preliminary bandwidth h* = 0.3, we first obtained estimates 52(h*)
and hence (18). The variance constant in this case was estimated by V=2 DY
nh*w;(h*). Although different bandwidths were estimated for constant and infé;—
cept, their simulation distribution was quite similar; we show only our results for the
constant. The estimated bandwidth is highly concentrated near the true optimum.
We point out that h is local ancillary for 3, see Cox (1980). Therefore, it is recom-

mended to conduct inference about J conditional on the estimated bandwidth. Thus,

one can read off the performance of B from Figure 6.

7. CONCLUSIONS

The semiparametric estimators we examined, while first order efficient, are in-
finitely deficient, not only when compared with GLS but even when compared with
feasible GLS estimators based on a correct finite dimensional parametric model for
o?(e), in the sense that the increase of asymptotic MSE (over GLS) that such a strat-
egy entails is O(n=%/+7 )) when an approximately optimal bandwidth is used, while
for parametric estimators the small sample cost is O(n™1).

However, the preliminary calculations we have done for some common variance
models suggests that the cost of using this method for one-dimensional problems —
such as when the variance depends only on the mean of the dependent variable —
may not be great unless extreme heteroskedasticity is present, and provided certain
precautions are taken. In particular, a large enough bandwidth should be chosen so

that the degrees of freedom term in (7) is not too large.
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The standard error estimates are likely to be severely downward biased in small

samples which can also adversely affect the ¢t-ratios. We recommend using different

bandwidths for estimating 3 and s.

Finally, we have proposed a method of bandwidth selection which should be second

order optimal, and which appears to fare well in practice.

APPENDIX

The appendix is divided into four sub-sections. In part 1 we derive properties of
52 and 2 which are useful in establishing the main results. In section 2 we obtain
expansions for the standardised sums Xy and X, that determine the standardised

quantities T', S, and W. In section 3 we derive the main expansions, while in section

4 we discuss the remainder terms.

Al. PROPERTIES OF NONPARAMETRIC ESTIMATORS

(1) We first consider the properties of 7. We have

i —of =[0; =0 + 677 7] + [0] — of] =P + Vi + B, (19)
where 72 = Dk wiju? and 77 = Dt wija?. In particular, V; = 37, wij(u? -

03). Note that B; = h2B;. The kernel weights w,; satisfy:

(a) Card{j: w;; #0} = O(nh")

(b) w;; < xn th=F
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for some x < oo, where the order of magnitude in (a) is uniform over i, see Linton
(1993). Therefore, V; = Op(n~Y2h=F/2). In section 4 we verify that P, = op(n~*),
when h = O(n~"). Therefore,

5} —of =Vi+ Bi+op(n"),

where Var[Vi] = n 'h P (k4 + 2)o} (nh? 2, ; w?;), while B; = h2B;.
We now further approximate B;.Let 7* = (ZTK;Z;) 'ZTK;(u2,..,u2)T be the

(infeasible) local linear estimator of 7, = (0%(;), 802 /0241, .., 00 /Ox;p)". Then,
E[7 =7 = (Z] KiZ;) ' Z] Ki[o® — Z['7),

where 0% = (0%(z1), ..,0%(x,))T. Then we use a Taylor series approximation:

P 82 0.2

P axlaaxw ('I]oz xioc)(mjﬁ - xié)

2 1 &
o*(z;) — TZ”rvzz
5=1

in a neighborhood of z;. Let

Q; =Limn h TH- 1ZTKZH 1

n—oo

S =Limn 'h PH 1 ZTK;[(Bertia)(fetis) | (fnatia)(nsLis)|T

n—00 h h

where H = diag{1,h,..,h} is a P+ 1 dimensional diagonal matrix, and let 0,5 be the
first element of the P by 1 vector §2; 'w$?/2; asymptotically this quantity does not
depend on 7. Then

5202

8$m8$,5

ZZ o B

6=1 a=

see Fan and Gijbels (1992), Fan (1992, Theorem 1) and Ruppert and Wand (1992,

(),

Theorem 4.2). These approximations are valid for any fixed point x;. For boundary
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sequences, i.e. for z,; — 0T, where 97 is the topological boundary of T, we still get

B,,i(6?) = O(1) — see Ruppert and Wand (1992). .

(2) We now consider 77, where
G; — 07 = [Vai + Bai] — [Vii + Byi][26" x; + Bui + Vi,

with Vi; = Y, wijuj, By = Yjwif x; — e, Vai = Y, wiv; and By =
Y4 wizg(x;) — g(2;), where v; = y? — g(z;), with g(z) = 0*(x) + 87zz” 3. Note that
Ba; = O(h?) and Vi, Vay, = Op(n~Y2h=F/2) while By; = o(h?); therefore, By; can be
dropped. Furthermore, Vo; — 237 2;V1; = 32, wij(u3 — 07) + op(n~*). Therefore,

52 012 = By + Vi +op(n*),

where Var[5?] = Var[V;] and E[6?] — 62 ~ By;. Furthermore, By; = h?By;, where

N P P 924> N P P
By =~ Z Z Oas =——(;) = Bi(c?) + Z Z 006 Bas-

iSlami 0Oy 5=1 a=1

A2. PROPERTIES OF STANDARDIZED SUMS

T, S, and W all depend only on the standardised quantities, Xy = n~ Y237 | 2;u,6; >

i 7

and Xp = n~2Y" 22l (6,2 — 0;%), while 7" depends only on similar quantities

%

with &2 replacing 52. Firstly, write

XN:X;[—FPN—FRN; XD:XB—FPD—FRD,

where

Xy = Xwo—n 25l au {07 B — 07 B2 + 7V, - 7,0V

— —1/2 g Tf 4 62 | =4 ——67/2
Xp = —nPYL {‘71‘ By —0,°B; +0;"V; = 0; ‘/z}
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with Xyo = n V25" | w072, while: Py = n~ 2" 2u;(67% — 6772), Pp
n~V25 2l (677 — 6772), and

RN = _1/2 Zz 1 LiU; {O’ O' 2B3 76/\* 2‘/3} = RNB + RNV

Rp=—n2 50 aal {07% B} + 579677V} = Rps + Rov.

We establish in section 4 below that

(Rl) RN = 0p(7l72“)

(R2) n™Y2Rp = op(n~2)

(Rg) PN,n_l/QPD = O]D(?’L_Q’u)7

provided h(n) = O(n~"). Therefore, collecting terms,
XN = Xyo— Ly1+ Lyas+ Lys — Qn1 + Qnz + Oyt + op(n™2)
XDn’l/Q = —nfl/QXDO — nil/QbDl + nfl/Qng + nfl/Qng + Op(WfQ“),

Y

where, letting (; = (—;? -1

Xpo=n"125" 2,275, *V; = Op(1)

bpr =n~ 25"zl o, By = O(\/nh?)
b = n V2SI 2l T OBVE) = O(dir)
bps =n V25" walor B2 = O(\/nh?)
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Ly1 =n"Y25" w0, By = Op(h?)
LN2 = n_1/2 Z:'Lzl xzuﬁ;GE[Vf] = Op(n_lh_P)
Lys = n—1/2 Z?:l IZUZO'Z_6B22 = Op(h4)
Qni=n" 250 pule; Wi =n 20 D it wijarﬁf‘laf»uiéj = Op(n 127112
Qnz =020 Y i, “ojwiiu (G — E[GF]) = Op(n™'h7F)
Cyvi=n'230, 3% wijwikxiE;GU?O-I%uiCjCk =Op(n 'hT)
k#j#i
because n~V2Y " 2275 9(V2 — E[V?]) = Op(n~th~r). n
We now establish the properties of X3 and X7j,.

LEMMA 1: XNO = Op(l), XDO = Op(l)
The properties of X ¢ are obvious. By interchanging summations we obtain

n

Xpo=n 7% Y wyza]a; H(uf —oF) = n Y,
i=1 j£i J#i

where a; = Y7 wyz;zle; 0% = O(1), since ; lies in a bounded set. .

LEMMA 2: As n— oo,
bDl = h2\/ﬁn71 Z.TZ.TZTO';ZLBZ == O(hQ\/ﬁ)
=1

Follows by substituting the approximation for B; into the formula for bpy. "

LEMMA 3: As n— oo,

Var[Lyi) = h*n! inxiTU;GEiQ = O(h%).

i=1

LEMMA 4: As n— oo,
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VarlQua) ~ [ +2 4 sn 1Yl 23 ) = O(n 7).

i=1 i
By interchanging summations, we obtain Qn; = n~ Y2 Y% | xu,5; *V; ZZ i€
wijxﬁi—‘laiaj?. Therefore, Var[Qn1] :Z; kglz pwpﬂE[eZCJele].
jF#i, k£l
But E[e;(;¢re;] = 0, unless either i = [ and j = k, in which case it is k4 + 2, or 1 = k

where p;; = n1/?

and j = [, in which case it is k2. Therefore,
VarlQni] = (ka+2) D) pipi; + 55 DD pisPy
ji J#i
1,2 .. T=—8 1,02 0o T =2

where p,»jp” =N WjTT; 0, o? Then by Taylor expansion, p;; p” RN WHTT 0 R

pi;PL;; and the result follows. .

LEMMA 5: As n— oo,

bpa = V/n(ky +2)n 1Zxxa Zw?j):O(nfl/zh*P).

JF
Replace 77 % by 07° and E[V?] by (k4 + 2)0} X2 w?, and the result follows. n

’Lj’
A3. MAIN EXPANSIONS

PROOF OF PROPOSITION 1A,B

The proof of this theorem relies on Lemmas 1-5 above and the proof of (R1)-(R3)
which is given in section 4 below.

Using the calculations of section A2, we can drop a number of terms and find that

L .M X o

T* = s "My H{ X o — [Lvt — M] + [L2 — M] +[Lng = _m\;_n—]
—Qn1 + Qn2 +Cpy1 — Xy Xnvo ]V\[/— XNO} + op(n= ).
(20)
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T r—1
The correlation between X2o X80 504 the Xy is O(n1). The quadratic and cubic

un
T asr—1
terms (Qn1, @n2, Cn1) are uncorrelated with X yo; the same goes for Ly, — W‘#,

vL My X o bLa My X o

Lo — e, and Lys — e For example,

bl Mn_lXNO 1 _

MT] = E[XnoLji] - %b&Mn B[ XnoX 7o),
where E[XwoLj] = n™' S zaf 07 B, = —=bpr and E[XnoXge| = M, — the
moments cancel as required. Therefore, we have to calculate

CO/U[XN(), LNl —

b%an_lXNo

NG

Var[Xyo| + Var[Ly; — |+ Var[@Qn1],

and the result follows from Lemmas 1-5.
The asymptotic variance of T” is the same as that of T, except that we must

replace B; by B;(g). n

PROOF OF PROPOSITION 2
When h = O(n™™), Xp = —Xpo — bp1 + bps + op(n™""). Therefore,

TALX ML M bryy — bpo| ML * *
S: - - 25’?0 = - + ° - [ D1282 DQ] & < +OP(n7M ) = SO_‘_bS—I_OP(niM )

: ~ p—1/2 51 T —2 Ta7-1 1. p-l/250 2
Since Xpg ~ n~ V2" |zl o 2¢, wehave ¢! M X poMte &~ n~ /2 " m2(;, where

m; = ¢ M z;0;7 . Therefore,

oy (K4 +2) n71Y0 ml o v CTMZYbpy — bpo| M e e
Var[S*™] = 1 )(nl ani m?)—i-o(n ) EB[S™] = [ 552 ] +o(n™"),
and (13) follows on substituting from Lemmas 2 and 5. =

PROOF OF PROPOSITION 3A,B
Using S = Sp+bs+Op(n~*), from above, we have to calculate the second moments

of
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b%an_lXNo
Vn

Xwnob
]+QN1_M}1

S_ICTMn_l{XNO + [LNI — \/ﬁ

XEoM7 ' Xno | XnoSo

since Cov[X no, NG + =] = O(n™1'). However,

Xnobg QCTMflflelc kg +2c MMM e
Cov|Xng, ———| = Var|X h L 2 R___R R . (21
ov[Xno, vn ) ar[Xnol{ 2c"M-1te nh? 2" M- 1te b (21)

Therefore, when the same bandwidth is used throughout, the dominant term in (21)

is the first one. When different bandwidths are used, we obtain variance terms of
order k% and n~'h7" from 3, and variance terms of order h2 and nthy" from 3.
Therefore, when the stated bandwidths are used

TMAIAT I M e kg +2c" MMM e

c
Var[W*]=1-h3
ar W] 2 ITM;lc nh¥ cI'M; e

+o(n ),

as required. "

A4. REMAINDER TERMS

We now sketch the proof of (Ry), (Rz), and (R3). The basic arguments are very
similar to those contained in Robinson (1987), but are somewhat simplified by our
fixed design set up. We omit much detail, and merely remark that a large number
of moments may be required to formally verify many of the orders of probability
statements.

We first examine P;. We have P, = PZA — 2PZB , Where
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_ Tx\_1XTuul Tx\_ _
P =nmt s wilay (55) T A2 (A5 ) T ay] = Op(n ),

1

T T'lL — _
PP =n 1Py wyua] (S55) 1A = Op(n thF1?),

where u = (uy,uy, ..,u,)T and X = (21,2, ..,7,)T. Therefore, P, = op(n ) uni-
formly in 4, and by slight extension, (R3) is satisfied — see below and Robinson
(1987) for details.

(R1) and (R2) follow by Taylor expansion. The results for Ryp and Rpp follow
by straightforward calculation. We examine Rpy which it is convenient to expand by
one more term

nV?Ryp = —n""Y 2] 58V 407t Y malE, S5V

i=1 i=1
where
V3= wajE[u?] + Zw%(ug — E[U?]) + .+ ZZZ Wy Wik Wi W Ug Uy

i i Gl
is Op(n=32h=3F/2) and n ' 0, 2,275, %V = Op(n=3/2h=3F/2). Furthermore, since
everything is positive

S w52V < [Min 53 [Maz Vi1,
= i<n i<n

where 6 is a finite constant, and [Min 573~ = Op(1) by Robinson (1987) Lemma 13,
while Mazx [Vi| = Op(n=#=9) for any 6 > 0 by application of Miiller and Stadtmiiller
(1987) Lemma 5.2.

Similar methods work for Ryy . "
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