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1 Introduction and summary

Transport phenomena are a pivotal subject in modern quantum field theories. Similar to
external electromagnetic fields, (effective) background gravitational fields are intriguing
sources to generate various currents. First, the most widely well-known example is fluid
vorticity; the fluid velocity can be described by a metric tensor of the comoving frame with
fluid. The corresponding transport phenomenon, i.e., the chiral vortical effect (CVE) [1]
can be regarded as the gravitational counterpart of the chiral magnetic effect (CME) [2–4],
as is clear from the gravitoelectromagnetism [5]. The CVE is not only a theoretically
interesting phenomenon in the sense that it is originated from quantum anomaly [5, 6],
but also an important experimental probe to study the rotation of quark-gluon plasmas
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created in relativistic heavy-ion collision experiments [7]. Second, the mechanical strain
plays a role of an effective U(1) or axial U(1) magnetic field, and accordingly yields a charge
current [8–10]. Third, spacetime torsion is recently under active investigation, as it can
bring novel currents, which are referred to as the chiral torsional effect [11–16].

In contrast to the aforementioned effects from the spacetime geometry, we do not fully
understand the effect of the gravitational Riemann curvature in the quantum transport
theory. Even at the classical level, however, its importance has been known; the trajectory
of a spinning particle is modified by the Riemann curvature [17–19]. In the context of
quantum transport theory, this knowledge suggests that the Riemann curvature can be
the trigger of a characteristic transport of the fermion chirality (or spin, more generally).
In cosmological systems, such spacetime distortions may become dominant contributions
to determine the fermionic transport rather than background electromagnetic fields. In
laboratory environments, a fluid motion and temperature gradient can be described by
effective gravities leading to non-vanishing Riemann curvatures. Therefore, the curvature-
induced transport phenomena could be relevant in a wide range of physics from table-top
experiments to the Universe.

For the nonequilibrium dynamics in the weak interaction regime, one of the promis-
ing theoretical implements would be the kinetic theory. In particular, the so-called chiral
kinetic theory (CKT) [20, 21], which nicely reproduces the chiral anomaly, plays a piv-
otal role in the development of various studies of the chiral transport phenomena [22–
36] in the context of heavy-ion collision, condensed matter and neutrino physics; al-
though the kinetic theory is inapplicable to strongly-coupled quark-gluon plasmas, the
early stage of heavy-ion collisions is described well by the Boltzmann transport theory [37–
39]. The CKT conventionally involves only the leading order quantum correction so that
the anomalous aspects can be taken into account as the Berry curvature. However, the
leading order CKT is insufficient to capture the gravitational curvature contributions to
the transport coefficients, although the kinetic equation involves the spin-curvature cou-
pling [34]. As is readily expected, higher-order corrections make the theory much more
complicated, and an intuitive deduction would not avail. This fact can be found from
the equilibrium distribution function. The O(~) contribution to enter the distribution
is anticipated to be the spin-vorticity coupling, if we recall the conservation of the total
angular momentum [26]. On the other hand, this intuition is inapplicable to the O(~2)
contribution, particularly, under a background gravitational field, as it is nontrivial to
identify how the total angular momentum is modified at this order. Unlike the effec-
tive formalisms that relied on the Berry curvature, the derivation from quantum field
theory works well against such a complication. In this case, the semiclassical (or weak
coupling) dynamics is described by the Wigner transformation of the fermion propaga-
tor, which is a quantum-extended quantity of the classical distribution function. The
Wigner function approach systematically involves quantum corrections appearing in the
CKT, and definitely keeps the covariance of the fundamental theory [27] even in the
general coordinate system [34]. In this paper, thus we study the semiclassical trans-
port theory with gravitational Riemann curvatures, based on the CKT derived with the
Wigner function.
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In the following, we present a summary of the findings in this paper. First, we solve the
collisionless CKT in general coordinate and derive the Wigner function of Weyl fermions
up to O(~2). This is a contrast to the conventional works, where only the O(~) quantum
correction is taken into account. It is intriguing that the CKT in curved spacetime is
systematically solvable even with the O(~2) contributions, while the O(~2) electromagnetic
effect is not so tamable; the theory suffers from severe infrared divergence, for which so far
no correct prescription is found.

The analysis of the higher-order quantum corrections reveals new aspects of the am-
biguity underlying the CKT. It is well-known that due to degrees of freedom in terms
of the Lorentz frame, the distribution function of chiral fermions cannot be uniquely de-
termined [25]. As a result, a frame vector representing such an ambiguity is inevitably
introduced [26]. From the Wigner function up to O(~2), we find that on top of the con-
ventional frame vector, there emerges a different frame vector to define the distribution
function. These extra degrees of freedom should be irrelevant to the Wigner function and
thus physical quantities, as so is the conventional one. This is one of the guiding principles
to identify an equilibrium distribution function. Indeed we find that there is no equilibrium
solution for the kinetic equation in general curved spacetime. In other words, in general,
the O(~2) CKT under gravity does not reach a global equilibrium without collisions. How-
ever, we elucidate that an equilibrium solution is admitted for several gravitational fields,
such as the stationary weak one.

The remaining parts are devoted to the evaluation of physical quantities from the
Wigner function that we derived before. For instance, the charge current and energy-
momentum tensor are given by the momentum integrals, as follows:

Jµ(x) = 2
∫
p
Rµ(x, p) , Tµν(x) = 2

∫
p
p(µRν)(x, p) +O(~3) (1.1)

with
∫
p :=

∫ d4p

(2π)4
√
−g(x)

and X(µY ν) = 1
2(XµY ν + Y µXν). Here Rµ(x, p) is the Wigner

function of the right-handed Weyl fermions. Under a static weak gravity, the O(~) part of
eq. (1.1) correctly reproduces the CVE. We find that under a time-dependent gravity, the
CVE totally vanishes in the dynamical limit of the background gravitational field. Although
this fact is originally derived with the diagrammatic computation [40], our calculation is
its first verification based on the CKT.

The O(~2) contribution of eq. (1.1) corresponds to the novel transport phenomena
induced by Riemann curvatures, which is also our main finding. They are represented as
the following charge current and energy-momentum tensor:

Jµ = C1j
µ , Tµν = C0t

µν . (1.2)

Here C0 = µ/(2π2) and C1 = µ2/(4π2) +T 2/12 are the metric-independent coefficients de-
termined by temperature T and chemical potential for right-handed fermions µ. Also jµ and
tµν are functions of Riemann curvature Rµνρσ, Ricci tensor Rµν and Ricci scalar R. In ta-
ble 1, we summarize the analytic forms of jµ and tµν . The ‘static’ (‘dynamical’) implies that
a time-independent (time-dependent) metric tensor is used. We denote ξµ = δµ0 and ηµν be-
ing the Minkowski metric tensor. It is demonstrated in appendix D that the same charge
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charge current C0j
µ energy-momentum tensor C1t

µν

static
jµ = 1

12R
µ
αξ

α − 1
24ξ

µR

+1
6ξ
µRαβξ

αξβ

tµν = − 1
12R

µν − 1
12Rξ

µξν + 1
24Rη

µν

−1
6R

α(µξν)ξα + 1
6R

αβξαξβ(4ξµξν − ηµν)

+1
6R

µανβξαξβ

dynamical jµ = 1
20R

µ
αξ

α − 1
40ξ

µR

tµν = − 1
12R

µν + 1
105Rξ

µξν + 13
840Rη

µν

+ 1
15R

α(µξν)ξα − 2
105R

αβξαξβξ
µξν

− 1
70R

αβξαξβη
µν + 1

30R
µανβξαξβ

Table 1. Transport phenomena induced by general weak gravity. The static and dynamical parts
are derived in eqs. (4.10) and (6.24), respectively.

charge current C0j
µ energy-momentum tensor C1t

µν

static j0 = ∇2T
6T̄ , ji = 1

12(∇× ω)i
t00 = ∇2T

6T̄ , t0i = −1
6(∇× ω)i ,

tij = − 1
12T̄ (∂i∂j + ηij∇2)T

dynamical j0 = 0 , ji = 1
20(∇× ω)i

t00 = 0 , t0i = − 1
20(∇× ω)i ,

tij = 1
20T̄ (∂i∂j + ηij∇2)T + 1

20∂0σ
ij

Table 2. Transport phenomena induced by weak fluid vorticity and temperature gradient. The
static and dynamical parts are derived in eqs. (7.4) and (7.5), respectively.

current under a static gravity is also derived from different field-theoretical approaches.
This consistency apparently guarantees the validity of our formalism in this paper.

The fermionic system under a background fluid is a pedagogical and informative envi-
ronment to demonstrate the aforementioned novel phenomena. In general the fluid effect
is translated into an effective curved spacetime described by the following metric tensor:

g00 = 1 + h00(t,x) , g0i = h0i(t,x) , gij = ηij , (1.3)

where hµν is the fluctuation around the flat spacetime. With this metric, temperature
gradient and vorticity are given by

∂iT/T̄ = −1
2∂ih00 , ωi = −1

2ε
0ijk∂jhk0 . (1.4)

Applying eq. (1.3) to jµ and tµν in table 1, we get the transport phenomena induced by
temperature gradient or the inhomogeneity of vorticity. The results are summarized in
table 2. Here we define the shear tensor as σij = εij − 1

3η
ijεk

k with εij = ∂(ihj)0.
There are two crucial features of the novel transport phenomena induced by gravity

(or equivalently inhomogeneous fluid profiles). One is that even if the collisionless kinetic
equation holds, these transport phenomena are induced, as so are the CME and CVE.
Therefore these do not generate any entropy, and thus be nondissipative. This fact moti-
vates us to analyze the relation of tables 1 and 2 to the quantum anomaly, from different

– 4 –



J
H
E
P
0
5
(
2
0
2
1
)
0
2
3

approaches, such as hydrodynamics. This is an interesting open question that will be re-
visited in the future. The other is the antiparallel flows of the charge current ji and energy
current t0i. Tables 1 and 2 for µ > 0 show the coefficients of these currents have opposite
signs whether the metric is static or dynamical and whatever the metric tensor is. This
is never explained by the classical particle motions; both charge and energy are carried
along the classical particle momenta. The essential ingredient of the antiparallel flow is
the spin-Riemann-curvature coupling. To find a more intuitive explanation of such curious
flows is also a fascinating task.

In these respects, the novel gravity-induced transport phenomena should involve a lot
of implications, e.g., in heavy-ion collisions or Dirac/Weyl semimetals (some of them are
discussed in this paper). The latter systems may provide a good playground to study our
novel phenomena and can be complementary environments to the former. For them, we
need more detailed analysis based on the hydrodynamic model calculation, and quantitative
comparison between theory and experiments. Besides, the CKT in curved spacetime and
the resulting curvature-induced transport phenomena could play a more crucial role under
genuine gravity, although we do not discuss it in this paper. For example, we can discuss
the geodesics deviation of chiral fermions due to the spin-curvature coupling. Such a
deviation may lead to some correction to the gravitational lensing of neutrinos [41]. Also,
the present work could be applicable to the physics of core-collapse supernova explosions
and neutron star formations [42]. In this direction, we need to take the collisional effects
into account [27, 28, 43], based on the Kadanoff-Baym equation in curved spacetime, which
respects the diffeomorphism covariance [44].

This paper is organized as follows. In section 2, solving the constraint equations,
we obtain the general solution of the Wigner function up to O(~2) under general curved
spacetime. In section 3, we determine an equilibrium distribution function involving O(~2)
corrections, based on the frame-independence of the Wigner function. In section 4, we ob-
tain curvature-induced charge current and energy-momentum tensor in equilibrium, which
is consistent with different field-theoretical approaches in appendix D. In sections 5 and 6,
we analyze the dynamical response from background gravitational fields. As a practical
application, in section 7 we argue the transport phenomena in a fluid with inhomogeneous
vorticity and temperature, which yields effective gravitational curvatures. In particular,
we observe the antiparallel flows of charge and energy due to an inhomogeneous vorticity
(or the Ricci tensor R0

i). Through this paper, the convention follows from ref. [34].

2 Chiral kinetic theory at O(~2)

We first show the brief outline of the derivation of the CKT in the Wigner function ap-
proach. The kinetic theory is a perturbative effective theory in the infrared momentum
regime. In quantum field theory, this perturbation is equivalent to the semiclassical trun-
cation [45]. The CKT is obtained from the semiclassical expansions of the equation of
motions for the Wigner functions, that is, the Wigner transformed Dyson-Schwinger equa-
tion. The Wigner function of chiral fermions obeys three equations, which correspond to
eqs. (2.4)–(2.6) in this paper. Two of them are the constraints to the Wigner function,
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and the other becomes the kinetic equation eventually. In the classical limit, the equation
for the Wigner function reduces to the Boltzmann equation (2.23). The Wigner function
formalism gives the quantum generalization of the classical kinetic theory.

Let us start from the Wigner function for the right-handed Weyl fermions, which is
defined as [46]

Rµ(x, p) = 1
2tr
[
γµ

1 + γ5

2 W (x, p)
]
, (2.1)

Wab(x, p) =
∫
d4y

√
−g(x) e−ip·y/~〈ψ̄b(x, y/2)ψa(x,−y/2)〉 , (2.2)

with g(x) = det(gµν), ψ̄(x) := ψ†(x)γ0̂, ψ(x, y) = exp(y ·D)ψ(x), ψ̄(x, y) = ψ̄(x) exp(y ·←−D),
and ψ̄

←−
O := [Oψ]†γ0̂. The above W (x, p) is the general relativistic extension of the one

in gauge theory [45]. Here Dµ is called the horizontal lift; for a function on (xµ, yµ) and
(xµ, pµ), the horizontal lift is represented as

Dµ =

∇µ − Γρµνyν∂yρ ,
∇µ + Γρµνpρ∂νp ,

(2.3)

where ∇µ is the covariant derivative in terms of diffeomorphism and the local Lorentz
transformation. The most beneficial property of Dµ is that it commutes with both yµ and
pµ, while ∇µ does not.

Hereafter we consider the Dirac theory under an external torsionless gravitational field.
In this paper, we focus on the collisionless kinetic theory. The Dirac equation is thus given
by γµ∇µψ(x) = 0, which brings the dynamical equation that the Wigner function W (x, p)
obeys. After a long computation, the set of equations for Rµ(x, p) is up to O(~2) given
by [34]

(Dµ + ~2Pµ)Rµ = 0 , (2.4)
(pµ + ~2Qµ)Rµ = 0 , (2.5)

~εµνρσDρRσ + 4
[
(p[µ + ~2T[µ)Rν] + ~2SαµνRα

]
= 0 , (2.6)

where we introduce the following notations:

Pµ = −1
8∇λRµν∂

λ
p ∂

ν
p −

1
24∇λR

ρ
σµν∂

λ
p ∂

ν
p∂

σ
p pρ + 1

8R
ρ
σµν∂

ν
p∂

σ
pDρ , (2.7)

Qµ = 1
8Rµν∂

ν
p + 1

24R
ρ
σµν∂

ν
p∂

σ
p pρ = 3Aµ +Bµ , (2.8)

Tµ = 1
4Rµν∂

ν
p + 1

24R
ρ
σµν∂

ν
p∂

σ
p pρ = 6Aµ +Bµ , (2.9)

Aµ = 1
24Rµν∂

ν
p , Bµ = 1

24R
ρ
σµν∂

ν
p∂

σ
p pρ , Sαµν = − 1

16Rλαµν∂
λ
p . (2.10)

In the above equations, we denote X [µY ν] = (XµY ν − XνY µ)/2, the Riemann tensor is
defined as Rρσµν = 2

(
∂[νΓρµ]σ+Γρλ[νΓλµ]σ

)
with Γρµν = gρλ(∂µgλν +∂νgλµ−∂λgµν)/2, and the

Ricci tensor is Rµν = Rλµλν . For left-handed Weyl fermions, similar equations are derived,
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but only the sign in front of εµνρσ is flipped, as is parity-odd. The first equation (2.4)
corresponds to the kinetic equation while the others (2.5) and (2.6) are constraints that
determine the functional form of Rµ. It is worthwhile to mention that eqs. (2.4)–(2.6)
are the Ward identities in terms of the symmetries that Weyl fermions respect in a given
coordinate; the U(1) gauge symmetry, the conformal symmetry, and the Lorentz symmetry,
respectively [47].

Let us parametrize the solution for eqs. (2.5) and (2.6) as

Rµ = Rµ(0) + ~Rµ(1) + ~2Rµ(2) . (2.11)

Contracting eq. (2.6) with pν , we find

p2Rµ = pµp · R+ ~
2εµνρσp

νDρRσ + 2~2pν
(
T[µRν] + SαµνRα

)
. (2.12)

Combined with eq. (2.5), this equation is decomposed into

p2R(0)
µ = 0 , (2.13)

p2R(1)
µ = 1

2εµνρσp
νDρRσ(0) , (2.14)

p2R(2)
µ = −pµQ · R(0) + 1

2εµνρσp
νDρRσ(1) + 2pν

(
T[µR

(0)
ν] + SαµνRα(0)

)
. (2.15)

Also eqs. (2.5) and (2.6) yield

p · R(0) = 0 , (2.16)
p · R(1) = 0 , (2.17)

p · R(2) +Q · R(0) = 0 , (2.18)

4p[µR
(0)
ν] = 0 , (2.19)

4p[µR
(1)
ν] + εµνρσD

ρRσ(0) = 0 , (2.20)

4p[µR
(2)
ν] + εµνρσD

ρRσ(1) + 4
(
T[µR

(0)
ν] + SαµνRα(0)

)
= 0 . (2.21)

In the following, we look for Rµ(0), R
µ
(1) and Rµ(2) that satisfy eqs. (2.13)–(2.21).

First, let us solve the zeroth and first-order parts. Equations (2.13) and (2.16) imply

Rµ(0) = 2πδ(p2)pµf(0) , (2.22)

where f(0) is a scalar function that satisfies δ(p2)p2f(0) = 0. From eq. (2.19), we can check
that there does not appear any other term in R(0)

µ . Equation (2.4) in the zeroth order,
DµRµ(0) = 0, gives the collisionless Boltzmann equation,

2πδ(p2)(pµ∇µ + Γρµνpµpρ∂νp )f(0) = 0 . (2.23)

Higher-order terms give quantum corrections to the Boltzmann equation.
From eq. (2.14) and the above Rµ(0), we find

p2Rµ(1) = 0 . (2.24)
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This does not necessarily mean that Rµ(1) itself vanishes for arbitrary pµ. Indeed if Rµ(1) in-
volves δ(p2), it fulfils eq. (2.24). Therefore, the first-order correction is generally written as

Rµ(1) = 2πδ(p2)R̃µ(1) . (2.25)

Here the undetermined part R̃(1)
µ satisfies δ(p2)p2R̃µ(1) = 0 so that eq. (2.24) holds. Plugging

this Rµ(1) and Rµ(0) into eq. (2.20), we obtain

δ(p2)
[
εµνρσp

ρDσf(0) − 4p[µR̃
(1)
ν]

]
= 0 . (2.26)

We contract this with nν/(2 p · n), where nµ(x) is a vector field independent of pµ. Then
we get

R̃(1)
µ δ(p2) = δ(p2)

[
pµ
n · R̃(1)
p · n

+ εµνρσp
ρnσ

2p · n Dνf(0)

]
. (2.27)

Thus the first-order correction is given by

Rµ(1) = 2πδ(p2)
[
pµf(1) + Σµν

n Dνf(0)
]
, (2.28)

where we define
f(1) = n · R̃(1)

p · n
, Σµν

n = εµνρσpρnσ
2p · n . (2.29)

In the above Rµ(1), an arbitrary vector nµ emerges through Σµν
n . This ambiguity is related

to the (local) Lorentz transformation [25], and thus Σµν
n is regarded as the spin tensor

defined in the frame nµ [26]. In particular, at nµ = (1,0), we have f(1) = R̃(1)
0 /p0, i.e.,

the charge density divided by the particle energy. In this sense, f(1) can be regarded as
the quantum correction to the distribution function. Note that the solution Rµ(1) fulfils
eqs. (2.14) and (2.17) as long as δ(p2)p2f(1) = 0 holds.

Now we solve the second-order correction. By plugging the above Rµ(0) and Rµ(1) into
eq. (2.15), we obtain

p2R(2)
µ = 2π

(
−pµQ · p+ pνDµν

)
δ(p2)f(0) , (2.30)

where the derivative operator Dµν is defined as

Dµν = 2
(
T[µpν] + Sαµνp

α
)

+ 1
2εµνρσD

ρΣσλ
n Dλ . (2.31)

The general form of the second-order correction then reads

R(2)
µ = 2πδ(p2)R̃(2)

µ + 2π
p2

[
−pµQ · p+ pνDµν

]
δ(p2)f(0) . (2.32)

Here we again introduced the undetermined part R̃(2)
µ , which satisfies δ(p2)p2R̃µ(2) = 0.

Plugging R(0)
µ , R(1)

µ , and R(2)
µ into eq. (2.21), we obtain

0 = 4p[µR
(2)
ν] + (2π)εµνρσDρ

(
pσf(1) + Σσλ

n Dλf(0)
)
δ(p2) + 4(2π)

(
T[µpν] + Sαµνp

α
)
f(0)δ(p2)

= 2π
[
4p[µR̃

(2)
ν] + εµνρσD

ρpσf(1) + 4
p2 p[µp

ρDν]ρf(0) + 2Dµνf(0)
]
δ(p2)

= 2π
[
4p[µR̃

(2)
ν] − εµνρσp

ρDσf(1) −
1
p2 εµνρσp

ρεαβγσpαDβγf(0)

]
δ(p2) . (2.33)
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Similarly to eq. (2.26), we solve the above equation by introducing a vector uµ (this is in
general different from nµ), as follows:

R̃(2)
µ δ(p2) = δ(p2)

[
pµf(2) + Σu

µνD
νf(1)

]
+ 1
p2 ε

αβγνΣu
µνpαDβγδ(p2)f(0)

= δ(p2)
[
pµf(2) + Σu

µνD
νf(1)

]
− δ(p2)

p2 Σu
µν

[1
2R̃

αβνρpρpα∂βp + p ·DΣνρ
n Dρ

]
f(0) ,

(2.34)

where we defined R̃αβµν = Rαβ
ρσερσµν/2 and

f(2) =
u · R̃(2)
p · u

. (2.35)

In the second line of eq. (2.34), we utilized

[Aµ, pν ] = 1
24Rµν , [Bµ, pν ] = − 1

24Rµν + 1
24
(
Rρνµσ +Rρσµν

)
pρ∂

σ
p , (2.36)

which yield

2εαβγνpα
(
Tβpγ + Sλβγp

λ
)

= −1
2R̃

αβνρpρpα∂
p
β . (2.37)

Therefore, the second-order correction reads

R(2)
µ = 2πδ(p2)

[
pµf(2)+Σu

µνD
νf(1)

]
+2π 1

p2

[
−pµQ·p+2pν

(
T[µpν]+Sαµνpα

)]
δ(p2)f(0)

+2πδ(p
2)

p2

[1
2εµνρσp

νDρΣσλ
n Dλ−Σu

µν

(1
2R̃

αβνρpρpα∂
p
β+p·DΣνρ

n Dρ

)]
f(0) . (2.38)

We mention that eq. (2.15) is still fulfilled for the above R(2)
µ as long as

δ(p2)p2f(2) = 0 (2.39)

holds. Indeed we can check

δ(p2)p2R̃(2)
µ =−δ(p2)Σu

µν

[1
2R̃

αβνρpρpα∂
p
β+p ·DΣνρ

n Dρ

]
f(0)

=−δ(p2)Σu
µν

[1
2R̃

αβνρpρpα∂
p
β+Dλ

(
Σνλ
n p

ρ+ 1
2ε

νλρσpσ−
1
2ε

νλρσ p
2nσ
p ·n

)
Dρ

]
f(0)

=−δ(p2)Σu
µνDλΣνλ

n p ·Df(0) = 0 . (2.40)

In the second line, we utilized

Σn
α[µpν] = −1

2Σn
µνpα −

1
4εµναβ

(
pβ − p2nβ

p · n

)
, (2.41)

which follows from the Schouten identity: pµενρσλ+pνερσλµ+pρεσλµν+pσελµνρ+pλεµνρσ = 0.
Also the last line follows from [Dµ,Dν ]f =−Rαβµνpα∂βp f , and the classical kinetic equa-
tion (2.4), i.e., δ(p2)p·Df(0) = 0. We stress that eq. (2.39) is a crucial constraint to f(2),
especially when we determine the equilibrium distribution function (see section 3).
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Eventually, the Wigner function up to O(~2) is derived as

Rµ = 2πδ(p2)
[
pµ
(
f(0)+~f(1)+~2f(2)

)
+~Σn

µνD
νf(0)+~2Σu

µνD
νf(1)

]
+2π~2 1

p2

[
−pµQ·p+2pν

(
T[µpν]+Sαµνpα

)]
δ(p2)f(0)

+2π~2 δ(p2)
p2

[1
2εµνρσp

νDρΣσλ
n Dλ−Σu

µν

(1
2R̃

αβνρpρpα∂
p
β+p·DΣνρ

n Dρ

)]
f(0) .

(2.42)

As the above Rµ is a fermion propagator, performing the momentum integration involving
it we evaluate a corresponding quantity of Weyl fermions under a gravitational field. In
particular, the charge current and the symmetric energy-momentum tensor are given by

Jµ(x) =
∫
p
tr
[
γµ

1 + γ5

2 W (x, p)
]

= 2
∫
p
Rµ(x, p) ,

Tµν(x) =
∫
p
tr
[
i~
2 γ

(µ←→D ν) 1 + γ5

2 W (x, p)
]

= 2
∫
p
p(µRν)(x, p) +O(~3) ,

(2.43)

where we define
∫
p :=

∫ d4p

(2π)4
√
−g(x)

, X(µY ν) = (XµY ν + XνY µ)/2 and ←→Dµ(ψ̄bψa) =

ψ̄bDµψa− ψ̄b
←−
Dµψa. Here we used the expansion of the derivative; Dµψ(x, y) = ∂yµψ(x, y)+

O(~2) (see appendix C in ref. [34]). In section 4, we derive the equilibrium Wigner function
and show that it yields the gravity-induced parts of Jµ and Tµν . We also demonstrate that
the different approaches in appendix D lead to the same Jµ [see eq. (4.10) and eqs. (D.21)
and (D.38)].

3 Frame dependence and equilibrium

In the evaluation of physical quantities such as eq. (2.43), it is necessary to identify the
explicit form of f(0),(1),(2). For this purpose, the frame (i.e., nµ and uµ) dependences of Rµ

are a crucial concept; as shown below, we derive a constraint on the distribution function
from the proper transformation law under the shift of the frames. Combined this with
the kinetic equation, we determine f(0),(1),(2) at equilibrium, which are utilized to evaluate
equilibrium transport phenomena induced by external gravity in section 4. This section is
devoted to the analysis of the frame dependence and the equilibrium solution found from it.

In the above derivation of Rµ, the frame vectors nµ and uµ are algebraically intro-
duced. It is valid to expect that the frame-dependence disappears in Rµ, which generates
physical quantities. Indeed, as is well-known in the O(~) CKT, the choice of the frame
vector nµ corresponds to the Lorentz transformation, and the frame-dependence is totally
compensated in physical quantities, due to the shift of f(1). Hence we may plausibly require
that the same is true in the O(~2) CKT. That is, we determine the transformation law of
f(2) under nµ → n′µ and uµ → u′µ so that the frame dependence vanishes in Rµ.

Let us first take the Lorentz transformation in terms of nµ, namely, (xµ, pµ) →
(x′µ, p′µ) = (Λn)µν(xν , pν) and uµ → u′µ = (Λn)µνuν , where (Λn)µν is the matrix rep-
resentation of the local Lorentz transformation. This transformation is equivalent to the
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one of the frame vector nµ as

nµ → n′µ = (Λ−1
n )µνn

ν . (3.1)

We also parametrize the transformation of f as

f(x, p)→ f ′(x′, p′) = f(x, p) + ~δnf(1)(x, p) + ~2δnf(2)(x, p) . (3.2)

Due to the Lorentz covariance of Rµ, we have

0 = (Λ−1
n )µ

νR′ν(x′,p′)−Rµ(x,p)

= 2πδ(p2)
[
pµ
(
~δnf(1)+~2δnf(2)

)
+~
(
Σn′
µν−Σn

µν

)
Dνf(0)+~2Σu

µνD
νδnf(1)

+ ~2

p2

(1
2εµνρσp

νDρ
(
Σσλ
n′ −Σσλ

n

)
Dλf(0)−Σu

µνp·D
(
Σνρ
n′ −Σνρ

n

)
Dρf(0)

)]
.

(3.3)

Contracting eq. (3.3) with nµ and picking up only the O(~) terms, we find

δnf(1) = − nµ

p · n
Σn′
µνD

νf(0) . (3.4)

Similarly, contracting eq. (3.3) with uµ, we obtain

δnf(2) = 1
p2 Σu

µνD
µ
(
Σνρ
n′ − Σνρ

n

)
Dρf(0) . (3.5)

The above δnf(1),(2) fulfills δ(p2)p2δnf(1),(2) = 0. Also, we can show that they satisfy
eq. (3.3).

Let us also perform the Lorentz transformation with

uµ → u′µ = (Λ−1
u )µνu

ν , (3.6)

for which the Lorentz covariance of Rµ requires

0 = (Λ−1
u )µ

νR′ν(x′, p′)−Rµ(x, p)

= 2πδ(p2)
[
pµ
(
~δuf(1) + ~2δuf(2)

)
+ ~2

(
Σu′
µν − Σu

µν

)
Dνf(1) + ~2Σu′

µνD
νδuf(1)

− ~2

p2

(
Σu′
µν − Σu

µν

)(1
2R̃

αβνρpρpα∂
p
β + p ·DΣνρ

n Dρ

)
f(0)

]
.

(3.7)

From the O(~) part, we readily find

δuf(1) = 0 . (3.8)

By contracting eq. (3.7) with uµ, we find

δuf(2) = − uµ

p · u
Σu′
µν

[
Dνf(1) −

1
p2

(1
2R̃

αβνρpρpα∂
p
β + p ·DΣνρ

n Dρ

)
f(0)

]
. (3.9)

We can check that the above δuf(2) fulfills δ(p2)p2δuf(2) = 0 and eq. (3.7).
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In the Wigner function (2.42), the frame vectors nµ and uµ are in general chosen
independently. As long as f(1) and f(2) obey the transformation laws (3.4), (3.5), (3.8)
and (3.9), however, we can always set uµ = nµ by redefining f(2). Then, eq. (2.42) is
simplified as

Rµ = 2π
[
δ(p2)

(
pµ + ~Σn

µνD
ν)+ ~2

p2

{
−pµQ · p+ 2pν

(
T[µpν] + Sαµνp

α)}δ(p2)

+ ~2δ(p2)
2p2

{
εµνρσp

νDρΣσλ
n Dλ − Σn

µν

(
R̃αβνρpρpα∂

p
β + 2p ·DΣνρ

n Dρ
)}]

f ,

(3.10)

where we define

f = f(0) + ~f(1) + ~2f(2) . (3.11)

The transformation laws under the change of the frames nµ and uµ are helpful to iden-
tify the equilibrium distribution function. Let us first start from the classical distribution
f(0), which is defined as a function of the collisional conserved quantities:

f(0) = f(0)(g(0) = −βµ+ β · p) , (3.12)
∇µ(βµ) = 0 , ∇µβν +∇νβµ = 0 . (3.13)

For this f(0), the transformation law (3.4) yields

δnf(1) = −f ′(0)
nµ
p · n

Σn′
µνp

ρ∇νβρ

= −f ′(0)
nµ
p · n

(
−1

2Σνρ
n′ p

µ − 1
4ε

νρµσpσ

)
∇νβρ

= f ′(0)
1
2
(
Σνρ
n′ − Σνρ

n

)
∇νβρ ,

(3.14)

where we use eq. (2.41) and define f ′(0) = df(0)(g(0))/dg(0). Although the above relation
identifies the frame-dependent part involved in f(1) at equilibrium, the frame-independent
part is still undetermined. If we set such an ambiguous part in f(1) to be zero, however,
we identify

f(1) = f ′(0)
1
2Σµν

n ∇µβν . (3.15)

This is a plausible form in the sense that the spin-vorticity coupling term is correctly
reproduced: f(0) + ~f(1) ' f(0)(g(0) + ~

2Σµν
n ∇µβν) + O(~2). In this case, the first order

Wigner function (2.28) is written as

Rµ(1)eq = 2πδ(p2)f ′(0)

(
−1

4

)
εµνρσpν∇ρβσ . (3.16)

– 12 –



J
H
E
P
0
5
(
2
0
2
1
)
0
2
3

This Rµ(1)eq fulfills the kinetic equation at O(~) [34]. Subsequently, with the above f(0) and
f(1), the transformation laws (3.5) and (3.9) lead to

δnf(2) = 1
p2 Σu

µνD
µf ′(0)

(
Σνρ
n′ − Σνρ

n

)
pσ∇ρβσ

= Σu
µνD

µ
[1

4f
′
(0)ε

ρσνλ
(
n′λ
p · n′

− nλ
p · n

)
∇ρβσ

]
,

δuf(2) = − uµ

p · u
Σu′
µν

[
Dνf ′(0)

1
2Σρσ

n ∇ρβσ −
1
p2

(1
2R̃

αβνρpρpαββf
′
(0) + p ·Df ′(0)Σ

νρ
n p

σ∇ρβσ
)]

=
(
Σu′
µν − Σu

µν

)
Dµ
(
f ′(0)

ερσνλnλ
4p · n ∇ρβσ

)
, (3.17)

where we employ eq. (2.41). Therefore we find

f(2) = Σu
µνD

µ
(
f ′(0)

ενρσλ

4 p · nnρ∇σβλ
)

+ φ(2) . (3.18)

Here, unlike the first-order correction f(1), we explicitly keep the frame-independent ambi-
guity φ(2). Importantly, this ambiguous part should be taken into account for the realization
of equilibrium, as we elaborate later. As shown in appendix A, inserting the above distri-
bution functions f(0),(1),(2) into eq. (2.38), we reduce the second-order correction part to

Rµ(2)eq = 2πδ(p2)
[
φ(2)p

µ + f(0)

(
− 1

2p2R
µαpα −

1
12p2Rp

µ + 2
3(p2)2R

αβpµpαpβ

)

+ f ′(0)

(
− 1

24R
µαβα + 1

12p2R
αβγµpαββpγ

)
+ f ′′(0)

(
− 1

24R
αβγµpαβββγ −

1
12p2Rαβγδp

µpαpγβββδ

− 1
4∇

[ρβµ]pν∇[ρβν] + pµ

4p2 pν∇
[ρβν]pσ∇[ρβσ]

)]
.

(3.19)

The frame-dependence here vanishes totally, as it should. Plugging this into the chiral
kinetic equation (2.4), and after a straightforward calculation in appendix B, we finally
arrive at

0 =
[
D ·R(2)+P ·R(0)

]
/2π

= δ(p2)p·Dφ(2)+f ′(0)δ(p
2)
(
−1

8β ·∇R+ 1
4p2β ·∇R

αβpαpβ

)
+f ′′(0)δ(p

2)
(
− 1

24p·∇R
αββαββ+ 1

8R
αβµνpαββ∇µβν

)
+f ′′′(0)δ(p

2)
(
− 1

24β ·∇Rρσµνp
µβνpρβσ

)
+δ(p2)

(
− 1

2p2R
µαpα

)
Dµf(0)

+δ(p2)
( 1

12R
µαβα

)
Dµf

′
(0)+δ(p2)

(
−1

6R
αβγµpαβββγ−

1
4∇

ρβµpν∇ρβν
)
Dµf

′′
(0) ,

(3.20)
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which is the equation to determine φ(2). However, there is in general no solution, as is
obvious from the constraint (2.39); φ(2) cannot have δ(p2)/p2 terms. In other words, the
collisionless CKT has no global equilibrium solution in general background curved geome-
try. We note that an equilibrium distribution function with φ(2) = 0 is realized in the flat
spacetime limit gµν = ηµν ; the Killing equation ∂µβν + ∂νβµ = 0 leads to

δ(p2)
(
−1

4∂
ρβµpν∂ρβν

)
∂µf

′′
(0) = δ(p2)

(
−1

4∂
ρβµ

)
∂ρ∂µf

′
(0) = 0 . (3.21)

4 Stationary weak gravity

Although the general curved spacetime does not realize an equilibrium, there may exist a
special geometry having a solution for eq. (3.20). One of the simplest cases is the stationary
and weak background gravitational field, where the metric tensor is given by

gµν = ηµν + hµν , ∂0hµν = 0 , |hµν | � 1 . (4.1)

In this case, the time-like Killing vector βµ ‖ ξµ := δµ0 is admitted. Then, the kinetic
equation (3.20) is drastically reduced as

δ(p2)p ·D
(
φ(2) −

1
24R

αββαββf
′′
(0)

)
= 0 . (4.2)

Therefore, for the metric tensor (4.1), we identify

φ(2) =
f ′′(0)
24 R

αββαββ . (4.3)

Hereafter, we call f = f(0) + ~f(1) + ~2f(2) with eqs. (3.12), (3.15), (3.18) and (4.3) an
equilibrium distribution function. In this section, we focus on the geometry described by
eq. (4.1).

Let us evaluate the charge current and the symmetric energy-momentum tensor for the
equilibrium distribution function. We employ the classical equilibrium state described by

f(0) = θ(β · p)
eg(0) + 1 + θ(−β · p)

e−g(0) + 1
, g(0) = −βµ+ β · p , (4.4)

where βµ is a time-like Killing vector βµ = β̄ξµ with β̄ =
√
β · β/g00. Also β̄ and µ̄ are the

global inverse temperature and chemical potential. In the flat spacetime limit, the classical
charge density becomes

Jµ(0)eq = 2
∫
p
Rµ(0)eq =

∫
p

[
nF (|p| − µ)− nF (|p|+ µ)

]
, nF (z) := 1

eβz + 1 (4.5)

with
∫
p =

∫
d3p/(2π)3.

From eq. (2.43), the equilibrium Wigner function Rµ(1)eq yields the CVE [26]:

Jµ(1)eq = C1ω
µ , Tµν(1)eq = 2C2ξ

(µων) , (4.6)
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where the vorticity vector is introduced as ωµ = εµνρσξν∇ρξσ/2. Here the coefficients are
defined as

Cn := 1
2π2

∫ ∞
0

dρρn
[
nF (ρ− µ)− (−1)nnF (ρ+ µ)

]
, (4.7)

and thus we find C1 = µ2/(4π2) + T 2/12 and C2 = µ3/6(π2) + µT 2/6 (see appendix C).
The above charge current is conserved, namely, ∇µJµ(1)eq = 0. This reflects the absence of
the gravitational contribution to the U(1) anomaly in the CKT up to O(~). Besides, the
energy-momentum conservation holds, as we check ∇µTµν(1)eq = 0.

From eq. (3.19) and (4.3), the second order equilibrium Wigner function reads

Rµ(2)eq = 2πδ(p2)
[
f(0)

(
− 1

2p2R
µαpα−

1
12p2Rp

µ+ 2
3(p2)2R

αβpµpαpβ

)

+f ′(0)

(
− 1

24R
µαβα+ 1

12p2R
αβγµpαββpγ

)

+f ′′(0)

(
− 1

24R
αβγµpαβββγ−

1
12p2Rαβγδp

µpαpγβββδ+ 1
24R

αββαββ

)]
,

(4.8)

where R = gµνRµν is the Ricci scalar. Here we dropped the terms including ∇ρβν because
they are of order O(h2

µν). In the momentum integral, the 1/p2 terms can be rewritten as

∫
p

δ(p2)
p2 pµF (p) =

∫
p

1
2δ(p

2)∂µpF (p) , (4.9)

which follows from δ′(x) = −δ(x)/x. The integral with 1/(p2)2 is also computed in a
similar manner with δ′′(x) = 2δ(x)/x2. With the help of several formulas in appendix C,
we eventually derive

Jµ(2)eq = C0

[ 1
12R

µ
αξ

α − 1
24ξ

µR+ 1
6ξ

µRαβξ
αξβ

]
,

Tµν(2)eq = C1

[
− 1

12R
µν − 1

12Rξ
µξν + 1

24Rη
µν

− 1
6R

α(µξν)ξα + 1
6R

αβξαξβ(4ξµξν − ηµν) + 1
6R

µανβξαξβ

] (4.10)

with C0 = µ/(2π2). Therefore, based on the CKT, we reveal that the nonvanishing fermion
transport is induced by the background gravitational field even in equilibrium. This implies
that these phenomena are nondissipative, as so are the CME, and CVE. This is one of
the main findings of this paper. We can also derive the same current Jµ(2)eq from the
diagrammatic computation (see appendix D.1) and with the Riemann normal coordinate
expansion (see appendix D.2). It is worthwhile to mention that g0i enters in eqs. (4.6)
and (4.10) only through the field strength fij = ∂ig0j − ∂jg0i. This is a consequence of the
Kaluza-Klein gauge symmetry [48].

For the left-handed Weyl fermion, Jµ(2)eq and Tµν(2)eq are written as the same form, while
the sign of Jµ(1)eq and Tµν(1)eq flipped; the former does not involve εµνρσ while the latter does.

– 15 –



J
H
E
P
0
5
(
2
0
2
1
)
0
2
3

As a result, the vector and axial parts are written as

Jµ(2)eqV/A = C0,V/A

[ 1
12R

µ
αξ

α − 1
24ξ

µR+ 1
6ξ

µRαβξ
αξβ

]
,

Tµν(2)eqV/A = C1,V/A

[
− 1

12R
µν − 1

12Rξ
µξν + 1

24Rη
µν

− 1
6R

α(µξν)ξα + 1
6R

αβξαξβ(4ξµξν − ηµν) + 1
6R

µανβξαξβ

] (4.11)

where C0, V/A = µV/A/π
2, C1, V = (µ2

V + µ2
A)/2π2 + T 2/6 and C1, A = µV µA/π

2, with µV
and µA being the vector and chiral chemical potential, respectively. In section 7, we argue
the novelty and some implications of eq. (4.10) and (4.11).

5 Dynamical weak gravity

While so far we have focused on the equilibrium state, this section is dedicated to discuss
the dynamical response from the time-dependent gravity. Specifically, we consider a plane-
wave weak background gravitational field:

gµν = ηµν + hµν , hµν ∼ e−ik·x , |hµν | � 1 , (5.1)

where kµ = (k0,k) is the momentum of the gravitational field. Let us look for the pertur-
bative distribution function represented as the following form:

f = fflat + f̃ , fflat = θ(p0)
eβ(p0−µ) + 1

+ θ(−p0)
e−β(p0−µ) + 1

, f̃ = f̃(0) + ~f̃(1) + ~2f̃(2) . (5.2)

Here β and µ are constant, and thus fflat is the static and homogeneous solution of the
collisionless Boltzmann equation (2.23) for hµν = 0. We define f̃ as the fluctuation around
fflat. For hµν ∼ e−ik·x, we may employ the anzatz f̃ ∼ e−ik·x. For simplicity, we further
assume ∂µnν = 0.

We first compute the classical and leading order parts. Plugging the general form of
Rµ(0),(1) in eqs. (2.22) and (2.28) into eq. (2.4), we write down the kinetic equation as

δ(p2)
[
p ·D + ~(DµΣµν

n )Dν −
~
2Σµν

n Rαβµνp
α∂βp

]
f = 0 . (5.3)

Expanding the above equation in terms of hµν and utilizing ∂µfflat = 0, we obtain

p · ∂f̃ +
[
Γρµνpµpρβν −

~
2Σµν

n Rαβµνp
αββ

]
f ′flat = 0 , (5.4)

where we denote βµ = βξµ = βδµ0 . Note that after the weak gravitational field expansion,
all indices are raised and lowered by ηµν and the inner products are defined as A · B =
ηµνA

µBν and A2 = ηµνA
µAν . Especially, to get the above equation, we have taken the

following replacement:

pµ → gµνpν ' pµ − hµνpν , (5.5)

δ(p2)→ δ(gµνpµpν) ' δ(p2)
(

1 + 1
p2h

µνpµpν

)
, (5.6)
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which follow from gµν ' ηµν −hµν and δ′(x) = −δ(x)/x. For hµν ∼ e−ik·x, the fluctuations
f̃(0),(1) ∼ e−ik·x are found to be

f̃(0) = 1
ik · p

Γρµνpµpρβνf ′flat , (5.7)

f̃(1) = − 1
2ik · pΣµν

n Rαβµνp
αββf ′flat , (5.8)

with the linearized Christoffel symbol and Riemann tensor being

Γρµλ '
−i
2 (kµhρλ + kλh

ρ
µ − kρhµλ) ,

Rρλµν '
(−i)2

2 (kνkλhρµ − kνkρhµλ − kµkλhρν + kµk
ρhνλ) .

(5.9)

Plugging the above distribution functions into eqs. (2.22) and (2.28), we get the Wigner
function. It is here informative to decompose the Wigner function into the terms that
involve the k-dependent pole in the denominator, and the others. As we show in section 6,
the momentum integrals of the former vanishes in the static limit k0/|k| → 0, while those
of the latter survives. In this sense, we denote such a (non)static part as Rµ(non)st. We note
that the static part Rµst reproduces the equilibrium Wigner function Rµeq in the previous
section, as we show later.

For the classical O(~0) part, eq. (5.7) leads to Rµ(0) = Rµ(0)st +Rµ(0)nonst with

Rµ(0)st = 2πδ(p2)
[
pµ
(

1 + 1
p2h

αβpαpβ

)
fflat − hµνpνfflat

]
, (5.10)

Rµ(0)nonst = 2πδ(p2) 1
ik · p

Γρλνp
µpλpρβ

νf ′flat , (5.11)

where we use gµν ' ηµν−hµν and δ(gαβpαpβ) ' δ(p2)(1+hαβpαpβ/p2). Similarly, eqs. (5.7)
and (5.8) yield to the O(~) part as

Rµ(1) = 2πδ(p2)
(
pµf̃(1) + Σµν

n Dν(fflat + f̃(0))
)

= −2πδ(p2)
4

1
ik · p

εµηνλpηRρσλνp
ρβσf ′flat ,

(5.12)

where we used eq. (2.41) to remove Σµν
n . We again stress that while f̃(1) is the frame-

dependent, the Wigner function Rµ(1) is irrelevant to the frame. Then, the Wigner function
is represented as Rµ(1) = Rµ(1)st +Rµ(1)nonst with

Rµ(1)st = −2πδ(p2)
4 εµνρσpν(−ikρ)hσλβλf ′flat , (5.13)

Rµ(1)nonst = 2πδ(p2)
4 εµνρσpν(−ikρ)

k · β
k · p

hσλp
λf ′flat . (5.14)

We observe that the above Rµ(1)st is consistent with the equilibrium Wigner function Rµ(1)eq
in eq. (3.16).
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Applying the totally same manner to the O(~2) parts, we obtain f̃2 and eventually the
Wigner function as Rµ(2) = Rµ(2)st +Rµ(2)nonst with

Rµ(2)st = 2πδ(p2)
[
− 1

4p2Rαβ
µνpνp

αββf ′flat+
1

4p2Rβ
νpµpνβ

βf ′flat−
1
4Rβ

µββf ′flat

+ 1
24p

µRαββ
αββf ′′flat

]
+ 2π
p2

[
−pµQ·p+2pν

(
T [µpν]+Sαµνpα

)]
δ(p2)fflat ,

(5.15)

Rµ(2)nonst = 2πδ(p2)k ·β
k ·p

[
− 1

4p2Rα
νpµpνp

αf ′flat+
1
4Rα

µpαf ′flat+
1
24p

µpηpρβνβσRρσηνf
′′′
flat

]
,

(5.16)

for which the precise derivation is shown in appendix F. Again Rµ(2)st is the same as Rµ(2)eq
in eq. (3.19) up to O(hµν).

6 Dynamical response

In the following discussion, we evaluate the charge current Jµ and the energy-momentum
tensor Tµν in eq. (2.43) with eqs. (5.15), and (5.16). As the Wigner function Rµ is de-
composed into the static (k-independent) and nonstatic (k-dependent) part, so are Jµ and
Tµν , that is, Jµ = Jµst + Jµnonst and Tµν = Tµνst + Tµνnonst. The static part is calculated in
the same manner as before. For instance, using the integral formulas in appendix C, the
momentum integrals of the classical contribution (5.10) yield

Jµ(0)st = C2ξ
µ(1− 2ξαξβhαβ) ,

Tµν(0)st = C3

[4
3ξ

µξν − 1
3η

µν +
(1

3η
µαηνβ − 4ξµξνξαξβ + 2

3η
µνξαξβ

)
hαβ

]
,

(6.1)

with C3 = µ4/24π2 + µ2T 2/12. Here we use (−g)−1/2 ' 1 − hµµ/2, and perform the
integration by part.

For the nonstatic part, it is helpful to additionally prepare the following tensor (scalar
for n = 0) function:

Ij1···jn(x) := x

∫
dΩ
4π

p̂j1 · · · p̂jn

x− k̂ · p̂
, (6.2)

where we define x := k0/|k| and the integral is over the solid angle of p. The evaluations
of Ij1···jn(x)’s are summarized in appendix G. Here x in the denominators is understood to
involve the positive infinitesimal imaginary part +iη. The nonstatic part of the classical
charge current is from eq. (5.11) evaluated as

Jµ(0)nonst = −k · βhλρ
∫
p

2πδ(p2) 1
k · p

pµpλpρf ′flat

= 3
2C2

[
ξµ
(
h00I + hjkI

jk + 2h0jI
j
)

+ δµi

(
h00I

i + hjkI
ijk + 2h0jI

ij
)]
.

(6.3)
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To obtain the above second line, we utilized Ij1···jn(−x) = (−1)nIj1···jn(x) and

2k · β
∫
dp0
2π 2πδ(p2)(p0)n

k · p
dm

dpm0
fflat

= β|p|n−2
[

x

x− k̂ · p̂+ iη
n

(m)
F (|p| − µ) + (−1)n+m+1 −x

−x− k̂ · p̂− iη
n

(m)
F (|p|+ µ)

] (6.4)

with nF (y) = (eβy + 1)−1 and n(m)
F (y) := dmnF (y)/dym. Besides, the nonstatic part of the

classical energy-momentum tensor is computed as

Tµν(0)nonst = −k · βhρλ
∫
p

2πδ(p2) 1
k · p

pµpνpρpλf ′flat

= 2C3

[
ξµξν

(
h00I + 2h0jI

j + hjkI
jk
)

+ 2δ(µ
i δ

ν)
0

(
h00I

i + 2h0jI
ij + hjkI

ijk
)

+ δµi δ
ν
j

(
h00I

ij + 2h0kI
ijk + hklI

ijkl
)]
.

(6.5)

It is worthwhile to notice several properties of the above Ij1···jn(x). First we find the
following relations:

k0I + kkI
k = k0 , (6.6)

k0I
k + kjI

jk = 0 , (6.7)

k0I
jk + kiI

ijk = k0
δjk

3 , (6.8)

k0I
jkl + kiI

ijkl = 0 . (6.9)

From these, we can show the charge current and energy-momentum conservation for arbi-
trary kµ:

∇µJµ(0) = ∇µ(Jµ(0)st + Jµ(0)nonst) = 0 ,

∇µTµν(0) = ∇µ(Tµν(0)st + Tµν(0)nonst) = 0 .
(6.10)

Second, we check that Ij1···jn(x) fulfills another type of relations:

I + Ijj = 0 , (6.11)
Ik + Ij

jk = 0 , (6.12)
Ikl + Ij

jkl = 0 . (6.13)

These bring the dilatation current conservation for arbitrary kµ:

gµνT
µν
(0) = gµν(Tµν(0)st + Tµν(0)nonst) = 0 . (6.14)
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As a particular case, we consider the dynamical limit x = k0/|k| � 1. We expand
Jµ(0)nonst and T

µν
(0)nonst in terms of 1/x, with the asymptotic forms of Ij1···jn(x)’s, which are

derived in eqs. (G.9)–(G.13). For later convenience, we here define the total charge current
and energy-momentum tensor in the dynamical limit, as follows:

Jµdyn := Jµst + Jµnonst
∣∣
x→∞ , Tµνdyn := Tµνst + Tµνnonst

∣∣
x→∞ . (6.15)

Their classical contributions hence become

Jµ(0)dyn = C2

[
ξµ
(

1− 1
2h

λ
λ

)
− δµi h

i
0

]
,

Tµν(0)dyn = C3

[1
3
(
4ξµξν − ηµν

)
+
(3

5η
µαηνβ + 2

15η
µνηαβ

+ 12
5 ξ

µξνξαξβ − 4
5η

αβξµξν − 2
15ξ

αξβηµν − 16
5 η

α(µξν)ξβ
)
hαβ

]
.

(6.16)

Let us also calculate quantum corrections. At O(~), the Wigner function (5.14) leads to

Jµ(1)nonst = −C1ω
µI − 1

2C1ε
µνρσ(−ikρ)hλσ

[(
ξνδ

k
λ + δkνξλ

)
Ik + δjνδ

k
λIjk

]
,

Tµν(1)nonst = −3C2
2 ξ(µων)I − 3C2

4

[
ξ(µεν)ηρσ(−ikρ)hλσ

(
(δkηξλ + δkλξη)Ik + δjηδ

k
λIjk

)
+ ηi(µεν)ηρσ(−ikρ)hλσ

(
ξηξλIi + (δkηξλ + δkλξη)Iik + δjηδ

k
λIijk

)]
,

(6.17)

where the vorticity is linearized as

ωµ = 1
2ε

µνρσξν∇ρξσ '
1
2ε

µνρσξν(−ikρ)hσλξλ . (6.18)

In particular, taking the dynamical limit, we find

Jµ(1)nonst
∣∣
x→∞ = −C1ω

µ ,

Tµν(1)nonst
∣∣
x→∞ = −2C2ξ

(µων) + C2
5 δ

(µ
k ε

ν)0lm(−ikl)hkm .
(6.19)

These results, combined with the static parts (4.6), yield the O(~) contributions of
eq. (6.15), as follows:

Jµ(1)dyn = 0 , T 0µ
(1)dyn = 0 . (6.20)

Therefore we conclude that the CVE vanishes in the dynamical limit. This is consistent
with the diagrammatic calculation in ref. [40].
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At O(~2), from the Wigner function (5.16), the nonstatic parts are evaluated as

Jµ(2)nonst = −C0
4

[1
2R

µ
ν

(
ξνI + δνkI

k
)
− 1

4R
(
ξµI + δµk I

k
)

+Rα0

(
ξµξαI + (ξµδαk + ξαδµk )Ik + δµj δ

α
k I

jk
)

+Rj0k0

(
ξµIjk + δµi I

ijk
)]

,

Tµν(2)nonst = (−2C1)
[
− 1

16R
(
ξµξνI + 2ξ(µδ

ν)
k I

k + δµj δ
ν
kI

jk
)

+ 3
8R0α

(
ξµξνξαI + (2ξ(µδ

ν)
k ξ

α + ξµξνδαk )Ik + (2δ(µ
j ξ

ν)δαk + δµj δ
ν
kξ
α)Ijk

+ δµi δ
ν
j δ
α
k I

ijk
)

+ 1
2Rk0l0

(
ξµξνIkl + 2ξ(µδ

ν)
j I

jkl + δµi δ
ν
j I

ijkl
)]

. (6.21)

In the dynamical limit x→∞, we obtain

Jµ(2)nonst
∣∣
x→∞ = C0

[
−1

6ξ
µR00 + 1

60

(
−2R0

µ + ξµR

)]
,

Tµν(2)nonst
∣∣
x→∞ = C1

[
ξµξν

( 13
140R−

24
35R00

)
+ 7

30ξ
(µR0

ν)

− ηµν
( 11

420R−
16
105R00

)
− 2

15R
µ0ν0

]
.

(6.22)

Here we used
1
x
R0j0kk̂

k = kj
k0
R00 −Rj0 ,

1
x2R0j0kk̂

j k̂k =
(

1− 1
x2

)
R00 −

1
2R , R = 2R00 + 2kk

k0
R0

k ,

(6.23)
which follow from the second Bianchi identity. Combining these with the static contribu-
tion (4.10), we write the O(~2) contributions of eq. (6.15) as

Jµ(2)dyn = C0
20

[
Rµαξ

α − 1
2ξ

µR

]
,

Tµν(2)dyn = C1

[
− 1

12R
µν + 1

105Rξ
µξν + 13

840Rη
µν + 1

15R
α(µξν)ξα

− 2
105R

αβξαξβξ
µξν − 1

70R
αβξαξβη

µν + 1
30R

µανβξαξβ

]
.

(6.24)

We note that eqs. (6.6)–(6.9) and eqs. (6.11)–(6.13) again result in the conservation laws
∇µJµ(1) = ∇µJµ(2) = 0, ∇µTµν(1) = ∇µTµν(2) = 0 and Tµµ(1) = Tµµ(2) = 0 for arbitrary kµ. In
the next section, we discuss some implications of (6.24) in the fluid frame [see eq. (7.5)].

7 Fluid frame

The fermionic system under a background fluid is pedagogical and informative to show the
novelty of the gravity-induced transport phenomena given by eqs. (4.10) and (6.24). In
general, the effect of the fluid can be translated to that of an effective curved geometry
with the following metric [48]:

g00 = 1 + h00(t,x) , g0i = h0i(t,x) , gij = ηij . (7.1)
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Adopting this metric, we represent the temperature gradient [49] and the fluid vorticity as

∂iT/T̄ = −1
2∂ig00 , ωi = −1

2ε
0ijk∂jgk0 , (7.2)

with T̄ being the global temperature. Alternatively, the present coordinate describes the
system under the gravitoelectromagnetic fields E i = −1

2∂
ig00 and Bi = −1

2ε
ijk∂jgk0. The

nonvanishing components of the curvature tensors read

Ri0j0 = Rij = −∂i∂jT
T̄
− ∂0εij , R00 = 1

2R = ∇2T

T̄
− ∂0εj

j , R0i = (∇× ω)i , (7.3)

with εij = 1
2(∂ih0j + ∂jh0i).

Inserting eq. (7.3) into eqs. (4.10) and (6.24), we readily obtain the transport phenom-
ena under the temperature gradient and inhomogeneous vorticity. In the static limit (or
equivalently, for the stationary metric ∂0hµν = 0), eq. (4.10) is written explicitly as

J0
(2)eq = C0

6
∇2T

T̄
, J i(2)eq = C0

12 (∇× ω)i ,

T 00
(2)eq = C1

6
∇2T

T̄
, T 0i

(2)eq = −C1
6 (∇× ω)i , T ij(2)eq = − C1

12T̄
(∂i∂j + ηij∇2)T , (7.4)

with C0 = µ/2π2 and C1 = µ2/4π2+T 2/12. Similarly, from the expression in the dynamical
limit (6.24), we find

J0
(2)dyn = 0 , J i(2)dyn = C0

20 (∇× ω)i ,

T 00
(2)dyn = 0 , /T 0i

(2)dyn = −C1
20 (∇× ω)i , T ij(2)dyn = C1

20

[ 1
T̄

(
∂i∂j + 1

3η
ij∇2

)
T + ∂0σ

ij
]
,

(7.5)

where we introduce the shear tensor:

σij = εij − 1
3η

ijεk
k . (7.6)

The corresponding vector and axial-vector currents are obtained by replacing C0 with
C0,V/A = µV/A/π

2, and C1 with C1,V = (µ2
V + µ2

A)/2π2 + T 2/6 and C1,A = µV µA/π
2

respectively, as we have done to get eq. (4.11). Several comments are in order.
We again emphasize that eq. (7.4) represents equilibrium transport phenomena, like

the CME and CVE. It is also intriguing to notice the difference between these and Fourier’s
law. For the former, the currents in eq. (7.4) come from the vorticity, namely, the magnetic
part B of the gravity. This background source supplies no energy to particles, and thus the
currents become finite even in equilibrium. On the other hand, the latter is the current gen-
eration by the temperature gradient. This electric part E of the gravitational field gives an
energy to particles. Therefore the Fourier’s law is dissipative and prohibited in equilibrium.

For an static and spatially inhomogeneous vorticity ω(x), there emerges the nonvan-
ishing charge current J i(2)eq and the energy current T 0i

(2)eq, on top of the contributions from
the CVE (4.6). Unlike the vector part of the CVE, the curvature-induced currents (4.11)
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or (7.4) does not require µA 6= 0. In the system without the chiral imbalance, hence, J i(2)eq
and T 0i

(2)eq are the leading vortical contributions. In the dynamical limit, such second-order
contributions become more important, since the CVE is washed out as shown in eq. (6.20)
while the currents in eq. (7.5) are not.

Under the correspondence between magnetic field and vorticity, one would think that
the charge current J i(2)eq/dyn is the gravitational analogue of Ampère’s law: ∇ × B =
∇ × ω = J . The situation is however not so trivial since J i(2)eq/dyn is opposite-signed
against the energy current T 0i

(2)eq/dyn (for µ > 0). Namely, eqs. (7.4) and (7.5) cannot be
explained based on the naive picture that a particle’s momentum carries both charge and
energy. This curious flow dynamics essentially comes from the quantum effects through
the spin-curvature coupling. We should emphasize that such an antiparallel charge-energy
flow is not restricted in the present coordinate, but more generally admitted in a lot of
curved spacetime; this phenomenon always takes place as long as R0

i 6= 0, as shown in
eqs. (4.10) and (6.24).

It is worthwhile to mention the feedback to the gravitational field from eq. (4.10). In our
sign convention, the Einstein field equation is given by Rµν − 1

2gµνR = −8πGTµν with the
gravitational constant G [50]. Following this, the induced Ricci tensor reads Rind

0i ∼ αR0i
with a positive coefficient α > 0. Hence, the initial gravitational field is enhanced, which
evokes the possibility of instability. We will revisit and analyze more precisely the above
brief argument in the future, including the existence of a novel collective dynamics [51] in
a gravitational plasma [52, 53].

One might think that eq. (7.4) is unrelated to an anomaly. Indeed, eq. (7.4) would
be irrelevant to the chiral anomaly, according to the analysis of discrete symmetry [54].
Nevertheless, this fact is not sufficient to conclude the irrelevance to anomaly at all, as for
the temperature dependent part of the CVE [55–58]. We also mention that the transport
coefficients C0 and C1 are time-reversal even quantities, which could be associated with
their nondissipative nature similarly to those of the CME and CVE [54]. It should be
required to clarify the anomalous aspect of eq. (7.4) from different approaches, such as
hydrodynamics. In the sense that they are of the higher-order of the derivative counting,
usual hydrodynamics can neglect eqs. (7.4) and (7.5). This would not be the case, however,
if these phenomena originate from quantum anomaly like the CME and CVE.

These novel contributions (7.4) lead to several implications in relativistic many-body
systems where an inhomogeneous fluid vorticity is experimentally generated. In rotating
quark-gluon plasma, there emerges the quadrupole configuration of the vorticity along the
beam direction [59–62]. Thus, on the transverse plane to the beam direction, the inhomo-
geneous vorticities generate the charge current J⊥ and the energy current J ε⊥, as depicted
in figure 1. As a brief argument, we may estimate the scale of the vorticity gradient to be
the inverse of the hot matter size. Indeed, at the collision energy

√
s = 19.6GeV, the gradi-

ent of the vorticity is estimated to be (∇×ω)/ω ≈ 0.2 fm–0.5 fm ≈ 40MeV–100MeV [61].
Although the whole magnitudes of J⊥ and J ε⊥ are dependent on the scale of ω, hence, these
are nonnegligible compared with the CVE.

On top of the charge and energy currents, the stress tensor T ij(2)eq is also induced. Let us
consider a cylindrical system along the z direction with a spatially inhomogeneous temper-
ature T (z). From the vector part of the energy-momentum tensor in eq. (7.4), the tempera-
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Figure 1. Flow directions of J⊥ (left) and Jε⊥ (right). The horizontal axis corresponds to the reac-
tion plane of heavy-ion collisions. The quadrupole vorticity structure is based on the measurement
by STAR collaboration [59].

ture gradient yields the correction to the transverse pressure P⊥(z) = C1,V

12 T ′′(z)/T̄ . When
the temperature takes a Gaussian form T (z) = T̄ e−z

2/2σ2 , we get P⊥(z) = C1,V

12 e−z
2/2σ2(z2−

σ2)/(3σ2), which has the minima P⊥(0) = −C1,V

12 σ−2 < 0 and maxima P⊥(σ) = C1,V

12 e−3/2

σ−2 > 0. Such a pressure correction is detectable in Weyl/Dirac semimetal experiments,
similarly to the usual thermoelectric transport phenomena [63, 64].

In table-top experiments, an inhomogeneous and dynamical vorticity can be generated
by an acoustic surface wave. We consider a transverse wave propagating on the xy sur-
face [65–67] of Weyl/Dirac semimetals. Also we prepare the wave propagating along the x
direction, and its amplitude is normal to the surface, i.e., its displacement vector is given by
u = (0, 0, u) with u = ūe−ik0t+ikx−κz. Here e−κz reflects unpenetrating into the material.
Now the response to this surface wave can be evaluated in the coordinate space described
by gµν = ηµν + hµν with h0z = −u̇ = ik0u, hxz = −∂xu = −iku, hzz = −∂zu = κu

and other components of hµν vanishing. From eq. (7.5) together with the Wick rotation
∂3 → κ, we get the charge and energy currents: Jx(2)dyn = C0

20
1
2k0kκu, Jz(2)dyn = C0

20
1
2 ik0k

2u

and T 0x
(2)dyn = −C0

40
1
2k0kκu, T 0z

(2)dyn = −C0
40

1
2 ik0k

2u. The flows normal to the fluid velocity
u̇ are induced by the gravitational curvature via quantum effects. We note that the flows
parallel to the fluid velocity are induced from classical contributions.
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A Equilibrium Wigner function (3.19)

In this appendix, we show the concrete expression of Rµ(2) at equilibrium defined by
eqs. (3.12), (3.15), (3.18) and (4.3). We decompose Rµ(2) in eq. (2.38) into the frame-
(in)dependent and the φ(2) part:

Rµ(2) = Rµ(2)indep +Rµ(2)dep + 2πδ(p2)pµφ(2) . (A.1)

– 24 –



J
H
E
P
0
5
(
2
0
2
1
)
0
2
3

The first term reads

Rµ(2)indep = 2π
p2

[
−pµQ · p+ 2pν

(
T [µpν] + Sαµνpα

)]
δ(p2)f(0)

= 2π
24

[
5Rαµ∂pα −Rαβγµpα∂

p
β∂

p
γ −

pµ

p2
(
2R+ 6Rαβpα∂pβ + 2Rαβγδpαpγ∂βp ∂δp

)
− 6
p2R

αβγµpαpγ∂
p
β

]
δ(p2)f(0)

= 2πδ(p2)
[
f(0)

(
− 1

2p2R
µαpα −

1
12p2Rp

µ + 2
3(p2)2R

αβpµpαpβ

)

+ f ′(0)

( 5
24R

µαβα −
1

6p2R
αβγµpαββpγ −

1
4p2R

αβpµpαββ

)

+ f ′′(0)

(
− 1

24R
αβγµpαβββγ −

1
12p2Rαβγδp

µpαpγβββδ
)]

. (A.2)

The frame-dependent part is further decomposed as

Rµ(2)dep = 2πδ(p2)
(
rµ1 + rµ2 + rµ3

)
, (A.3)

where we define

rµ1 := pµΣu
νρD

ν
(
f ′(0)

ερσλη

4 p · nnσ∇λβη
)

+ 1
2Σµν

u Dν

(
f ′(0)Σ

ρσ
n ∇ρβσ

)
,

rµ2 := 1
2p2 ε

µνρσpνDρΣn
σλD

λf(0) ,

rµ3 := − 1
p2 Σµν

u

(1
2R̃αβνρp

ρpα∂βp + p ·DΣn
νρD

ρ
)
f(0) .

(A.4)

For the equilibrium distribution f(0) in eq. (3.12), we reduce rµ2 and rµ3 to

rµ2 = 1
2p2 ε

µνρσpνDρΣn
σλpη∇λβηf ′(0)

= − 1
8p2 ε

µνρσpνDρεληστp
τ∇λβηf ′(0) + 1

8ε
µνρσpνDρεληστ

nτ

p · n
∇λβηf ′(0) ,

(A.5)

and

rµ3 = − 1
p2 Σµν

u

[1
2R̃αβνρp

ρpαββf ′(0) + p ·DΣn
νρpλ∇ρβλf ′(0)

]
= −1

4f
′
(0)Σ

µν
u ερλντp ·D

nτ

p · n
∇ρβλ

= −1
4(2Σµ[ν

u pσ] + Σµσ
u pν)ερλντDσf

′
(0)

nτ

p · n
∇ρβλ

= −rµ1 + 1
8ε

νσµηpηερλντDσf
′
(0)

nτ

p · n
∇ρβλ ,

(A.6)
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where the p2 term is dropped, and we utilize ∇µ∇νβρ = −βλRλµνρ and eq. (2.41). The
frame-dependent part hence becomes

Rµ(2)dep = −2πδ(p2)
8p2 εµνρσpνDρεληστp

τ∇λβηf ′(0)

= 2πδ(p2)
[
f ′(0)

( 1
4p2 pαββpγR

αβγµ − 1
4R

µνβν + pµ

4p2R
αβpαββ

)
+ f ′′(0)

(
−1

4∇
ρβµpν∇ρβν + pµ

4p2 pν∇
ρβνpσ∇ρβσ

)]
.

(A.7)

In the above equation, the frame dependence totally vanishes, as it should. Eventually,
Rµ(2) is written as eq. (3.19).

B Equilibrium kinetic equation (3.20)

In this appendix, we derive the kinetic equation (3.20). In later use, we recall the second
Bianchi identity for the Riemann tensor:

∇αRµνβγ +∇βRµνγα +∇γRµναβ = 0 , (B.1)

which implies

∇µRµν = 1
2∇

νR , ∇µRρσµν = ∇ρRσν −∇σRρν . (B.2)

Using ∇µβν = −∇νβµ, Rα[µν]β = −1
2Rαβµν and eq. (B.2), we evaluate each term in the

kinetic equation (2.4) as follows:

− 1
8∇λRµν∂

λ
p ∂

ν
pp

µf(0)δ(p2)

= f(0)

(
−1

2δ
′(p2)p·∇R− 1

2δ
′′(p2)p·∇Rαβpαpβ

)
+f ′(0)

(
− 3

16δ(p
2)β ·∇R− 1

4δ
′(p2)p·∇Rαβpαββ−

1
4δ
′(p2)β ·∇Rαβpαpβ

)
+f ′′(0)

(
−1

8δ(p
2)β ·∇Rαβpαββ

)
,

(B.3)

− 1
24∇λRρσµν∂

λ
p ∂

ν
p∂

σ
p p

ρpµf(0)δ(p2)

= f(0)

(1
6δ
′(p2)p·∇R+ 1

6δ
′′(p2)p·∇Rαβpαpβ

)
+f ′(0)

( 1
12δ(p

2)β ·∇R+ 1
6δ
′(p2)p·∇Rαβpαββ+ 1

12δ
′(p2)β ·∇Rαβpαpβ

)
+f ′′(0)

(1
6δ(p

2)β ·∇Rαβpαββ−
1
12δ(p

2)p·∇Rαββαββ−
1
12δ

′(p2)p·∇Rρσµνpµβνpρβσ
)

+f ′′′(0)

(
− 1

24δ(p
2)β ·∇Rρσµνpµβνpρβσ

)
, (B.4)
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1
8R

ρ
σµν∂

ν
p∂

σ
pDρp

µf(0)δ(p2)

= f ′′(0)

( 3
16δ(p

2)Rρσµνpµβν∇ρβσ
)

+
(
−1

8δ(p
2)Rαρβα+ 1

4δ
′(p2)Rρσµνpµβνpσ

)
Dρf

′
(0)+

(1
8δ(p

2)Rρσµνpµβνβσ
)
Dρf

′′
(0) ,

(B.5)

Dµf(0)

(
− 1

2p2R
µαpα−

1
12p2Rp

µ+ 2
3(p2)2R

αβpµpαpβ

)
= f(0)

(
− 1

3p2 p·∇R+ 2
3(p2)2 p·∇R

αβpαpβ

)
+
(
− 1

2p2R
µαpα

)
Dµf(0) ,

(B.6)

Dµf
′
(0)

(
− 1

24R
µαβα+ 1

12p2R
αβγµpαββpγ

)
= f ′(0)

(
− 1

48β ·∇R−
1

12p2 p·∇R
αβpαββ+ 1

12p2β ·∇R
αβpαpβ

)
+
(
− 1

24R
µαβα+ 1

12p2R
αβγµpαββpγ

)
Dµf

′
(0) ,

(B.7)

Dµf
′′
(0)

(
− 1

24R
αβγµpαβββγ−

1
12p2Rαβγδp

µpαpγβββδ
)

= f ′′(0)

( 1
24p·∇R

αββαββ−
1
24β ·∇R

αβpαββ−
1

12p2 p·∇Rαβγδp
αpγβββδ

+ 1
16R

αβµνpαββ∇µβν
)

+
( 1

6p2R
αβγµpαpγββ

)
Dµf

′
(0)+

(
− 1

24R
αβγµpαβββγ

)
Dµf

′′
(0) ,

(B.8)

− 1
4Dµ∇[ρβµ]pν∇[ρβν]f

′′
(0)

= f ′′(0)

(
−1

8Rαβµνp
αββ∇[µβν]

)
+
(1

4R
αββα

)
Dβf

′
(0)+

(
−1

4∇
[ρβµ]pν∇[ρβν]

)
Dµf

′′
(0) ,

(B.9)

and

Dµ
pµ

4p2 pν∇
[ρβν]pσ∇[ρβσ]f

′′
(0) =

(
− 1

2p2R
αβγµpαββpγ

)
Dµf

′
(0) . (B.10)

Collecting them, we obtain eq. (3.20).

C Integration formulas

Here, we present several Integration formulas. We first define

Cn := 1
2π2

∫ ∞
0

dρρn
[
nF (ρ− µ)− (−1)nnF (ρ+ µ)

]
, nF (z) := 1

eβz + 1 . (C.1)
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In particular, the first four Cn’s are

C0 = µ

2π2 , (C.2)

C1 = µ2

4π2 + T 2

12 , (C.3)

C2 = 2
∫ µ

0
dν C1(ν) = µ3

6π2 + µT 2

6 , (C.4)

C3 = 3
∫ µ

0
dν C2(ν) = µ4

8π2 + µ2T 2

4 . (C.5)

Also in the integral of angular degrees of freedom, we can replace the product of pµ’s in
the integral, as follows:

pα→ p0ξα,

pαpβ→ (p0)2ξαξβ+p
2

3 ∆αβ ,

pαpβpγ→ (p0)3ξαξβξγ+ p0p
2

3 (ξα∆βγ+ξβ∆γα+ξγ∆αβ),

pαpβpγpδ→ (p0)4ξαξβξγξδ

+ (p0)2p2

3 (ξαξβ∆γδ+ξαξγ∆βδ+ξαξδ∆βγ+ξβξγ∆αδ+ξβξδ∆αγ+ξγξδ∆αβ)

+ |p|
4

15 (∆αβ∆γδ+∆αγ∆βδ+∆αδ∆βγ),

pαpβpγpδpλ→ (p0)5ξαξβξγξδξλ

+ (p0)3p2

3 (∆αβξγξδξλ+∆αγξβξδξλ+∆αδξβξγξλ+∆αλξβξβξγ+∆βγξαξδξλ

+∆βδξαξγξλ+∆βλξαξγξδ+∆γδξαξβξλ+∆γλξαξβξδ+∆δλξαξβξγ)

+ 1
15p0|p|4

[
ξα(∆βγ∆δλ+∆βδ∆γλ+∆βλ∆γδ)

+ξβ(∆αγ∆δλ+∆αδ∆γλ+∆αλ∆γδ)+ξγ(∆αβ∆δλ+∆αδ∆βλ+∆αλ∆βδ)

+ξδ(∆αβ∆γλ+∆αγ∆βλ+∆αλ∆βγ)+ξλ(∆αβ∆γδ+∆αγ∆βδ+∆αδ∆βγ)
]
,

(C.6)

where ξµ := (1,0) and ∆µν := ξµξν − ηµν .

D Alternative derivation of Jµ(2)eq

In this appendix, we derive the curvature-induced charge current Jµeq(2) in eq. (4.10), from
the thermodynamics of Weyl fermions in a curved spacetime. At the same time, such
alternative derivations leading to the same Jµeq(2) ensures the correctness of the Wigner
functionRµ(2) in eq. (2.42) and the equilibrium distribution function f(2) given by eqs. (3.18)
and (4.3).
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D.1 Diagrammatic computation

First, we derive the current of a chiral fluid under a gravitational field, based on the linear
response theory. We consider a Weyl fermion, and the corresponding action is given by

S = i

2

∫
d4xeη†

(
σaeµa(∇µ + iAµ)− (←−∇µ − iAµ)σaeµa

)
η, (D.1)

where we introduce σa = (1, σi) with the Pauli matrices σi (i = 1, 2, 3). Here e a
µ (eµa)

denotes (inverse) vierbein satisfying gµν = e a
µ e

b
ν ηab, η

ab = e a
µ e

b
ν g

µν with the spacetime
curved metric gµν and Minkowski metric ηab = diag(1,−1,−1,−1), and e := det e a

µ . The
left and right covariant derivatives are defined as

∇µη := ∂µη − iAµη , η†
←−
∇µ := ∂µη

† + iη†A†µ ,

Aµ := 1
2ω

ab
µ Σab , Σab := i

4(σ̄aσb − σ̄bσa)
(D.2)

with σ̄a := (1,−σi), which satisfies σ̄aσb + σ̄bσa = σaσ̄b + σbσ̄a = 2ηab. Furthermore,
employing the torsionless condition, we can express the spin connection ω ab

µ = −ω ba
µ as

ω ab
µ := 1

2e
νaeρb(Cνρµ − Cρνµ − Cµνρ) ,

Cµνρ := e c
µ (∂νeρc − ∂ρeνc).

(D.3)

The energy-momentum tensor Tµν and U(1) covariant charge current Jµ are defined as

Tµν = −1
e

δS

δe a
µ

eνa = i

2η
†(σµ
−→
∇ν −

←−
∇νσµ)η + 1

4∇ρ(η
†(σµΣνρ + Σνρ†σµ)η)− Lgµν ,

Jµ = −1
e

δS

δAµ
= η†σµη.

(D.4)

Note that Tµν is not symmetric, so we introduce the symmetric energy-momentum tensor
defined as TµνS := (Tµν + T νµ)/2. In the following, we consider fluctuation around the flat
metric gµν = ηµν + hµν .

In the linear response theory, the current in momentum space can be expressed as

〈Jµ(k)〉 = −1
2G

µνρ(k)hνρ(k) (D.5)

with

Gµνρ(k) := T
∑
n

∫
d3k

(2π)3 e
−ik·x〈TτJµ(x)T νρS (0)〉 , (D.6)

where we define kµ = (0,k) and Tτ denotes the imaginary time ordering. The two point
correlator is computed with the Feynman rule in flat spacetime:

= −σ̄
µpµ
p2 , (D.7)

= σµ , (D.8)

= 1
4σ

λ
[
δµλ(pν + p′ν) + δνλ(pµ + p′µ)− 2ηµν(pλ + p′λ)

]
. (D.9)
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In momentum space, at one-loop order, we get

Gµνρ(k)hνρ = (−1)T
∑
n

∫
p

pαp
′
β

p2p′2
tr
[
σ̄ασµσ̄βσλ

]
× hνρ

4
(
δνλ(pρ + p′ρ) + δρλ(pν + p′ν)− 2ηνρ(pλ + p′λ)

)
= −Iαβγ(k)

[
ηµβ(hγα − ηαγhρρ)− ηβα(hµγ − ηµγhρρ)

+ ηµα(hβγ − ηβγhρρ) + iεµβλα(hγλ − δ
γ
λh

ρ
ρ)
]
,

(D.10)

where we denote
∫
p =

∫ d3p
(2π)3 , p′ = p+ k and pµ = (iπT (2n+ 1) + µ,p), and the antisym-

metric tensor εµνρσ is normalized as ε0123 = +1. Also we introduced

Iαβγ(k) := T
∑
n

∫
p

pαp
′
β(pγ + p′γ)
p2p′2

. (D.11)

In order to compute the liner response to the gravitational field, we expand Iαβγ(k) in
terms of k and define I(n)

αβγ(k) to be the O(kn) contribution of Iαβγ(k). In particular,
we find

I(1)
αβγ(k) = T

∑
n

∫
p

1
(p2)2

(
pαpβkγ + 2pαkβpγ − 2pαpβpγ

2p · k
p2

)
,

I(2)
αβγ(k) = T

∑
n

∫
p

(
−pαpβkγ

2p · k
p2 − 2pαkβpγ

2p · k
p2

+ pαkβkγ − 2pαpβpγ
k2

p2 + 8pβpγpα
(p · k)2

(p2)2

)
.

(D.12)

There are two steps to compute the momentum integrals. First, the radial integral is
systematically evaluated with the following formulas:

Fn,m := T
∑
l

∫
p

|p|2n−2mp2m+1
0

(p2)n+2 = −F0,0
2Γ(m+ 1/2)

Γ(m− n− 1/2)Γ(n+ 2) , (D.13)

F̃n,m := T
∑
l

∫
p

|p|2n−2m(p0)2m

(p2)n+1 = F̃0,0
Γ(m− 1/2)

Γ(m− n− 1/2)Γ(n+ 1) (D.14)

with

F0,0 = − 1
8π2µ, (D.15)

F̃0,0 = 1
8π2

(
µ2 + π2

3 T
2
)
. (D.16)
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The above formulas are proved in appendix E. Second, for the angle integrals in eq. (D.12),
we replace the momentum products pµ1 · · · pµj , as shown in eq. (C.6). Then we obtain

I(1)
αβγ =

(
F̃1,1+4 F̃2,1

3

)
ξαξβkγ+

(
2F̃1,1+4 F̃2,1

3

)
ξαξγkβ+4 F̃2,1

3 ξβξγkα

+
(
F̃1,0

3 +4 F̃2,0
15

)
∆αβkγ+

(
2 F̃1,0

3 +4 F̃2,0
15

)
∆αγkβ+4 F̃2,0

15 kα∆γβ

= F̃0,0
2 (−ξαξγkβ+ξβξγkα−∆αγkβ+∆γβkα) ,

I(2)
αβγ =

(
2F1,0+F0,0+ 16F2,0

15

)
ξαkβkγ+

(
2
3F1,0+ 16F2,0

15

)
ξβkαkγ+

(
4
3F1,0+ 16F2,0

15

)
ξγkαkβ

−
(

2F1,1+ 8F2,1
3

)
k2ξαξβξγ−

(
2
3F1,0+ 8F2,0

15

)
k2(ξα∆βγ+ξβ∆γα+ξγ∆αβ

)
= F0,0

6
(
ξαkβkγ+ξβkαkγ−2ξγkαkβ−k2ξαξβξγ+k2ξα∆βγ+k2ξβ∆γα+k2ξγ∆αβ

)
,

(D.17)

where we denote ∆µν = ξµξν − ηµν . As a result, the O(k) contribution in eq. (D.10) is
written as

Gµνρ(1) (k)hνρ

= −1
2 F̃0,0(−ξαξγkβ + ξβξγkα −∆αγkβ + ∆γβkα)

×
(
ηµβ(hγα − ηαγhρρ)− ηβα(hµγ − ηµγhρρ) + ηµα(hβγ − ηβγhρρ) + iεµβλα(hγλ − δ

γ
λh

ρ
ρ)
)

= −2iε0µjkF̃0,0h
0
kkj , (D.18)

which reproduces the CVE:

〈Jµ(1)〉 = − 1
8π2

(
µ2 + π2

3 T
2
)
ε0µjk∂jh

0
k = 1

4π2

(
µ2 + π2

3 T
2
)
ωµ (D.19)

with ωµ = εµνρσξν∂ρhρλξ
λ/2. Similarly, the O(k2) parts are computed as

Gµνρ(2) (k)hνρ = −1
3F0,0

[
−h0αkαk

µ + hµ0k2 + ξµ(hγαkαkγ + 2h00k2 − hααk2)
]
. (D.20)

For the stationary gravitational field (∂0hµν = 0), we eventually derive

〈Jµ(2)〉 = − µ

48π2

[
∂α∂

µh0α − ∂2hµ0 − ξµ(∂α∂γhγα − ∂2hαα + 2∂2h00)
]

' µ

24π2

[
R0µ − 1

2ξ
µR+ 2ξµR00

]
,

(D.21)

where we employ

Rµν '
1
2(∂ν∂µhρρ − ∂ν∂ρhρµ − ∂ρ∂µhρν + ∂ρ∂

ρhνµ) ,

R ' ∂2hρρ − ∂µ∂ρhρµ .
(D.22)

The above current 〈Jµ(2)〉 is consistent with J
µ
(2)eq in eq. (4.10).
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D.2 Riemann normal coordinate expansion

We reproduce the fermionic current in eq. (4.10), by employing the Riemann normal coor-
dinate (RNC) expansion [68]. We first look for the propagator that satisfies

iγµ∇xµS(x, x′) = | − g(x)|−1/2δ(x− x′) , (D.23)

where we denote g = det(gµν) and Sab(x, x′) = −i〈Tψa(x)ψ̄b(x′)〉. Here ∇xµ is the diffeo-
morphic and local Lorentz covariant derivative with respect to x, and the spin connection
is defined as

∇µψ =
(
∂µ −

i

4ωµabσ
ab
)
ψ , σab = i

2[γa, γb] , ωµab = eνa(∂µeνb + Γνρµe
ρ
b) . (D.24)

Further we introduce the following bispinor (not scalar) propagator:

iγµ∇xµG(x, x′) = S(x, x′) . (D.25)

From eqs. (D.23) and (D.25), we find

− | − g(x)|1/2
(
∇µ∇µ + 1

4R
)
G(x, x′) = δ(x− x′) . (D.26)

Let us now introduce the RNC. We define the normal coordinate y and the origin is
at x′, that is, we replace x → y and x′ → 0. In order to evaluate above Green’s function,
we perform the RNC expansion, as follows:

gµν(x) = ηµν + 1
3Rµανβy

αyβ + · · · , (D.27)

| − g(x)| = 1 + 1
3Rαβy

αyβ + · · · , (D.28)

Γρµν(x) = 2
3R

ρ
(µν)αy

α + · · · , (D.29)

eaµ(x) = eaλ

(
δλµ + 1

6R
λ
νµρy

νyρ
)

+ · · · , (D.30)

ωµαβ(x) = 1
2Rαβµνy

ν + · · · , (D.31)

where · · · denotes the O(R2) or O(∂R) contribution. Note that all of the above curvature
tensors are evaluated at y = 0. We thus reduce eq. (D.26), as follows:

δ(y) =
[
−ηµν∂yµ∂yν −

1
4R−

1
6Rαβy

αyβ∂2
y + 1

3Rµανβy
αyβ∂µy ∂

ν
y

− 2
3Rαβy

α∂βy −
i

4Rµναβσ
αβyµ∂νy

]
G(x, x′) + · · · .

(D.32)

Now we perform the Fourier transformation:

G(x, x′) =
∫
p
eip·yG(p) (D.33)
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with
∫
p =

∫ d4p
(2π)4 . Then G(p) obeys

1 =
[
ηµνpµpν −

1
4R−

1
6Rαβ∂

α
p ∂

β
p p

2 + 1
3Rµανβ∂

α
p ∂

β
p p

µpν

+ 2
3Rαβ∂

α
p p

β − i

4Rµναβσ
αβ∂µp p

ν + · · ·
]
G(p)

:=
(
p2 +D

)
G(p) ,

(D.34)

where we denote p2 = ηµνpµpν and D is the derivative operators of O(R). The above
equation is solved sequentially, as follows:

G(p) = 1
p2

[
1−DG(p)

]
+ · · · = 1

p2

[
1−D 1

p2

]
+ · · ·

= 1
p2 −

1
12(p2)2R+ 2

3(p2)3Rαβp
αpβ + · · · .

(D.35)

Thus we obtain

S(x, x′) = iγµ(x)∇µ
∫
p
eip·yG(p)

=
∫
p
eip·y

(
−γ · p

p2 + 1
2(p2)2Rµνγ

µpν + γ · p
12(p2)2R−

2γ · p
3(p2)3Rαβp

αpβ
)

+ · · · .

(D.36)

Performing the Wick rotation, we obtain the vector current as

Jµ = −tr
[
S(x, x)γµ

]
= T

∑
n

∫
p

[4pµ

p2 −
2pν

(p2)2Rν
µ − pµ

3(p2)2R+ 8pµpαpβ

3(p2)3 Rαβ

] (D.37)

with pµ = (iπT (2n + 1) + µ,p). The above current is evaluated with eq. (C.6). The first
term in the above integrand gives the ordinary charge density. The other terms are linear
in the curvature tensor, and thus the curvature-induced current Jµcurv is calculated as

Jµcurv = −2Rµ0F0,0 −
1
3ξ

µRF0,0 + 8
3ξ

µR00F1,1 + ξµ
8
3R00F1,0 −

16
9 R

µ
0F1,0 −

8
9ξ

µRF1,0

= 2 · µ

24π2

[
R0µ − 1

2ξ
µR+ 2ξµR00

]
. (D.38)

This is again the same as eq. (4.10) up to the factor 2, which comes from the right- and
left-handed contributions.

E Evaluation of Fn,m and F̃n,m

In this appendix, we derive the formulas of the momentum integrals in Euclidean spacetime,
which are applied in appendix D. We first compute the following integral:

Fn,m := T
∑
l

∫
p

|p|2n−2mp2m+1
0

(p2)n+2 . (E.1)
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This obeys the recursion relation Fn,m = Fn−1,m−1 +Fn,m−1, and the solutions are given by

Fn,m =
m∑
j=0

m!
j!(m− j)!Fn−j,0 . (E.2)

We calculate Fn,0 as

Fn,0 = T
∑
l

∫
p

|p|2np0
(p2)n+2

= T
∑
l

∫
dΩdp2

(2π)3
1
2(p2)n+1/2 1

(n+ 1)!

(
∂

∂p2

)n p0
(p2)2

= (−1)nΓ(n+ 3/2)
(n+ 1)!Γ(3/2) T

∑
l

∫
dΩdp2

(2π)3
1
2(p2)1/2 p0

(p2)2

= (−1)nΓ(n+ 3/2)
Γ(3/2)(n+ 1)! F0,0 .

(E.3)

Therefore, we obtain

Fn,m = F0,0

m∑
j=0

m!
j!(m− j)!

(−1)n−jΓ(n− j + 3/2)
Γ(3/2)(n− j + 1)!

= −F0,0
2Γ(m+ 1/2)

Γ(m− n− 1/2)Γ(n+ 2) .
(E.4)

One can check that this solution satisfies the recursion relation:

Fn−1,m−1 + Fn,m−1 − Fn,m

=
m−1∑
j=0

(m− 1)!
j!(m− 1− j)!Fn−1−j,0 +

m−1∑
j=0

(m− 1)!
j!(m− 1− j)!Fn−j,0 −

m∑
j=0

m!
j!(m− j)!Fn−j,0

=
m∑
j=1

m!
j!(m− j)!

j

m
Fn−j,0 +

m−1∑
j=0

m!
j!(m− j)!

m− j
m

Fn−j,0 −
m∑
j=0

m!
j!(m− j)!Fn−j,0

= 0.

(E.5)

The overall factor F0,0 in eq. (E.4) is computed as

F0,0 = T
∑
l

∫
p

1
2|p|

∂

∂|p|
p0

(p2)

= − 1
4π2T

∑
l

∫ ∞
0

d|p|p0
p2

= − 1
4π2T

∑
l

∫ ∞
0

d|p|12

( 1
p0 − |p|

+ 1
p0 + |p|

)

= − 1
8π2

∫ ∞
0

d|p|
( 1
eβ(|p|−µ) + 1

− 1
eβ(|p|+µ) + 1

)
= − µ

8π2 .

(E.6)
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Also we evaluate

F̃n,m := T
∑
l

∫
p

(p2)n−m(p0)2m

(p2)1+n , (E.7)

which obeys the same recursion relation F̃n,m = F̃n−1,m−1 + F̃n,m−1. In the same manner
for Fn,m, we get

F̃n,m =
m∑
j=0

m!
j!(m− j)! F̃n−j,0, (E.8)

F̃n,0 = (−1)nΓ(n+ 3/2)
Γ(3/2)n! F̃0,0, (E.9)

F̃n,m = F̃0,0

m∑
j=0

(−1)n−j m!
j!(m− j)!

Γ(n− j + 3/2)
Γ(3/2)(n− j)!

= F̃0,0
Γ(m− 1/2)

Γ(m− n− 1/2)Γ(n+ 1) . (E.10)

The overall factor F̃0,0 is calculated as

F̃0,0 = 1
2π2T

∑
l

∫ ∞
0

d|p| |p|
2

p2

= 1
2π2T

∑
l

∫ ∞
0

d|p| |p|2

( 1
p0 − |p|

− 1
p0 + |p|

)

= 1
4π2

∫ ∞
0

d|p||p|
( 1
eβ(|p|−µ) + 1

+ 1
eβ(|p|+µ) + 1

− 1
)

= 1
8π2

(
µ2 + π2

3 T
2
)

+(const).

(E.11)

Here, (const) denotes the divergent term that is independent of T and µ.

F Wigner function under the dynamical gravity (5.15) and (5.16)

In this appendix, we derive the Wigner function under a time-dependent gravitational field,
eqs. (5.15) and (5.16). Plugging Rµ and Pµ given by eqs. (2.42) and (2.7), we write down
the kinetic equation (2.4) as

0 = δ(p2)
[
p ·D + ~DµΣµν

n Dν

]
f + δ(p2)~2Dµ(Σµν

u − Σµν
n )Dν f̃(1)

+ ~2

p2D
µ
[
−pµQ · p+ 2pν

(
T[µpν] + Sαµνp

α)]δ(p2)f

+ ~2δ(p2)
2p2 Dµ

[
εµνρσp

νDρΣσλ
n Dλ − Σu

µν

(
R̃αβνρpρpα∂

p
β + 2p ·DΣνρ

n Dρ
)]
f

+ ~2
(
−1

8∇λRµν∂
λ
p ∂

ν
p −

1
24∇λR

ρ
σµν∂

λ
p ∂

ν
p∂

σ
p pρ + 1

8R
ρ
σµν∂

ν
p∂

σ
pDρ

)
pµδ(p2)f .

(F.1)
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Here f̃(0) and f̃(1) involved in f have already been obtained in eqs. (5.7) and (5.8). After
some computation keeping O(hµν) together with ~2p ·Df ∼ O(~3) and Dµf ∼ O(hµν), we
reduce the kinetic equation (F.1) to

δ(p2)
[(

1 + 1
p2h

µνpµpν

)
p · ∂ − hµνpµ∂ν + Γρµνpµpρ∂νp + ~

(
−1

2Σµν
n Rαβµνp

α∂βp

)
+ ~2

(
− 1

24p · ∇Rαβ∂
α
p ∂

β
p −

1
24p

µpρ∂νp∂
σ
p ∂p · ∇Rρσµν − Σu

µν

nλ
2p · n∇

µR̃αβνλpα∂
p
β

)]
f = 0 ,

(F.2)
which yields the second order fluctuation as

f̃(2) = Σu
µν

nλ
2p · n

kµ

k · p
R̃αβνλpαββf

′
flat + 1

24Rαββ
αββf ′′flat + k · β

24k · pp
µpρβνβσRρσµνf

′′′
flat .

(F.3)

Collecting eqs. (5.7) and (5.8), the above f̃(0),(1),(2) and the general form of the Wigner
function (2.38), we find

Rµ(2)/(2π)

= δ(p2)
[
pµ
(

Σu
ην

nλ
2p·n

kη

k ·p
R̃αβνλpαββf

′
flat+

1
24Rαββ

αββf ′′flat+
k ·β

24k ·pp
ηpρβνβσRρσηνf

′′′
flat

)
− 1

2ik ·pΣµν
u Σλη

n (−ikν)Rαβληpαββf ′flat+
1

2p2 ε
µνρσpνΣn

σλDρD
λ(fflat+f̃(0))

−Σµν
u

nσ

2p·nR̃αβνσp
αββf ′flat

]
+ 1
p2

[
−pµQ·p+2pν

(
T [µpν]+Sαµνpα

)]
δ(p2)fflat . (F.4)

In the above equation, there are the four frame-dependent terms. However, the dependence
is totally cancelled out, as shown in the following. These are rewritten as

pµΣu
ην

nλ
2p·n

kη

k ·p
R̃αβνλpαββf

′
flat =

(
−1

2p
µΣu

να

nλ
p·n

R̃αβνλββ+ 1
2p

µ k
η

k ·p
Σu
ηαΣn

νλR
αβνλββ

+ 1
4ε

τµναpτ
nλ

p·n
R̃αβνλβ

β+ 1
4p

αεητµνpτ
nλ

p·n
kη
k ·p

R̃αβνλβ
β

+ 1
4ε

αητµpτ
kη
k ·p

Σνλ
n Rαβνλβ

β
)
f ′flat , (F.5)

1
2k ·pΣµν

u Σλη
n kνRαβληp

αββf ′flat =
(
− 1

2k ·pΣνα
u pµΣλη

n kνRαβληβ
β+ 1

2Σµα
u Σλη

n Rαβληβ
β

− 1
4k ·pε

ναµρpρΣλη
n kνRαβληβ

β
)
f ′flat, (F.6)

−Σµν
u

nσ

2p·nR̃αβνσp
αββf ′flat =

(
pµΣνα

u

nσ

2p·nR̃αβνσβ
β+ 1

4ε
ναµρpρ

nσ

p·n
R̃αβνσβ

β

− 1
2Σµα

u Σλη
n Rαβληβ

β
)
f ′flat , (F.7)

εµνρσ

2p2 pνΣn
σλDρD

λ(fflat+f̃(0)) =
(
− 1

4p2 ε
µνρσpνp

η 1
k ·p

R̃αβσηkρp
αββ

+ 1
4ε

µνρσpν
nη

p·n
1
k ·p

R̃αβσηkρp
αββ

)
f ′flat , (F.8)
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where we use eq. (2.41), DρDλf ' (−ikρ)(−ikλ)f̃(0) + (−ikρ)Γτλκpτβκf ′flat and the second
Bianchi identity (B.1) for Rαβρ[λkτ ]. Hence, the four frame-dependent terms in eq. (F.4)
are recast into(
pµΣu

ην

nλ
2p · n

kη

k · p
R̃αβνλpαββ + 1

2k · pΣµν
u Σλη

n kνRαβληp
αββ − Σµν

u

nσ

2p · nR̃αβνσp
αββ

)
f ′flat

+ 1
2p2 ε

µνρσpνΣn
σλDρD

λ(fflat + f̃(0))

= 1
4p2 ε

µνρσpηpν
kρ
k · p

R̃αβησp
αββf ′flat

= − 1
4p2Rαβ

µνpνp
αββf ′flat + 1

4p2Rβ
νpµpνβ

βf ′flat −
1
4Rβ

µββf ′flat

− 1
4p2

k · β
k · p

Rα
νpµpνp

αf ′flat + 1
4
k · β
k · p

Rα
µpαf ′flat . (F.9)

Inserting this into eq. (F.4), we finally derive eqs. (5.15) and (5.16).

G Angle integrals

In this appendix, we derive the integral formulas in terms of the momentum angle valuables.
We introduce the following function for the angular integral:

Ij1··· ,jn(x) = x

∫
dΩ
4π

p̂j1 · · · p̂jn

x− k̂ · p̂
, (G.1)

where x involves the positive infinitesimal imaginary part +iη and we define x = k0/|k|. By
definition, we can readily show eqs. (6.6)–(6.9) and eqs. (6.11)–(6.13). Let us now evaluate
the angle integrals. We define θ and φ as the polar and azimuthal angles when the polar
axis is along k̂. First, we compute

I(x) = x

2

∫ 1

−1

dy

x− y
= x

2 ln x+ 1
x− 1 = x

2 ln
∣∣∣∣x+ 1
x− 1

∣∣∣∣− xiπ2 θ(1− |x|) (G.2)

with y = cos θ. In order to evaluate the other integrals, we prepare the following formulas:∫ 2π

0

dφ

2π p̂
k = k̂ky ,∫ 2π

0

dφ

2π p̂
j p̂k = k̂j k̂ky2 + ∆̃jk 1

2(1− y2) ,∫ 2π

0

dφ

2π p̂
ip̂j p̂k = k̂ik̂j k̂ky3 +

(
k̂i∆̃jk + k̂j∆̃ki + k̂k∆̃ij

)1
2y(1− y2) ,∫ 2π

0

dφ

2π p̂
ip̂j p̂kp̂l = k̂ik̂j k̂kk̂ly4

+
(
∆̃ij k̂kk̂l + ∆̃jkk̂lk̂i + ∆̃klk̂ik̂j + ∆̃ilk̂j k̂k + ∆̃ikk̂j k̂l + ∆̃jlk̂ik̂k

)
× 1

2y
2(1− y2)

+
(
∆̃ij∆̃kl + ∆̃ik∆̃jl + ∆̃il∆̃jk

)1
8(1− y2)2 , (G.3)
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where we introduce ∆̃ij = δij − k̂ik̂j (we note ∆µν = ξµξν − ηµν). We prepare the following
integrals:

x

2

∫ 1

−1
dy

yn

x− y
=



x(I − 1) (n = 1)

x2(I − 1) (n = 2)

−x
3 + x3(I − 1) (n = 3)

−x2

3 + x4(I − 1) (n = 4)

. (G.4)

These yield

Ij(x) = k̂jx(I − 1) , (G.5)

Ijk(x) = k̂j k̂kx2(I − 1) + 1
2∆̃jk

(
I − x2(I − 1)

)
, (G.6)

Iijk(x) = k̂ik̂j k̂k
(
−x3 + x3(I − 1)

)
+ 1

2
(
k̂i∆̃jk + k̂j∆̃ki + k̂k∆̃ij

)(
x(I − 1) + x

3 − x
3(I − 1)

)
, (G.7)

Iijkl(x) =
(
−x

2

3 + x4(I − 1)
)
k̂ik̂j k̂kk̂l

+ 1
2

(
x2(I − 1) + x2

3 − x
4(I − 1)

)
×
(
∆̃ij k̂kk̂l + ∆̃jkk̂lk̂i + ∆̃klk̂ik̂j + ∆̃ilk̂j k̂k + ∆̃ikk̂j k̂l + ∆̃jlk̂ik̂k

)
+ 1

8

(
I − 2x2(I − 1)− x2

3 + x4(I − 1)
)(

∆̃ij∆̃kl + ∆̃jk∆̃li + ∆̃il∆̃jk
)
. (G.8)

In particular, the asymptotic forms of Ij1···jn in the dynamical limit x� 1 are

I ' 1+ 1
3x2 + 1

5x4 + 1
7x6 +O(x−8) , (G.9)

Ij ' k̂j

3x+O(x−3) , (G.10)

Ijk'
(1

3 + 1
15x2

)
δjk+ 2

15x2 k̂
j k̂k+O(x−4) , (G.11)

Iijk' 1
15x

(
k̂iδjk+k̂jδki+k̂kδij

)
+O(x−3) , (G.12)

Iijkl'
( 1

15 + 1
105x2

)(
δijδkl+δikδil+δilδjk

)
+ 2

105x2

(
δij k̂kk̂l+δjkk̂lk̂i+δklk̂ik̂j+δilk̂j k̂k+δikk̂j k̂l+δjlk̂ik̂k

)
+O(x−4). (G.13)

On the other hand, in the static limit x� 1, we find Ij1···jn ' O(x).
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