
rRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. IO, OCTOBER 1996 2631 

algorithm,” IEEE Trans. Signal Processing, vol. SP-40, pp. 1758-1774, 
July 1992. 
J. L. Cadre, “Parametric methods for spatial signal processing in the 
presence of unknown colored noise fields,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. 37, pp. 965-983, July 1989. 
M. Viberg and A. Swindlehurst, “Analysis of the combined effects of 
finite samples and model errors on array processing performance,” lEEE 
Trans. Signal Processing, vol. 42, pp. 3073-3083, Nov. 1994. 
M. Viberg, “Sensitivity of parametric direction finding to colored noise 
fields and undermodeling,” Signal P rocessing, vol. 34, pp. 207-222, 
Nov. 1993. 
H. Krim and J. G. Proakis, “Smoothed eigenspace-based paramerter 
estimation,” Automatica, Special Issue on Statistical Signal Procssing 
and Control, Jan. 1994. 

Second-Order Complex Random 
Vectors and Normal Distributions 

Bernard Picinbono 

Abstruct- Complex random vectors are usually described by their 
covariance matrix. This is insufficient for a complete description of 
second-order statistics, and another matrix called relation matrix is 
necessary. Some of its properties are analyzed and used to express 
the probability density function of normal complex vectors. Various 
consequences are presented. 

I. INTRODUCTION 
Complex random vectors (RV’s) are widely used in many areas of 

signal processing such as spectral analysis [I] and array processing 
[2]. However, the statistical properties of RV’s effectively used are 
essentially limited to those of the covariance matrix. Linear prediction 
procedures and autoregressive modeling also use only properties 
of the correlation function of complex signals [l] and [3].  Many 
questions concerning statistical properties of RV’s remain open, 
however, and some of them will be analyzed in this correspondence. 
In the first part, we show that the covariance matrix is insufficient 
to completely describe the statistics of complex RV’s, and for this 
purpose, another matrix is necessary. Its definition and the conditions 
of its existence are analyzed. By using this matrix, we present the 
structure of the probability density function (PDF) of normal complex 
RV’s. From this PDF, we deduce the characteristic function and 
various properties of complex normal random variables. For example, 
it is shown that contrary to the real case, noncorrelated normal 
random variables arc not generally independent. Conditional PDF’s 
are also analyzed, and the consequences in mean square estimation 
are presented. 

Let us first remind that a complex RV Z of Cn is simply a pair 
of real RV’s of IR“ such that Z = X + ,jY. It is therefore always 
possible to treat all the problems concerning complex RV’s by using a 
real RV of El2”.  However, this procedure is often much more tedious 
than using directly the RV Z of Cn. 
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11. SECOND-ORDER PROPERTIES 
Even if the most interesting second-order properties are related to 

the covariance matrix r, it does not completely describe the second- 
order statistical properties of Z. For this, another matrix C ,  which 
we refer to as the relation matrix, is necessary. For zero-mean RV’s, 
these matrices arc defined by 

r E ( z z ~ ) ;  c k E ( z z ~ ) .  (1) 

In these equations, T means transposition, and H means transposition 
and complex conjugation. The matrix I’ is complex, Hermitian, and 
nonnegative definite (NND). We assume in the following that there 
is no zero eigenvalue. The matrix C is complex and symmetric 
and therefore satisfies C’ = C H .  where the star means the com- 
plex conjugate. This matrix C is very rarely introduced in signal 
processing literature, and the main reason for this fact is that it is 
explicitly or implicitly assumed to be zero. This characterizes second- 
order circularity, which means that second-order statistics of Z and 
exp (ja) Z arc the same for any a. This assumption of circularity 
[4] is sometimes even introduced in the definition, as, for example, 
in the normal case (sec [l, p. 431 and [5]) .  In [6],  the term “proper” 
is used instead of “circular.” However, circularity is only a particular 
assumption that is not always valid. 

The question that immediately appears is to know whetheir the 
matrices I? and C must only satisfy the conditions indicated above 
and deduced from their definition. The answer is no, and we shall 
establish a necessary and sufficient condition on the pair (I?. C ) .  

Proposition: Assuming that I’ is complex and positive definite and 
that C is complex and symmetric, this matrix C is a relation mahix of 
a random vector Z if and only if the matrix I?* - C H I T I C  is MND. 

Pro08 Suppose first that C is the relation matrix of a RV 
Z .  Consider now the RV W of Can defined by [Z’, Z H ] ’ .  Its 
covariance matrix is a 2n x 2 n  complex matrix, and a simple 
calculation yields 

As any covariance matrix, it is NND. Its Cholesky block factorization 
can be written as 

(3) 

where 

As I’2 is NND, the diagonal-block matrix appearing in (3) is also 
NND. The fact that I? is PD implies that P defined by (4) is NND, 
which gives the only if part. 

Suppose now that C is such that P is NND. We have to show that 
there exists a complex RV Z satisfying (1). It results from (3) that if 
r is positive definite and P NND, then I’r, which is defined by (2), 
is NND. This implies that there exists at least one RV of (Ezn such 
that its covariance matrix is r2 (see [3, p. 651). However, this docs 
not mean that this RV can be partitioned as [ Z T ,  Z H I T .  To arrive at 
this result, we must introduce the real and imaginary parts X and Y .  
For this purpose, let rZr be the 2n x 2n matrix defined by 

I’zr = MI’2MH ( 5 )  
where M is defined by 
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It is clear that as rz is NND, I ' 2 r  is also NND. Furthermore, a simple 
calculation shows that l?zr is a real symmetric matrix, or 

(7) 

with 

r3: = + R e ( r  i- C); rzy = + I m ( - r  + C) 

r,, = + I m p . +  C);  r, = $ R e ( r  - C )  (9) 
(8) 

where Re and Im stand for real and imaginary parts, respectively. 
As I'zr is symmetric and NND, it is possible to construct at least 

one vector of R'" written as [X'. YT]' such that its covariance 
matrix is rzr. Taking Z = X + jY ,  we easily obtain that the 
covariance and relation matrices of Z are I' and C, respectively. 
This completes the proof. 

It is worth pointing out that the matrix R appears in the E e a r  mean 
square estimation of Z' in terms of Z by the relation Z* = R Z .  
FJrthermore, the corresponding matrix error is P. The innovation 
Z* = Z* - RZ is uncorrelated with Z. However, it is easy to verify 
that E ( 5 Z ' )  = P .  Finally, it is clear that applying the matrix 
M defined by (6) to the vector [ Z T ,  ZH]' simply gives the vector 
[X', Y T ] T .  

111. NORMAL DISTRIBUTIONS 
Normal RV's arise in rnany areas of signal processing for well- 

known reasons. In the complex case, it is almost always assumed 
that the RV's are also circular, which considerably simplifies the 
calculation (see [3, p. 1181. [SI, and [6]). We will present the situation 
appearing when circularity is not introduced. 

A complex RV is said to be normal if its real and imaginary parts 
X and Y are jointly normal. As a consequence, the PDF of such a 
vector with zero mean value is 

with 

In this quadratic form, v is the vector of IR2" defined by vT = 
[x', y'], and rZr is the covariance matrix defined by (7). It is 
a 2r1 x 2n matrix, and the I L  x 11 matrices appearing in its block 
decomposition are 

r, = E ( x x ~ ) ;  ru = E ( Y Y ~ ) :  rzy = E(xY'). (12) 

Note that the last equality of (11) comes from the fact that all the 
previous elements are real. 

As noted, for example, in [7] or [8], it is clear that x and y in 
(10) can be expressed in terms of z = x + j y  and of z* ,  which 
introduces another form of the PDF. The calculation of this PDF 
is given in [7], and we present here a derivation giving the same 
result but expressed in terms of the matrices r and C previously 
introduced and not expliciily used in [7]. 

Let w be the vector defined by [zT. zH]', analog to the RV W 
introduced above. It results; from this definition that 

w = :.Ll-'v; v = Mw (13) 

where M is the matrix given by (6). As a consequence, the quadratic 
form (1 1) can be expresse'd as 

(14) q(x, y )  = q ' ( ~ ,  z*)  = WHr;lW 
with I?;' = MHr;:M. Furthermore, the classical rule for the 
product of determinants yields det, (Z7zr) = clet(l?L,,)l det (M)l'. By 

using the fact that a determinant is unchanged by adding rows or 
columns, it results from (6) that de t (M)  = ~ " 2 - " ,  and therefore, 
[det (I'zv)]-1/2 = 2'2 [det By combining all these results, 
we can express the PDF (10) as 

P ( X ,  Y) =p ' (z ,  z*)  
= (r)-"[det ( r w ) ] - l / z  exp (-iWHr;lW) (1s) 

This is the result given in [7] .  Let us now calculate I?,, appearing in 
(14) in terms of the elements of I'zr defined by (12). By using (6), 
we obtain that rU is the matnx I '2  defined by (2),  where 

r = r3 + ry + my, - rzy); 
c =rz  - rz, +.cr + rzU). (16) 

These equations are, of course, equivalent to (8) and (9). By using 
(3) for the determinant and by combining all these results, (1.5) takes 
the form 

dx. Y )  = d ( z , z * )  
= (n)-"[det (I?) det (P)]-'/' exp [ - $ q ' ( z ,  z*)] (17) 

with 

The principal interest of this expression is the fact that it uses only the 
two matrices I? and C defined by (1) and having a simple meaning 
in terms of the complex random vector Z. 

There is a case that is especially important. It appears when C = 0, 
which means that the random vector Z is circular. With this property, 
the previous equations become 

Ax, Y) = p c ( z )  

= (r)-" p e t  (I-)]-' exp [ - zHr - l z ]  (19) 

which is the classical expression of the PDF of a circular normal 
vector. 

It is now interesting to explicitly express the matrix, appearing in 
the quadratic form (18). By using a simple inverse calculation, we 
obtain 

-1 p-* - RNp-1 (c'ii ;) = (-RTp-* p-1 ) (20) 

where the matrices P and R are defined by (4), and P-* means 
(P-')*. With this matrix, the quadratic form (18) becomes 

q'(z, z*)  = 2 zNP-*z - Re(zTRTP-*z) ] .  (21) [ 
Finally, the PDF (17) can be written as 

Ax. Y) = p ( z ,  z') 
= (n)-"[det (I') det (P)]-'/' 

. exp [ - z " ~ - *  z + Re (z'R'P-*z)]. (22) 

It is possible to put this expression in another form. Applying the 
matrix inversion lemma (see [I ,  p. 241) to the matrix P-* given by 
(4) yields 

(23 )  p-* = r-1 + r - I c p - 1 ~ H r - I ,  

By inserting this expression in (22), the circular PDF p c  (z) defined 
by (19) appears, and this gives 

p(x, y) =pc(z)  [det ( r - 1 ~ ) l - 1 / 2  

. exp [-z"RHP-' Rz + Re(zTRTP-*z) ] .  (24) 
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Finally, it can be noted that as P is Hermitian and positive definite, 
de t ' (P)  = det (P*),  and by using (4), we obtain det (I'-'P) = 
det (I - I'-'CI'-*CH) = det (I - RHRT). As a result, the most 
general PDF of a complex normal RV can be factorized in a product 
of the PDF corresponding to the circular case by a function depending 
only on the matrices R and P defined by (4). A similar result is used 
in [SI. 

The same procedure can be applied for the characteristic function 
@(U,  v) defined by 

+(U,  v) = E [ exp j(uTx + v T y ) ] .  (25) 

Because of the normal assumption, this function can be written as 

+(U. v) = exp (-$aHrzra) (26) 

where a is the vector of IR2" equal to [uT. vT]?'. By introducing the 
vector w = x + j y ,  and the vector b of C2" equal to [wI': wHIT,  
we can write a = Mb, where M is defined by (6). The quadratic 
form appearing in (26) can be expressed in terms of b, which yields 

@?(U, v) = @?'(W. w*) 

= exp {-i[wNI'w +Re(wHCw*)]). (27) 

This expression must be compared with (22) giving the PDF. 
As a conclusion, we can say that the statistics of a normal complex 

vector are defined either by the three real n x n matrices appearing in 
(12) or by the two complex n~ x n. matrices I' and C defined by (1). 
If we use these two complex matrices, the PDF and the characteristic 
function are given by (22) and (27). These expressions are strongly 
simplified if the circular assumption defined by C = 0 holds, which 
justifies that in many cases, the circularity is introduced, explicitly or 
not, in the definition of the complex normality (see [5]) .  This can be 
summarized by using the notation N(m; I', C) ,  which means the 
distribution of a complex normal RV Z characterized by the mean 
value m and the covariance and relation matrices I' and C. A circular 
distribution is obviously of the type N(m; l': 0) and the real case 
noted N(m; I') appears when m and I' are real and C = I?. At the 
end of this section, it is worth noting some analogies and differences 
between the real and complex cases. It is clear that normality is 
preserved in any linear transformation. The same property is valid for 
circularity because if C = 0 for Z: this remains valid for A Z  for any 
matrix A. On the other hand, contrary to the real case, noncorrelation 
and normality do not imply independence. In fact, the components 2, 
of the RV Z are uncorrelated if and only if the matrix I' is diagonal. 
This does not imply that the characteristic function (27) can be 
factorized as a product of PDF's corresponding to each components, 
which defines the independence. This factorization, of course, appears 
when C = 0, i.e., in the circular case. This again shows the analogy 
between the real and complex circular normal cases. However, this is 
not the only situation where noncorrelation implies independence. 
This also appears when C is diagonal because the last term of 
(27) can be decomposed in a sum of terms corresponding to each 
component. Note that we haveseen above a more general situation: 
If Z is normal, the innovation Z" is normal, as deduced from Z by a 
linear transformation, as well as by construction uncorrelated with Z. 
However, Z* and Z are not independent because their interrelation 
matrix is not zero but P. 

IV. CONDITIONAL DISTRIBUTIONS 
It is well known that if X and Y are two real RV's, the best 

mean square estimation (MSE) of Y in terms of X is the conditional 
expectation or the regression r ( x )  = E ( Y l x )  (see [3, p. 3931). It 
is possible to show that the same result is valid for complex RV's, 

provided that a correct definition of the conditional expectation is 
introduced. This can be done as follows. 

Suppose that Z1 and Z2 are two complex RV's written as Z1 = 
XI + jY1 and Z2 = Xz + j Y p ,  which introduces the real and 
imaginary parts. The probability distribution of the pair Z1, ZZ is, in 
fact, that of the four real vectors X; and Y,. Suppose that there is 
a PDF p(x1, XZ; y ~ ,  y a ) .  The conditional PDF of ZI conditional to 
zz is defined by the classical rule applied to real quantities. Similarly, 
the conditional expectation is defined by 

E(Z1IZ2) = E ( X I I X ~ ,  y2) + j E ( Y l l x z :  ~ 2 ) .  (28) 

This especially means that if ZI is real, while Zp is complex, the 
conditional expectation is also real. 

Let us now calculate the conditional PDF p(z1)z2), or 
p(x1, ~11x2, y p ) ,  when the pair of RV's Z1 and Z2 is jointly normal 
with zero mean value. By using the notations previously introduced, 
its PDF can be noted as Nn(0, 0; I'l: r2, r 1 2 ;  C1, CZ, C12); 
where the matrices I'; and C, are defined as in (I), whereas 

r12 a qz,z,H); cI2 e q z , z , T ) .  (29) 

It is clear that the conditional PDF p (z 1 I z2 ) is still normal because 
this result is valid for real quantities, and the PDF is defined from 
the real RV's X, and Y,. We can then say that the PDF is in the 
form iVc[m(z2); I?. C], and the three matrices must be calculated 
from the matrices rl and C, defining the PDF p ( z ~ :  z2). 

The mean value m(zp) is the conditional expectation E(Z11z~)  
introduced above. In order to calculate this expectation, we note that 
in the normal case, the conditional expectation appearing in (23) is 
linear in xp and y ~ .  As a result, E(  Z1 Iz2) is widely linear [9] in Z:Z or 

E(ZlIz2) = rl(zp) = Azp + Bza. (30) 

In order to calculate the matrices A and B, we use the point 
indicated previously and not shown here that the regression is the best 
mean square estimation of Z1 in terms of Z2. This is characterized 
by the fact that the innovation Z, = Z1 - r1(Z2), where rI(.)  is 
defined by (30), is uncorrelated with Z1 and Z; . This yields the two 
orthogonality relations 

AI'z. + BC; = r12; AC2 + Bra = CIZ (31) 

allowing the calculation of A and B. From simple algebraic manip- 
ulation, we deduce 

A = (r12 - C ~ ~ I ' ; * C ~ ~ ) P ; * ;  B = (clp - r12r;1c2)r;1 
(32) 

where Pa is the matrix defined by (4) applied to the vector Z2. 
The matrix I' appearing in the conditional PDF is the covariance 

matrix of the vector Z1 E(Z1 Iz2) conditional to 2 2 .  However, this 
vector is the innovation Z1, which is uncorrelated with Z2 and Z; . AS 
a consequence, its real and imaginary parts are uncorrelated with X2 
and Y p ,  and as these quantities are real and normal, noncorrelation 
implies independence. This means that I? is simply the a priori 
covariance matrix of  Z, .  By using the expectation given by 8(30), 
we obtain 

I' = I'l -AI'; - BCE. (33) 

The same reasoning can be applied to the calculation of C, which is 
the relation matrix of 2, conditional to z2. This yields 

(34) 

This can be summarized as follows. The conditional PDF of the RV 
Z1  conditional to 22, noted p(z lJz t ) ,  is Y[m(zz); I', C ] .  In this 
expression m ( z 2 )  is given by (30), where A and B are expressed by 
(32). Furthermore, I' and C are given by (33) and (34), respectively. 

C = C1 - ACT2 - BI'T2. 
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Let us finally consider the circular case. It is Characterized by the 
fact that all the matrices <: are zero. This considerably simpliifies the 
structure, and the PDF p ( z l / z * )  is normal circular with the mean 
value r121’;’z2 and the covariance matrix r = - r12r;’l721. 

is exactly the same (expression as in the real case. 

REFERENCES 

S. Kay, Modern Spectral Analysis, Theory and Applications. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1989. 
R. A. Monzigo and T. Vv’. Miller, Introduction to AdaptiveArray.s. New 
York: Wiley, 1980. 
B. Picinbono, Random Signals and Systems. Englewood Cliffs, NJ: 
Prentice-Hall, 1993. 
~, “On circularity,” IEEE Trans. Signal Processing, vol. 42, pp. 
3473-3482, 1994. 
K. Miller, Multidimensional Gaussian Distributions. New York: Wi- 
ley, 1964. 
F. Neeser and J. Massey, “Proper complex random procesires with 
applications to information theory,” IEEE Trans. Inform. Theory, vol. 
39, pp, 1293-1302, 1993. 
A. van den Bos, “The: multivariate complex normal distribution-A 
generalization,” IEEE Trans. Inform. Theory, vol. 41, pp. 537-539, 1995. 
P. Amblard and P. Duvaut, “Filtrage adapt6 dans le cas gaussien 
complexe non circulaire,” in Proc. 15th Symp. GRETSI, 1995, pp. 
14 1-1 44. 
B. Picinbono and P. Chevalier, “Widely linear estimation with complex 
data,” 1EEE Trans. Signal Processing, vol. 43, pp. 2030-2033, 1995. 

Non-Gaussiam Multivariate Adaptive AR 
Estimation Using the Super Exponential Algoritlhm 

Massimiliano Martone 

Abstract- We formulate as a deconvolution problem the 
causalhoncausal non-Gaussian multichannel autoregressive (AR) 
parameter estimation problem. The super exponential aljporithm 
presented in a recent paper by Shalvi and Weinstein is generalized 
to the vector case. We present an adaptive implementation that is 
very attractive since it is higher order statistics (HOS) based b u t  does 
not present the high comlputational complexity of methods proposed 
up to now. 

1 .  INTRODUCTION 
Multichannel time series analysis is widely applied in mul1:isensor 

signal processing, parallel image processing, multichannel power 
spectrum estimation, and multichannel digital communication sys- 
tems. The direct extension of the single channel estimation methods 
to the multichannel case involves complex matrix operations and 
becomes unattractive when real-time algorithms are needed to track 
time-varying parameters. l a  [5]  and [6], the derivation of algorithms 
to solve this problem was addressed, but those approaches were 
limited by the use of second-order statistics to causal, minimum- 
phase models. In a recent paper [l], an attractive approach to 
deconvolution (which wa,s called the super exponential algorithm) 
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was presented: The method is generally valid for non-Gaussian inputs 
and nonminimum phase systems. In [l], the algorithm was applied to 
a typical communication problem: the equalization (deconvolution) 
of a linear system driven by a non-Gaussian source. In this work, we 
present the generalization of the algorithm to the multichannel case 
and apply it to the estimation of a causalhoncausal autoregressive 
(AR) multichannel model. In addition, we propose an adaptive 
implementation of the algorithm. An important application of the 
method is the estimation of baseband radio frequency propagation 
channels in a multisensor antenna receiver for wireless communi- 
cations when the channels afflicted by multipath are modeled as 
AR. The interference effect among transmitters is, in fact, well 
modeled as a multichannel system (see [4]). In a communication 
system, the (channel estimation procedure is important and directly 
affects the overall system performance. The main motivation of 
this work is the computational complexity of known algorithms for 
multichannel system identification based on higher order statistics 
(HOS) [3], [9] and the limited applicability presented by second- 
order statistics (SOS) methods. In particular, the approach presented 
in [3] is not adaptive and not attractive from the computational point 
of view. On the other hand, the algorithm proposed here is based 
on a more computationally efficient procedure whose performance 
is very promising. In Section 11, we formulate the problem of the 
AR estimation as a deconvolution problem and give the necessary 
equations to derive the algorithm. In Section 111, we derive the set 
of linear equations necessary to perform estimation and describe the 
iterative procedure to obtain the AR parameters. In Section IV, an 
adaptive implementation is proposed. In Section V, we show the 
results of some computer simulations. 

11. FORMULAT~ON OF THE PROBLEM 

We assume that the output vector sequence of dimensionality i. 
is generated by a stationary cansalhoncausal, non-Gaussian process 
described by (( .)T designates transposition, vectors and matrices are 
bold, notations [MI[, and [v] k stand for the 1: 711 element of matrix 
M and the kth element of vector v: respectively) 

P 2  

A ( i ) y ( n  - i )  = x(n) 
z = P l  

where x(7z) is a ?‘-variate input process zero mean, spatially and 
temporally i i.d., non-Gaussian, and y ( n )  is the ?‘-variate output 
vector process. A( i ) ,  i = p l ,  p l  + 1, . . .  , p 2  are matrices of 
dimension i- x 71, A(p1) = (we indicate with I,,,, the identity 
matrix of dimensions n x 7 ~ ) ,  and A ( p 2 )  has full rank. The observed 
output process is y,(n) = y ( n )  + v(n),  where v[n) is a Gaussian 
vector process independent of x(n) .  We assume, however, for the 
derivation of the algorithm that the observation noise is not present. 
Let A(i) = A ( i  - P I ) ,  p = p2 - 171. In the z domain, we have 
A ( z )  = A(Z) .? -~ ’~ ,  where A(z) = + Er=‘=, A(i )zP and the 
roots of dct [ J ( z ) ]  do not lie on the unit circle. It is assumed that 
A ( r )  is irreducible. The transfer function of the AR model in the z 
domain is X ( z )  = [ A ( z ) ] - ’ .  The inpudoutput representation of the 
system under the stated assumptions can be expressed (the noise is 
not considered) as follows: 

y ( n )  = H(k)x (n  - k )  (2)  
k 
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