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Abstract. Using a projective approach, new necessary conditions and new sufficient conditions
for optimization problems with explicit or implicit constraints are examined. They are compared
to previous ones. A particular emphasis is given to mathematical programming problems with non-
polyhedral constraints. This case occurs in particular when the constraints are defined in functional
spaces.
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1. Introduction. Devising efficient optimality conditions is an important ob-
jective when dealing with optimization problems. Therefore the literature on the sub-
ject is rich. (See [11], [15], [25], [29], [30], [41] for recent contributions.) Structured
problems, such as mathematical programming problems, optimal control problems,
continuous time problems, and semi-infinite programming problems, require a partic-
ular attention because the constraints are not necessarily defined by a finite number
of scalar functions. This lack of polyhedrality causes a gap between necessary condi-
tions and sufficient conditions, (see, for instance, [24], [28]). Moreover, the conditions
cannot be given the simple and aesthetic form of the cases in which the constraints
are polyhedral, as in [3], [4], [7], [17]–[19], and [23], for instance.

In [37] we reduced this gap to an acceptable extent: when the decision space
is finite dimensional, the sufficient condition differs from the necessary condition by
the replacement of an inequality by a strict inequality. As the unconstrained case
shows, this difference is unavoidable. However, the second-order conditions of [37]
are complex, and so are the conditions of [20], [27], and [31]. It is the purpose of the
present work to present more handy conditions inspired by [11] and to compare them
with recent proposals. It appears that the new conditions are not as selective as the
previous ones: the sufficient (resp., the necessary) condition is a consequence of the
sufficient (resp., necessary) condition of [37]. However, the new necessary condition
is close to the sufficient condition, and such a fact is rather satisfactory.

For simplicity, we limit our study to the second-order case and we do not insist
on the projective aspect of the tangent sets we deal with, which is just pointed out in
section 2, although it is probably the main novelty here.

The optimality conditions are presented in section 3 along with a comparison with
the results of [37]. Mathematical programming problems are considered in section 4.
We devote section 5 to comparisons with recent works which came to our atten-
tion after the original version of the present paper was submitted. We are especially
indebted to the referees for references [12] and [26]. We hope the clarifications we give
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will provide hints for obtaining concrete and convenient conditions in the specially
structured cases mentioned above.

2. Projective tangent sets. In what follows, we denote by P (resp., R+) the
set of positive (resp., nonnegative) real numbers. The closed ball with center x and
radius r in a normed vector space (n.v.s.) X is denoted by B(x, r). The closure of a
subset F of X is denoted by clF. Recall that the projective space P (X) associated
with a vector space X is the set of equivalence classes of pairs (v, r) ∈ X×R+ for the
relation

(v, r) ∼ (v′, r′) if (v′, r′) = (tv, tr) for some t > 0.

Obviously, P (X) can be identified with the union

P (X) = X1 ∪X0,

where X1 (resp., X0) is the image of X × {1} (resp., X × {0}) under the canonical
mapping p : X × R+ → P (X). We write [v, r] to denote p (v, r) and we call p the
projective projection. If Y is another vector space and if h : X → Y is a positively
homogeneous mapping, then h induces a mapping hP : P (X) → P (Y ) satisfying
hP (p (x, r)) = p (h (x) , r) for each (x, r) ∈ X×R+, hence hP (X1) ⊂ Y1, h

P (X0) ⊂ Y0,

and if hP ([x, 1]) = [y, 1], then hP ([x, 0]) = [y, 0]. Conversely, any mapping ĥ : P (X)→
P (Y ) satisfying these conditions is the mapping hP associated with some positively
homogeneous map h : X → Y.

Definition 1. Given an integer k ≥ 2, a subset F of an n.v.s. X, x ∈ cl F,
v1, . . . , vk−1 ∈ X, the projective tangent set of order k to F at (x, v1, . . . vk−1) is the
image PT k (F, x, v1, . . . , vk−1) by the projective projection p of the set

T̂ k (F, x, v1, . . . , vk−1) of pairs (w, r) ∈ X × R+ such that there exist sequences (tn) ,

(rn) in P with limits 0 and r, resp., (wn)
σ→ w (weak convergence) such that

(
r−1
n tn

)→
0 and

xn := x+ tnv1 +
t2n
2
v2 + · · ·+ tk−1

n

(k − 1)!
vk−1 +

tkn
k!

wn
rn
∈ F

for each n.
The preceding definition has been inspired by a notion presented in [11]; it is

closely related to two notions given in [26]. A precise comparison will be given in
the last section of the paper. Several variants are possible. For instance, one can
take strong convergence instead of weak convergence in what precedes, or weak∗

convergence if X is a dual space. One could also use nets (or, rather, bounded nets).
Also for some purposes, it would be possible to replace the condition

(
r−1
n tn

)→ 0 by

the weaker condition
(
r−1
n tnwn

)→ 0. Clearly, by its very definition, the weak tangent
set of order k to F at (x, v1, . . . , vk−1) (also denoted by F k (x, v1, . . . , vk−1)),

T k (F, x, v1, . . . , vk−1) = lim sup
t↓0

k!t−k
(
F − x− tv1 · · · − tk−1

(k − 1)!
vk−1

)
coincides with the set F k1 (x, v1, . . . , vk−1), where

F kr (x, v1, . . . , vk−1) :=
{
w ∈ X : (w, r) ∈ T̂ k (F, x, v1, . . . , vk−1)

}
.

Here the limit sup is the sequential limit sup with respect to the weak topology.
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It may be useful to split the set PT 2 (F, x, v) into two parts.. We observe that
this set is the union of p

(
F 2 (x, v)× {1}) and p

(
F 2

0 (x, v)× {0}), where

F 2 (x, v) =

{
w ∈ X : ∃ (tn)↘ 0,∃ (wn)

σ→ w, x+ tnv +
1

2
t2nwn ∈ F ∀n ∈ N

}
is the familiar (weak upper) second-order tangent set to F at (x, v) and

F 2
0 (x, v) =

{
w ∈ X : ∃ (tn) ↓ 0,∃ (rn) ↓ 0,∃ (wn)

σ→ w,
(
r−1
n tn

)→ 0,

x+ tnv +
1

2
r−1
n t2nwn ∈ F ∀n

}
is what will be called the asymptotic second-order tangent cone to F at (x, v) .

Similar decompositions hold for higher-order projective tangent sets. For the sake
of simplicity, in what follows we focus our attention on the second-order case only.

Although the second-order tangent set to a smooth subset may be empty, as the
example of

F :=
{

(r, s) ∈ R2 : r2 = s3
}
, x = (0, 0), v := (1, 0)

shows, the following result asserts that the projective tangent set of order two in the
reflexive case is always nonempty.

Proposition 2.1. Let v ∈ F ′ (x) := T (F, x), where F is an arbitrary subset
of the reflexive Banach space X and x ∈ cl F. Then either F 2 (x, v) or F 2

0 (x, v) is
nonempty.

Proof. By assumption, there exists a sequence (tn) ↘ 0 such that the se-
quence (sn) given by sn := t−1

n d (x+ tnv, F ) converges to 0. Since 0 ∈ F 2 (x, v)
if sn = 0 for infinitely many n, we may assume sn > 0 and set rn = 1

2s
−1
n tn,

wn = s−1
n t−1

n (zn − x− tnv) , where zn ∈ F is such that ‖x+ tnv − zn‖ ≤ 2sntn.
Then (r−1

n tn) = (2sn)→ 0 and

x+ tnv +
1

2
t2nr
−1
n wn = zn ∈ F.

Taking a subsequence if necessary, we may suppose (rn)→ r for some r ∈ [0,∞] and
(wn) has a weak limit w in 2BX . If r =∞, setting w′n = r−1

n wn, we get (w′n)→ 0 and
0 ∈ F 2 (x, v) (strong). If r ∈ P the same choice of (w′n) shows that r−1w ∈ F 2 (x, v)
(weak). Finally, if r = 0 we have w ∈ F 2

0 (x, v) .
Example 2.1. Suppose F is the graph of a twice differentiable mapping g : U →

V in X = U×V, where U and V are n.v.s. Then, for (u0, v0) ∈ F, (u, v) ∈ F ′ (u0, v0) ,
(w, z) ∈ X, r > 0, one has

((w, z) , r) ∈ T̂ 2F ((u0, v0) , (u, v))

iff z = g′ (u0)w + rg′′ (u0)uu, as an easy calculation shows. Since any submanifold
of a normed vector space can be represented locally as a graph, this example applies
in a variety of situations.

The following proposition shows the concept of projective tangent set is invariant
under Ck-diffeomorphisms and thus can be extended to subsets of Ck-manifolds. We
take k = 2 for simplicity.

Proposition 2.2. Let g : X → Y be a mapping of class C2 on an open subset
X0 of X, let B be a subset of X, x ∈ X0 ∩ clB, and let C be a subset of Y with
g (B) ⊂ C. Then for each v ∈ X, (w, r) ∈ T̂ 2 (B, x, v) one has

(g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) .
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Proof. By definition there exist sequences (tn) ↘ 0, (wn, rn) → (w, r) such
that {rn} ⊂ P,

(
r−1
n tn

)→ 0, and xn := x+ tnv + 2−1r−1
n t2nwn ∈ B for each n. Then

g (xn) ∈ C, and since (tnvn)→ 0 strongly if vn := v+2−1r−1
n tnwn, for some (yn)→ 0,

one has

g (xn) = g (x) + tng
′ (x) v +

1

2
r−1
n t2n (g′ (x)wn + rng

′′ (x) vv) + t2nyn

in view of Taylor’s expansion. Setting zn := g′ (x)wn + rng
′′ (x) vv + 2rnyn and

observing that (zn)
σ→ z := g′ (x)w + rg′′ (x) vv and that

(
r−1
n tn

) → 0, the result
follows.

The following property will be useful. For r = 1 it corresponds to a property
similar to the one observed in [34], [13, Proposition 3.1].

Proposition 2.3. Let C be a convex subset of X, and let x ∈ C, v ∈ T (C, x).

Then, for any z ∈ T (T (C, x), v), (w, r) ∈ T̂ 2 (C, x, v), one has

(w + z, r) ∈ T̂ 2 (C, x, v) .

Proof. By definition, w ∈ F 2
r (x, v) :=

{
w ∈ X : (w, r) ∈ T̂ 2 (C, x, v)

}
, so that

there exist sequences (rn)→ r, (tn)→ 0+, (wn)→ w such that
(
r−1
n tn

)→ 0, rn > 0,
and

xn = x+ tnv +
1

2
r−1
n t2nwn ∈ C

for each n. For any y ∈ C and any p, q ≥ 0 we have(
1− 1

2
pr−1
n tn

)
xn +

1

2
pr−1
n tn(x+ qtn(y − x)) ∈ C;

as
(
r−1
n tn

)→ 0 we obtain w+ p(q(y− x)− v) ∈ Fr(x, v). As this set is closed, and as
R+(C−x) is dense in T (C, x), we also have w+p(T (C, x)−v) ⊂ Fr(x, v). Since T (C, x)
is convex, R+(T (C, x)− v) is dense in T (T (C, x), v) and we get w + T (T (C, x), v) ⊂
Fr(x, v).

Among the variants of Definition 1, the following one seems to be noticeable. We
will see in section 5 that this variant is closely related to Definition 2.2 of [26].

Definition 2. The second-order projective incident set to a subset F of X at
(x, v) with x ∈ F, v ∈ T (F, x) is the image by the projective projection of the set

T̂ ii(F, x, v) of (w, r) ∈ X × R+ such that for any sequences (tn) → 0+, (rn) → r
with rn > 0, (r−1

n tn) → 0, there exists a sequence (wn) → w such that x + tnv +
2−1r−1

n t2nwn ∈ F for each n.

Given r ∈ R+ we denote by T̂ ii(F, x, v, r) the set of w ∈ X such that (w, r) ∈
T̂ ii(F, x, v), and we use the similar notation T̂ 2(F, x, v, r) when T̂ ii(F, x, v) is replaced

with T̂ 2(F, x, v).
Part of the interest of this notion stems from the following property, the proof of

which follows easily from the definition.
Proposition 2.4. (a) If F is convex, then T̂ ii(F, x, v, r) is convex for each

(x, v, r);

(b) if F is convex, then (1− λ)T̂ ii(F, x, v, r) + λT̂ 2(F, x, v, r) ⊂ T̂ 2(F, x, v, r) for
any λ ∈ [0, 1];

(c) T̂ ii(F ×G, (x, y), (u, v), r) = T̂ ii(F, x, u, r)× T̂ ii(G, y, v, r);
(d) T̂ ii(F, x, u, r) × T̂ 2(G, y, v, r) ⊂ T̂ 2(F × G, (x, y), (u, v), r) ⊂ T̂ 2(F, x, u, r) ×

T̂ 2(G, y, v, r).
Sequential concepts as in [21], [22], [37], and [38] can be devised for similar aims.
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3. Optimality conditions. The following necessary optimality condition justi-
fies the introduction of the projective tangent set of order two. The proof we present
has been devised independently of the one in [12, Theorem 2]; however, results of this
kind had been announced earlier by A. Cambini at a lecture in Marseille (see [11] for
a partial account and section 5 for a comparison).

Proposition 3.1. Suppose f : X → R is twice differentiable at x ∈ F and
attains a (local) minimum on F ⊂ X at x. Then

f ′ (x) v ≥ 0 for each v ∈ F ′ (x) = T (F, x),

and whenever v ∈ F ′ (x) ∩ ker f ′ (x), one has

f ′ (x)w + rf ′′ (x) vv ≥ 0 for each (w, r) ∈ T̂ 2 (F, x, v) .

Clearly this last condition can be formulated on the second projective tangent
space PT 2 (F, x, v) .

Proof. Since for g (·) := f (·)− f (x) we have g (F ) ⊂ R+, the result follows from
Proposition 2.2 and from the fact that for y = 0, v = 0 one has

T̂ 2 (R+, y, v) = {(z, r) ∈ R× R+ : z ≥ 0} .
Example 3.1. Let F = R × {0} ∪ {0} × R in X = R2. Then F ′ (0) = F , and,

as for x = 0, v ∈ F, the set T̂ 2 (F, x, v) contains (w, 1), with w = 0, a necessary
optimality condition for f on F at 0 is f ′ (0) = 0, f ′′ (0) vv ≥ 0 for each v ∈ F.

It may be useful to split the condition of Proposition 3.1 into two parts, using the
decomposition of PT 2 (F, x, v) we described above.

Corollary 3.2. If f : X → R is twice differentiable at x ∈ F and attains
a local minimum on F at x, then f ′ (x) v ≥ 0 for each v ∈ F ′ (x), and when v ∈
F ′ (x) ∩ ker f ′ (x), one has

f ′ (x)w + f ′′ (x) vv ≥ 0 for each w ∈ F 2 (x, v) ,

f ′ (x)w ≥ 0 for each w ∈ F 2
0 (x, v) .

The first condition is well known but the second one is new.
Example 3.2. Let F =

{
(r, s) ∈ R2 : s =| r |α}, where α ∈ ]1, 2[ . Then for

x = (0, 0) , v = (1, 0) , the set F 2 (x, v) is empty but F 2
0 (x, v) contains w = (0, 1) .

Thus a necessary condition for (0, 0) to be a minimizer of f on F is f ′ (0, 0) = 0. Such
a condition can also be obtained from [37, Theorem 1.2] via a computation similar to
the one in [37, Example 1.4].

Example 3.3. Given a subset F of the space X, x ∈ F, v ∈ X\{0}, given
0 < p < q, let us denote by T q/p(F, x, v) the set of vectors w, such that for some
sequences (sn) → 0+, (wn) → w one has x + spnv + sqnwn ∈ F for each n. Then if
q > 2p, one has 0 ∈ F 2(x, v) whenever T q/p(F, x, v) is nonempty, while for q = 2p
one has F 2(x, v) = T q/p(F, x, v); for q < 2p and for w ∈ T q/p(F, x, v) one has

(w, 0) ∈ T̂ 2 (F, x, v) , as one can see by taking (tn) := (spn), (rn) := (s2p−q
n ). In the last

case, a necessary condition for f to attain a local minimum on F at x is f ′(x)w ≥ 0
whenever f ′(x)v = 0 and w ∈ T q/p(F, x, v). The relationships with the higher-order
optimality conditions of [14] and [15] will be considered elsewhere.

The preceding examples prompt us to clarify the relationships between Corollary
3.2 (which is equivalent to Proposition 3.1) and [37, Theorem 1.2].

Proposition 3.3. The necessary optimality condition of [37]:

1

2
f ′′ (x) vv + lim inf

(t,u)→(0,v), t>0, x+tu∈F
f ′(x)t−1(u− v) ≥ 0 ∀v ∈ F ′(x) ∩ ker f ′(x)

implies the necessary condition of Corollary 3.2.
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Proof. Let v ∈ F ′ (x) ∩ ker f ′ (x) . The condition f ′′ (x) vv + f ′ (x)w ≥ 0 for each
w ∈ F 2 (x, v) is a consequence of [37, Theorem 1.2] by [37, Corollary 1.3]. Let us
derive the condition f ′ (x)w ≥ 0 for w ∈ F 2

0 (x, v) . Suppose on the contrary that
f ′ (x)w < 0 for some w ∈ F 2

0 (x, u) . Then there exist sequences (tn) ↓ 0, (rn) ↓ 0,

(wn)
σ→ w such that

(
r−1
n tn

) ↓ 0, xn := x + tnv + (2rn)
−1
t2nwn ∈ F for each n.

Setting vn := v + (2rn)
−1
tnwn we see that (vn) → v, x + tnvn = xn ∈ F and

f ′ (x) t−1
n (vn − v) = (2rn)−1f ′(x)(wn) → −∞, which is a contradiction with our

assumption.
Although the necessary condition of Proposition 3.1 is not as strong as [37, The-

orem 1.2], one can still associate to it a sufficient condition of the same type (see also
[11] and [12, Theorem 2] for a closely related result).

Proposition 3.4. If X is finite dimensional, if f is twice differentiable at x ∈ F ,
and if the following conditions hold, then x is a local strict minimizer of f on F :

(a) f ′ (x) v ≥ 0 for each v ∈ F ′ (x);
(b) if v ∈ F ′ (x) ∩ ker f ′ (x) , v 6= 0, then f ′ (x)w + rf ′′ (x) vv > 0 for each

(w, r) ∈ T̂ 2 (F, x, v) \ {(0, 0)} .
Proof. Suppose on the contrary there exists a sequence (xn) of F\ {x} with limit

x such that f (xn) ≤ f (x) for each n ∈ N. Let tn := ‖xn − x‖ , vn := t−1
n (xn − x) .

Taking a subsequence if necessary, we may suppose (vn) has a limit v with norm
1. Let sn := ‖vn − v‖ . When sn = 0 for infinitely many n we get 0 ∈ F 2 (x, v) and
f ′ (x) v = 0 (by (a) and the inequality t−1

n (f(x+tnvn)−f(x)) ≤ 0), and f ′′ (x) vv ≤ 0,
a contradiction, as we can take (w, r) = (0, 1) in (b). Thus we may suppose sn > 0

for each n and assume that the sequence (rn) given by rn := (2sn)
−1
tn has a limit

r in R+ ∪ {∞}, and the sequence (wn) :=
(
s−1
n (vn − v)

)
has a limit w with norm 1.

Then
(
r−1
n tn

)
= (2sn)→ 0 and

x+ tnv +
1

2
r−1
n t2nwn = xn ∈ F ∀n.

Thus, when r is finite, we have (w, r) ∈ T̂ 2 (F, x, v), and, since f (A) ⊂ f (x)−R+ for
A = {xn : n ∈ N} , we obtain f ′ (x) v ≤ 0, hence f ′ (x) v = 0, and

f ′ (x)w + rf ′′ (x) vv ≤ 0

by a computation similar to the one in Proposition 2.2. This is a contradiction, as
w 6= 0.

When r =∞, setting r′ = 1, r′n = 1, w′n = r−1
n wn, we observe that (w′n)→ 0 and

x+tnv+ 1
2 t

2
nw
′
n = xn ∈ F for each n, so that 0 ∈ F 2 (x, v) or (w′, r′) ∈ T̂ 2 (F, x, v), and

we get, as above, f ′′ (x) vv ≤ 0, which is a contradiction, since (0, r′) ∈ T̂ 2 (F, x, v) ,
v 6= 0.

The preceding sufficient condition is in fact a consequence of the sufficient condi-
tion of [37, Theorem 1.7], as the following result shows.

Proposition 3.5. Suppose X is finite dimensional. If f is twice differentiable
at x ∈ F and v ∈ F ′ (x) ∩ ker f ′ (x) , v 6= 0, the condition

f ′ (x)w + rf ′′ (x) vv > 0 for each (w, r) ∈ T̂ 2 (F, x, v) \ {(0, 0)}(1)

implies the condition

1

2
f ′′ (x) vv + lim inf

(t,u)→(0,v), t>0, x+tu∈F
f ′(x)t−1(u− v) > 0 ∀v ∈ F ′(0) ∩ ker f ′(x).(2)



SECOND-ORDER CONDITIONS 309

Proof. Suppose on the contrary that the first condition holds and there exist
sequences (tn)→ 0+, (vn)→ v such that x+ tnvn ∈ F for each n and

1

2
f ′′ (x) vv + f ′ (x) t−1

n (vn − v)→ c ≤ 0.

Let sn = ‖vn − v‖ . If sn = 0 for infinitely many n, we have w := 0 ∈ F 2 (x, v) and
1
2f
′′ (x) vv = c ≤ 0, so that for r = 1

2 , w = 0, we get a contradiction with (1).
Thus, we may assume sn > 0 for each n and that (rn) :=

(
2−1s−1

n tn
)

has a

limit r in R+ ∪ {∞} and (wn) :=
(
s−1
n (vn − v)

)
has a limit w 6= 0. If r =∞, setting

w′n = 2snt
−1
n wn, we see that (w′n)→ 0, xn := x+tnv+ 1

2 t
2
nw
′
n = x+tnvn ∈ F for each

n, hence w′ := 0 ∈ F 2 (x, v), and, as t−1
n (vn − v) = 1

2w
′
n, we get f ′ (x) 0+ 1

2f
′′ (x) vv =

c ≤ 0, a contradiction with (0, 1) ∈ T̂ 2 (F, x, v) . If r <∞ we have

xn := x+ tnvn = x+ tnv +
1

2
r−1
n t2nwn ∈ F

and
(
r−1
n tn

)
= (2sn)→ 0, so that (w, r) ∈ T̂ 2 (F, x, v) . Since

f ′ (x)w = lim s−1
n tnf

′ (x) t−1
n (vn − v) = 2r

(
c− 1

2
f ′′ (x) vv

)
we get

f ′ (x)w + rf ′′ (x) vv = 2rc ≤ 0,

a contradiction.
However, the implication shown in the preceding condition can be partly reversed.
Proposition 3.6. Suppose that f is twice differentiable at x ∈ F. Then, for each

v ∈ (F ′ (x) \ {0}) ∩ ker f ′(x), the condition

lim inf
(t,u)→(0,v), t>0, x+tu∈F

f ′(x)t−1(u− v) +
1

2
f ′′ (x) vv > 0(3)

implies the condition

f ′ (x)w + rf ′′ (x) vv > 0 for each (w, r) ∈ T̂ 2 (F, x, v) with r 6= 0.(4)

Proof. Let (w, r) ∈ T̂ 2 (F, x, v) with r > 0: there exist positive sequences (tn)→ 0,

(rn)→ r, and a sequence (wn)
σ→ w such that

(
r−1
n tn

)→ 0 and

xn := x+ tnv +
1

2
r−1
n t2nwn ∈ F

for each n. Let vn := t−1
n (xn − x) = v+ 1

2r
−1
n tnwn, so that (vn)→ v, x+ tnvn = xn ∈

F. By assumption, there exists some c > 0 such that, for n large enough, one has

1

2
f ′′ (x) vv + f ′ (x) t−1

n (vn − v) ≥ c,

hence

1

2
rnf
′′ (x) vv +

1

2
f ′ (x)wn > crn >

1

2
cr > 0

as r > 0, and the result follows by taking limits.
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4. Application to mathematical programming. Let us consider in this sec-
tion the mathematical programming problem

(M) minimize f (x) : x ∈ F := g−1 (C) ,

where f : X → R, g : X → Z are twice differentiable mappings, C is a closed convex
subset of Z, and X and Z are Banach spaces. Such a formulation encompasses
problems in which equality and inequality constraints are present.

We will need a series of preliminary results of some independent interest. The
first one gives a characterization of the projective tangent set of order two to the
feasible set F. It uses a condition of metric regularity introduced in [36]. Here, for
z ∈ Z we set d(z, C) = infc∈C ‖z − c‖ to denote the distance function to C, and we
adopt a similar notation for subsets of X.

Proposition 4.1. Suppose the following directional metric regularity condition
is satisfied for x ∈ X, v ∈ X:

(DMR) there exists µ > 0, ρ > 0 such that for t ∈ (0, ρ) , u ∈ B (v, ρ) one has

d
(
x+ tu, g−1 (C)

) ≤ µd (g (x+ tu) , C) .

Then, for F = g−1 (C), one has

(w, r) ∈ T̂ 2 (F, x, v)⇔ (g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) .

Proof. In view of Proposition 2.2 it suffices to prove that (w, r) ∈ T̂ 2 (F, x, v)

whenever (g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) . Let (rn) → r, (tn) →
0+, (zn)→ z := g′ (x)w + rg′′ (x) vv be such that

(
r−1
n tn

)→ 0, rn > 0 and

g (x) + tng
′ (x) v +

1

2
r−1
n t2nzn ∈ C

for each n. For n large enough we have tn ∈ (0, ρ) , un := v + 2−1r−1
n tnw ∈ B (v, ρ) ,

so that

d (x+ tnun, F ) ≤ µ d (g (x+ tnun) , C)

≤ µ ∥∥g (x+ tnun)− g (x)− tng′ (x) v − 2−1r−1
n t2nzn

∥∥
≤ 1

2
r−1
n t2nµ ‖g′ (x)w + rng

′′ (x) vv − zn‖+ o
(
t2n
)
.

Since (zn)→ z we can find xn ∈ F such that
(
rnt
−2
n ‖x+ tnun − xn‖

)→ 0. Defining

wn by xn := x+ tnv + 2−1r−1
n t2nwn we get (wn)→ w, so that w ∈ T̂ 2 (F, x, v).

Let us observe that condition (DMR) is a consequence of the following metric
regularity condition:

(MR) there exist µ > 0, δ > 0 such that for each x′ ∈ B (x, δ) one has

d
(
x′, g−1 (C)

) ≤ µd (g (x′) , C) .

This condition is of more common use than the directional metric regularity condition
(DMR). In turn, condition (MR) has been shown to be a consequence of the classical
Mangasarian–Fromovitz qualification [28], [18] and of its extension to the infinite
dimensional case in [40], [32], [6], [16], and [42], which can be written

(Rr) g′ (x) (X)− R+ (C − g (x)) = Z.
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When the interior int C of C is nonempty, it has been shown in [32] that the radial
tangent cone T r (C, x) := R+ (C − g(x)) in the preceding condition can be replaced
by the usual tangent cone T (C, g(x)) = cl (T r (C, g(x))) :

(R) g′ (x) (X)− T (C, g(x)) = Z.

However, in general, condition (R) is weaker than condition (Rr) and does not imply
(MR). We will use a second-order qualification condition which generalizes the Ben-
Tal qualification condition [2]:

(TR) g′(x)(X)− T (T (C, g(x)), g′(x)v) = Z,

in which v is a given vector of X; it is still weaker than (R).
We will also need the following duality result.
Lemma 4.2. Let P and Q be closed convex cones of the Banach spaces X and Z,

resp., and let A : X → Z, c : X → R be linear and continuous and such that for some
m ∈ R, b ∈ Z

c (x) ≥ m for each x ∈ P ∩A−1 (b+Q) .

Then, if A (P )−Q = Z, there exists y ∈ Q0 such that for each x ∈ P
c (x) + 〈y,Ax− b〉 ≥ m.

Since P is a cone, the conclusion can be written 0 ∈ c+y◦A+P 0 and 〈y,−b〉 ≥ m.
When P = X, we have c+ y ◦A = 0. Taking m = 0, b = 0 we get a Farkas lemma:

−c ∈ (A−1(Q) ∩ P )0 ⇒ ∃y ∈ Q0 : −(c+ y ◦A) ∈ P 0.

In what follows we say that v ∈ X is a critical vector at x if f ′(x)v = 0, g′(x)v ∈
T (C, g(x)), and we write v ∈ K(x).

Theorem 4.3. Let x be a (local) solution to problem (P). Suppose conditions
(DMR) and (TR) are satisfied at x. Then, for each critical vector v ∈ K(x), v 6= 0

and each (z, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) there exists some y ∈ N (T (C, g (x)), g′(x)v)
such that

f ′ (x) + y ◦ g′ (x) = 0,

r (f ′′ (x) vv + 〈y, g′′ (x) vv〉) ≥ 〈y, z〉.

Proof. Given v ∈ K(x)\ {0} , (z, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) , for each w ∈ X such
that

g′ (x)w + rg′′ (x) vv − z ∈ T (T (C, g (x)) , g′(x)v),

Proposition 2.3 ensures that

(g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) .

It follows from Proposition 4.1 that

(w, r) ∈ T̂ 2 (F, x, v) .

Then, by Proposition 3.1, we have

f ′ (x)w ≥ −rf ′′ (x) vv.
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Taking in Lemma 4.2, A = g′ (x) , b = z − rg′′ (x) vv, c = f ′ (x) , P = X, Q =
T (T (C, g (x)) , g′(x)v), m = −rf ′′ (x) vv, and observing that A (P )−Q = Z by con-
dition (TR), we get some y ∈ Q0 = N (T (C, g (x)), g′(x)v) such that

f ′ (x) + y ◦ g′ (x) = 0,

〈y,−z + rg′′ (x) vv〉 ≥ −rf ′′ (x) vv.

Thus the result is established.
Let us present a variant of the preceding necessary condition.
Theorem 4.4. Let x be a (local) solution to problem (P). Suppose conditions

(DMR) and (TR) are satisfied at x. Then for each non-null critical vector v ∈ K(x)

and each nonempty closed convex subcone Q̂ of T̂ 2 (C, g (x) , g′ (x) v) not contained in
Z × {0}, there exists some y ∈ N (T (C, g (x)), g′(x)v) such that

f ′ (x) + y ◦ g′ (x) = 0,

inf
(z,r)∈Q̂

[r(f ′′ (x) vv + 〈y, g′′ (x) vv〉)− 〈y, z〉] ≥ 0.

Proof. Given v ∈ K(x)\ {0} , and a cone Q̂ as above, in view of Proposition 2.3,
for each (w, r) ∈ X × R+ such that

(g′ (x) (w) + rg′′ (x) vv, r) ∈ cl(Q̂+ T × {0})
with T := T (T (C, g(x)), g′(x)v), we have

(g′ (x) (w) + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v)

since T̂ 2(C, g(x), g′(x)v) is closed. It follows from Proposition 4.1 that

(w, r) ∈ T̂ 2 (F, x, v) .

And then, by Proposition 3.1,

f ′ (x)w + rf ′′ (x) vv ≥ 0.

Setting P = X × R+, Q = cl(Q̂+ T × {0}), and defining A by

A(w, r) := (g′ (x)w + rg′′ (x) vv, r)

so that A(P )−Q = Z×R, as is easily seen, it follows from the Farkas lemma recalled

above that there exists (y,−s) ∈ Q0 = (Q̂+ T × {0})0 such that

f ′ (x)w + rf ′′ (x) vv − rs+ 〈y, g′ (x)w + rg′′ (x) vv〉 ≥ 0

for each (w, r) ∈ X × R+. It follows that y ∈ T 0 := N (T (C, g (x)), g′(x)v) and that

f ′ (x) + y ◦ g′ (x) = 0,

r(f ′′ (x) vv + 〈y, g′′ (x) vv〉) ≥ rs.
Since rs ≥ 〈y, z〉 for each (z, r) ∈ Q, the result follows.

Since the preceding optimality condition has been derived from Proposition 3.1,
and since that criterion is a consequence of the results of [37], one may guess that
it is a consequence of the necessary condition of [37] for mathematical programming

problems. This is the case. Given v ∈ K(x) and a nonempty closed convex subcone Q̂
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of T̂ 2 (C, g (x) , g′ (x) v), let us consider two cases. When Q̂ is contained in Z×{0} the

condition −〈y, z〉 ≥ 0 for each z ∈ Q̂ is satisfied by any y in the set M(x) of multipliers,

as is easily seen. When Q̂∩Z ×P is nonempty, taking T = X × (Q̂∩Z ×{1}) in [37,
Corollary 3.6] we get some y ∈M(x) such that

f ′′ (x) vv + 〈y, g′′ (x) vv〉 ≥ 〈y, z〉
for each z such that (z, 1) ∈ Q̂. Taking into account the remarks above and a homo-
geneity argument, the conclusion follows.

Now, let us turn to sufficient conditions.
Theorem 4.5. The following conditions ensure that an element x of F is a strict

local minimizer:
(a) X is finite dimensional;
(b) the set M (x) = {y ∈ N (C, g (x)) : f ′ (x) + y ◦ g′ (x) = 0} of multipliers at x

is nonempty;
(c) for each v ∈ F ′ (x) \ {0} with f ′ (x) v = 0 and each (w, r) ∈ X×R+\ {(0, 0)}

such that (z, r) := (g′ (x)w + rg′′ (x) vv, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) there exists y ∈
M (x) such that

r (f ′′ (x) vv + 〈y, g′′ (x) vv〉) > 〈y, z〉.
Proof. The existence of a multiplier y ensures condition (a) of Proposition 3.4

since for any v ∈ F ′ (x) we have g′ (x) v ∈ T (C, g (x)) and y ∈ N (C, g (x)) , hence
〈y, g′ (x) v〉 ≤ 0 and f ′ (x) v ≥ 0.

In order to check condition (b) of Proposition 3.4, let us consider v ∈ F ′ (x) ∩
ker f ′ (x) with v 6= 0 and (w, r) ∈ T̂ 2 (F, x, v) with (w, r) 6= (0, 0) . Then Proposition

2.2 ensures that (z, r) ∈ T̂ 2 (C, g (x) , g′ (x) v) for z = g′ (x)w + rg′′ (x) vv. Then,
taking y ∈M(x) as in assumption (c) we get

f ′ (x)w + rf ′′ (x) vv > −〈y, g′ (x)w〉+ 〈y, z〉 − r〈y, g′′ (x) vv〉 = 0,

and condition (b) is satisfied.

5. Comparisons with other works. As mentioned above, the definition we
gave for the second-order projective incident cone T̂ ii(F, x, v) to a subset F of X at
(x, v) seems to be closely related to Definition 2.2 of [26]: (w, r) ∈ TC(2)(F, x, v) iff
there exist ε > 0 and α : [0, ε]→ X such that α(s)→ 0 as s→ 0,

x+ s
√
rv + s2w + s2α(s) ∈ F ∀s ∈ [0, ε].

In fact, supposing X is finite dimensional, so that the weak topology coincides with
the strong topology, setting t = s

√
r we see that for r > 0 (w, r) ∈ TC(2)(F, x, v) iff

(w, r) ∈ T̂ ii(F, x, v) iff r−1w ∈ T ii(F, x, v) := lim inft→0+
2t−2(F − x− tv). However,

(w, 0) ∈ TC(2)(F, x, v) iff w ∈ T i(F, x) := lim inft→0+
t−1(F − x), the first-order

incident tangent cone, and there is no relationship with the case (w, 0) ∈ T̂ ii(F, x, v).
Another definition is given in [26], in the style of the Dubovitskii–Milyutin work:
(w, r) ∈ FC(2)(F, x, v) iff there exists ε > 0 such that

x+ s
√
rv + s2B(w, ε) ⊂ F ∀s ∈ [0, ε].

Setting G := X\F, we see that for r > 0 we have (w, r) ∈ FC(2)(G, x, v) iff (w, r) /∈
T̂ 2(F, x, v). However, for r = 0 we have (w, r) ∈ FC(2)(G, x, v) iff w /∈ T (F, x) and

there is no connection with T̂ 2(F, x, v).
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As mentioned in the introduction, the definition of the projective tangent set we
introduced above has been inspired by a notion given in a work of Cambini, Martein,
and Komlosi [11] (or, rather, a talk around that paper). With a slight change of
notation, their definition is as follows:

w ∈ TC ′′(F, x, v)⇔ (∃k ∈ R+ ∪ {∞} ∃(xn) ∈ FN (xn)→ x,

∃(αn), (βn)→∞ : (αnβ
−1
n )→ k, (βn [αn(xn − x)− v])→ w).

Clearly, this set is a cone, as is T̂ 2(F, x, v). Given (w, r) ∈ T̂ 2(F, x, v) and setting
αn = t−1

n , βn = 2rnt
−1
n one sees that w ∈ TC ′′(F, x, v) so that, denoting by pX the

canonical projection of X × R onto X, one has

pX(T̂ 2(F, x, v)) ⊂ TC ′′(F, x, v).

This inclusion is strict in general as a vector w such that for some sequences (xn) ∈
FN, (xn) → x, (αn), (βn) → ∞ : (αnβ

−1
n ) → 0, (βn [αn(xn − x)− v]) → w does not

belong to the left-hand side of the preceding relation. The necessary condition of [11]
is thus potentially richer than the one of our Proposition 3.1. However, for a vector
w as just described, the necessary condition of [11] reads as

f ′(x)(2kw) + f ′′(x)(v, v) ≥ 0

with k = 0 or f ′′(x)(v, v) ≥ 0. Then, since xn = x+ α−1
n v + α−2

n (αnβ
−1
n )wn, we have

(αnβ
−1
n wn) → 0, so that 0 ∈ T 2(F, x, v) (see [12, Observation 7], in this connection)

and the conclusion f ′′(x)(v, v) ≥ 0 is contained in Proposition 3.1. For a similar
reason, the assumptions of their sufficient condition are not more restrictive than the
ones of our Proposition 3.4. We refer to [12] for a precise formulation of the optimality
conditions of [11] and a number of observations about the second-order tangent sets
described above. Among them is the following property [12, Observations 4 and 5]:

T̂ 2(F, x, v) + RT (F, x)× {0} ⊂ T̂ 2(F, x, v),

which is related to the inclusion

T 2(F, x, v) + RT (F, x) ⊂ T 2(F, x, v)

contained in [13, Proposition 3.1].
Moreover, pursuing the line of thought of several papers [8], [9], [10], Cambini,

Martein, and Komlosi introduce in [11] a new notion of second-order tangent set
and use it for optimality conditions. When applied to mathematical programming
problems, another main feature of the approach of [11] is the fact that it takes place in
the image of the decision space X by the joint mapping h := (f, g) : X → V := R×Z.
In such a setting, X can be an arbitrary topological space, V can be an arbitrary
normed vector space, and the following tools address local minimizers rather than
global minimizers. Given x ∈ X, let us denote by T (X,h, x) the set of v ∈ V such
that there exist sequences (xn)→ x, (tn)→ 0+, (vn)→ v in X, P, and V , resp., such
that vn = t−1

n (h(xn)− h(x0)) for each n. Now, given v ∈ T (X,h, x), let T 2(X,h, x, v)
be the set of limits w of sequences (wn) = 2t−2

n (h(xn)− h(x)− tnv), where (xn)→ x,
(tn)→ 0+. Clearly,

T (X,h, x) ⊂ T (h(X), h(x)), T 2(X,h, x, v) ⊂ T 2(h(X), h(x), v),

and if X is a normed space,

h′(x)(X) ⊂ T (X,h, x), h′(x)(X) + h′′(x)(v, v) ⊂ T 2(h(X), h(x), v).
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However, these sets do not seem to be directly related to the projective tangent sets
we defined, although they also give rise to optimality conditions in the form

T (X,h, x) ∩ ((−P)× intC) = ∅,
T 2(X,h, x, v) ∩ ((−P)× intC) = ∅ ∀v ∈ T (X,h, x) ∩ Fr((−P)× intC).

On the other hand, conditions in terms of multipliers can be deduced from such
relations and from the use of the set A2 of v ∈ T (X,h, x)\{0} such that there exist
t > 0 and sequences (xn)→ x, (tn)→ 0+, (vn)→ v in X, P, and V , resp., such that
vn = t−1

n (h(xn)− h(x0)), tn = t‖h(xn)− h(x)‖, ‖xn − x‖−2(h(xn)− h(x))→ 0. Such
a set seems to be more closely related to our projective tangent sets.

Now let us turn to a recent contribution of Bonnans, Cominetti, and Shapiro [5]
using a notion of approximation to devise a sufficient optimality condition which we
intend to compare with the one in [37]. We recall them briefly. The condition in [37]
relies on the notion of compound tangent set to E := (−R+)×C (we suppose f(x) = 0
for simplicity). Given u ∈ X one denotes by

Su := lim sup
(t,u′)→(0+,u)

2t−2(E − h(x)− th′(x)u′)

the set formed with limits of sequences (wn) such that there exist sequences (tn)→ 0+,
(un) → u in P and X, resp., with h(x) + tnh

′(x)un + 1
2 t

2
nwn ∈ E for each n. Then

one can give a sufficient condition in order that x be an essential local minimizer of
second order for problem (M) in the following sense, which differs slightly from the
one in [1], [5], [35], [39], and [38]: there exists α > 0, β > 0, γ > 0 such that

f(u) ≥ f(x) + α‖u− x‖2 for any u ∈ B(x, β) such that d(g(u), C) ≤ γ‖u− x‖2.
We make use of the set J(x) of F. John’s multipliers at x for problem (M), i.e., the
set of (t, y) ∈ R+ ×N(C, g(x)) such that

tf ′(x) + y ◦ g′(x) = 0

and of the set of subcritical directions

K≤(x) := {u ∈ X : f ′(x)u ≤ 0, g′(x)u ∈ T (C, g(x))} .
This set obviously coincides with the set of critical directions K(x) whenever the set
of multipliers M(x) = {y : (1, y) ∈ J(x)} is nonempty.

Proposition 5.1. The following conditions ensure that an element x of F is an
essential local minimizer of second order:

(a) X is finite dimensional;
(b) the set J (x) of John’s multipliers at x is nonempty;
(c) for each u ∈ K≤ (x) \ {0} and each (r, z) ∈ Su there exists a multiplier

(t, y) ∈ J(x) such that

tf ′′ (x)uu+ 〈y, g′′ (x)uu〉 > rt+ 〈y, z〉.(5)

Proof. Suppose on the contrary that there exist a sequence (xn) of X and a
sequence (εn)→ 0+ such that 0 < tn := ‖xn − x‖ < εn, d(g(xn), C) ≤ εnt

2
n, f(xn) <

f(x) + t2nεn for each n. Without loss of generality we may assume that (t−1
n (xn − x))

converges to some u in X. It is easy to see that u ∈ K≤ (x) \ {0} and that (r, z) :=
(f ′′(x)uu, g′′(x)uu) ∈ Su. Thus we get a contradiction with (c).
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Now, in order to present the result of [5] let us introduce the following concepts in
which the Pompeiu–Hausdorff excess of a subset C over another subset D of a metric
space is given by

e(C,D) := sup
c∈C

d(c,D).

Definition 3. A subset A of a metric space is an outer (or upper) hemi-limit of
a family (Aw)w∈W of subsets of X parametrized by a subset Wof a topological space
P as w → w0 ∈ clW, w ∈W if e(Aw, A)→ 0 as w → w0 in W.

Such a limit is not unique: if A′ contains A, then A′ is again an outer hemi-limit
of (Aw). Moreover, any closed outer hemi-limit of (Aw) contains lim supw→w0

Aw, as
is easily seen. The concept introduced in [5] can be reformulated as follows (in the
case d = Mu, which is of interest to us).

Definition 4. Given n.v.s. X and Z, a subset C of Z, a continuous linear
mapping M : X → Z, u ∈ X, z ∈ C, a subset A of Z is said to be an upper (second-
order) approximation to C at z with respect to M, z, u if it is an outer hemi-limit of
the family At,u′ := 2t−2(C − z − tMu′) as (t, u′)→ (0, u) in P×X.

A simpler notion can be introduced.
Definition 5. Given a subset C of an n.v.s. Z, z ∈ C, v ∈ T (C, z), a subset A

of Z is said to be an outer (second-order) approximation to C at z in the direction v
if it is an outer hemi-limit of the family At := 2t−2(C − z − tv) as t→ 0+.

This definition is less demanding than the preceding one: if A is an upper ap-
proximation to C at z with respect to M, z, u, and if v := Au, then A is an outer
approximation to C at z in the direction v.

EXAMPLE. For any convex subset C of Z and any z ∈ C, v ∈ T (C, z) the cone
T (T (C, z), v) is an outer approximation to C at z in the direction v. In fact, for any
t > 0, c ∈ C, setting w := 2t−2(c− z − tv), v′ := v + (t/2)w = t−1(c− z) ∈ T (C, z),
one has w = 2t−1(v′ − v) ∈ T (T (C, z), v).

The main result of [5] states that if x is feasible for problem (M), if for each u ∈
K≤(x) there exists an upper approximation A to C with respect to M := g′(x), z :=
g(x), u, and if there exists (t, y) ∈ J(x) such that

tf ′′ (x)uu+ 〈y, g′′ (x)uu〉 > σ(y,A) := sup
a∈A
〈y, a〉,(6)

then x is a strict locally optimal solution of (M). In fact this result can be extended to
the case when A is just an outer approximation to C at z in the direction v := g′(x)u,
and, moreover, it is a simple consequence of the preceding proposition in view of the
following lemma.

Lemma 5.2. If condition (6) holds for some outer approximation to C at g(x) in
the direction v := g′(x)u, then condition (5) holds.

Proof. It suffices to prove that for any u ∈ K≤(x), any (r, z) ∈ Su, any (t, y) ∈
J(x), and any outer approximation A to C at g(x) in the direction v := g′(x)u, one
has

σ(y,A) ≥ 〈y, z〉+ rt.

Now, since (r, z) ∈ Su there exist sequences (tn)→ 0+, (un)→ u, (zn)→ z, (rn)→ r
such that

cn := g(x) + tng
′(x)un +

1

2
t2nzn ∈ C,

f ′(x)un +
1

2
tnrn ≤ 0.
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Let wn := 2t−1
n (un−u), and let qn := g′(x)wn+zn. Since A is an outer approximation

to C at g(x) in the direction v := g′(x)u, and since qn = 2t−2
n (cn − g(x)− tng′(x)u),

there exists an ∈ A such that εn := ‖qn − an‖ → 0. Then, using the definitions of
J(x) and K≤(x), we get

〈y, zn〉+ trn = 〈y, qn〉 − 〈y, g′(x)wn〉+ trn

= 〈y, qn〉+ tf ′(x)wn + trn

= 〈y, qn〉+ 2tt−1
n

(
f ′(x)un +

1

2
tnrn

)
≤ 〈y, an〉+ εn‖y‖.

Therefore, taking limits, we get

〈y, z〉+ rt ≤ σ(y,A).

Corollary 5.3. Suppose that for an element x of F the conditions (a) and
(b) of the preceding proposition hold while condition (c) is replaced with the following
condition (c′). Then x is an essential local minimizer of second order:

(c′) for each u ∈ K≤ (x) \ {0} there exist an outer approximation A of C at g(x)
in the direction g′(x)u and a multiplier (t, y) ∈ J(x) such that

tf ′′ (x)uu+ 〈y, g′′ (x)uu〉 > sup
a∈A
〈y, a〉.(7)
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of Poitiers, 1995, preprint.

[24] H. Kawasaki, An envelop-like effect of infinitely many inequality constraints on second-order
necessary conditions for minimization problems, Math. Programming, 41 (1988), pp. 73–
96.

[25] H. Kawasaki, Second-order necessary and sufficient optimality conditions for minimizing a
sup type function, Appl. Math. Optim., 26 (1992), pp. 195–220.

[26] U. Ledzewicz and H. Schaettler, Second-order conditions for extremum problems with non-
regular equality constraints, J. Optim. Theory Appl., 86 (1995), pp. 113–144.

[27] E.S. Levitin, A.A. Milyutin, and N.P. Osmolovskii, Higher order conditions for a local
minimum in problems with constraints, Uspehi Math. Nauk, 33 (1978), pp. 85–148.

[28] O.L. Mangasarian and S. Fromovitz, The Fritz-John necessary optimality condition in the
presence of equality and inequality constraints, J. Math. Anal. Appl., 7 (1967), pp. 37–47.

[29] Y. Maruyama, Second-order necessary conditions for nonlinear optimization problems in Ba-
nach spaces and their application to an optimal control problem, Math. Oper. Res., 15
(1990), pp. 467–482.

[30] H. Maurer, First and second-order sufficient optimality conditions in mathematical program-
ming and optimal control, Math. Programming Stud., 14 (1981), pp. 163–177.
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in Optimization, C. Lemaréchal, ed., INRIA, Le Chesnay, France, 1984, pp. 34–39.

[34] J.-P. Penot, A Geometric Approach to Higher Order Necessary Conditions, manuscript, Univ.
of Pau, 1984.

[35] J.-P. Penot, Generalized higher order derivatives and higher order optimality conditions,
preprint, Univ. of Santiago, 1984.

[36] J.-P. Penot, Differentiability of relations and differential stability of perturbed optimization
problems, SIAM J. Control Optim., 22 (1984), pp. 529–551.

[37] J.-P. Penot, Optimality conditions in mathematical programming and composite optimization,
Math. Programming, 67 (1994), pp. 225–245.

[38] J.-P. Penot, Sequential derivatives and composite optimization, Rev. Roumaine Math. Pures
Appl., 40 (1995), pp. 501–519.

[39] J.-P. Penot, Central and peripheral results in the study of marginal and performance func-
tions, in Mathematical Programming with Data Perturbations, A. Fiacco, ed., Marcel
Dekker, New York, 1997, pp. 305–337.

[40] S.M. Robinson, Stability theory for systems of inequalities, Part II: Differentiable nonlinear
systems, SIAM J. Numer. Anal., 13 (1976), pp. 497–513.

[41] M. Stuniarski, Second-order necessary conditions for optimality in nonsmooth nonlinear pro-
gramming, J. Math. Anal. Appl., 154 (1991), pp. 303–317.

[42] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem
in Banach space, Appl. Math. Optim., 5 (1979), pp. 49–62.


