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Abstract Optimal power flow (OPF) is the fundamental

mathematical model to optimize power system operations.

Based on conic relaxation, Taylor series expansion and

McCormick envelope, we propose three convex OPF

models to improve the performance of the second-order

cone alternating current OPF (SOC-ACOPF) model. The

underlying idea of the proposed SOC-ACOPF models is to

drop assumptions of the original SOC-ACOPF model by

convex relaxation and approximation methods. A heuristic

algorithm to recover feasible ACOPF solution from the

relaxed solution of the proposed SOC-ACOPF models is

developed. The proposed SOC-ACOPF models are exam-

ined through IEEE case studies under various load sce-

narios and power network congestions. The quality of

solutions from the proposed SOC-ACOPF models is eval-

uated using MATPOWER (local optimality) and LINDO-

GLOBAL (global optimality). We also compare

numerically the proposed SOC-ACOPF models with other

two convex ACOPF models in the literature. The numerical

results show robust performance of the proposed SOC-

ACOPF models and the feasible solution recovery

algorithm.

Keywords Optimal power flow, Conic relaxation,

McCormick envelope, Taylor series expansion, Feasible

solution

1 Introduction

Optimal power flow (OPF) is an indispensable tool in

fairly wide areas of power system operations and the

applications are still expanding [1–4]. The challenges of

integrating large amount of renewable energy, increasing

multi-terminal high voltage direct current (HVDC) con-

nections and growing number of prosumers in distribution

grid are now pushing the electricity industry to seek more

accurate, reliable and efficient OPF tools. Since the alter-

nating current (AC) power flow constraints are complex,

nonlinear and nonconvex in nature, enormous research

efforts have been put into developing efficient algorithms

to solve OPF during the past decades. References [1] and

[2] summarize methods to solve OPF in the early stages

ranging from linear, nonlinear and quadratic programming

to Newton-based algorithm and interior point method

(IPM). Heuristic optimization algorithms based on evolu-

tionary and intelligence approaches to solve OPF can be

found in [5] and [6]. Traditionally, the direct current OPF

(DCOPF) as an estimation of full alternating current OPF

(ACOPF) is pervasively employed for large-scale power

system calculations [7]. With fast development of smart

grids [8], distribution network is now in the unprecedented

interest of advanced monitoring and control [9]. Distribu-

tion networks have larger resistance to reactance (R/X) ra-

tio as compared to the transmission networks. Accordingly,

the DCOPF results of distribution networks need to be

carefully examined. Besides, the operation points and

nodal prices obtained from solving ACOPF in transmission
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and distribution networks are more accurate [10, 11].

Accordingly, accurate and fast methods to solve ACOPF

are in demand.

Mathematical modelling techniques to convexify the

nonconvex ACOPF model by convex relaxations can give

useful bound of ACOPF objective function. Convexity also

guarantees finding global solution by using mature solution

algorithms (e.g. IPM). Considering abundant commercially

available solvers (such as MOSEK [12]) for solving convex

optimization problems, the remaining task is to tighten the

relaxations used in the convexification. Though assuming

no lower bound for active power generation to exactly

convexify mesh networks is not realistic, the proposed

branch flow model in [13] as a convex relaxation of

ACOPF is very important and useful. Reference [14] gives

exact convex relaxations of OPF under some assumptions

on network parameters. Based on the branch flow

approach, authors in [15] present an ACOPF model using

second-order cone programming (SOCP) and it shows

accurate solutions for several IEEE test cases when the

objective is transmission loss minimization. The SOCP

based convex ACOPF model in [15] serves as the starting

point of deriving our second-order cone ACOPF (SOC-

ACOPF) models in this paper. A cone-programming-based

OPF for radial distribution networks is proposed in [16].

Reference [9] continues to improve its cone relaxation by

generating tight cutting planes. For radial networks, suffi-

cient conditions regarding network property and voltage

upper bound under which the proposed relaxed ACOPF can

give global ACOPF solution are derived in [14]. Recent

applications of SOCP based convex ACOPF model in

distributional locational marginal pricing (DLMP), trans-

mission-distribution coordination and decentralized power

system operation can be found in [17–19].

Semi-definite programming (SDP) is another promising

convexification approach for ACOPF [20, 21]. The com-

putational limits of SDP are shown in [22]. Efficient

algorithms for solving SDP-based ACOPF model remain to

be found [20]. Regarding solving ACOPF in large-scale

power networks, SDP-based ACOPF takes much more

CPU time than SOCP-based ACOPF. Using matrix com-

bination and decomposition techniques, authors in [23]

accelerate SDP-based ACOPF and show that more than

1000 seconds solver time are required to compute cases

with around 3000 buses. Important analysis and results

from [24–26] show that SDP relaxations are exact only for

limited types of problems. Even for a 2-bus 1-generator

power system, SDP-based ACOPF can be infeasible and

inexact [27]. In cases where the exactness is not guaran-

teed, solutions of SDP-based ACOPF rarely have physical

meanings.

Results from [28] show that quadratic convex (QC)

relaxation of ACOPF may produce some improvements in

accuracy over SOCP-based ACOPF but with reduced

computational efficiency. The feasible region relationship

of SOCP, SDP and QC approaches are analyzed in [28].

The SDP and QC approaches give tighter relaxations than

the SOCP approach but they are not equivalent to each

other. In terms of computational performance, the QC and

SOCP approaches are much faster and reliable than the

SDP approach [28]. Based on first-order Taylor series

expansion, a current voltage (IV) formulation for ACOPF

is proposed in [29, 30]. The advantages of the current-

voltage formulation are that the approximated ACOPF

problem is linear and much faster to be solved than non-

linear formulations. However, an iterative algorithm is

required to check the violations of nonconvex ACOPF

constraints and then to construct the inner or outer bounds

of the approximations. Authors in [31] propose three dif-

ferent relaxation methods to improve SOCP-based ACOPF.

The arctangent constraints in the rectangular formulation of

ACOPF are convexified by McCormick relaxations, poly-

hedral envelopes and dynamically generated linear

inequalities [31]. The results show prominent computa-

tional efficiency of the SOCP approach over the SDP

approach [31]. Compared with the formulations in [31], the

proposed SOC-ACOPF models in this paper deal with the

nonconvex ACOPF constraints directly and the set of

decision variables used in our models are different.

Regarding the feasibility of the relaxed solutions, three

types of sufficient conditions about power injections,

voltage magnitudes and phase angles to guarantee obtain-

ing exact solutions are proposed in [26]. Authors in [31]

strengthen the relaxations of SOCP-based ACOPF model

by dynamically generating linear valid inequalities to

separate solutions of SOCP-based ACOPF from other

relaxed constraints. However, it is not guaranteed that

feasible solution can be always recovered by this approach.

The complementarity conditions in the Karush–Kuhn–

Tucker (KKT) system of DCOPF are used in [32] to

recover feasible solution of ACOPF. A sequential algo-

rithm to improve the tightness of some relaxed constraints

of a SOCP-based ACOPF model is proposed in [17]. The

performance of this algorithm for large power networks

remains to be improved.

The main contributions of the current paper are three-

fold:

1) Three SOC-ACOPF models based on second-order

cone relaxations, Taylor series expansion and McCor-

mick envelops are proposed.

2) A heuristic algorithm is proposed to recover feasible

solutions of ACOPF from the relaxed solutions

obtained from the proposed SOC-ACOPF models.

3) A computational comparison with other SOCP-based

ACOPF formulations in the literature is conducted.
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Note we are claiming that the derived SOC-ACOPF models

are the original contributions of this paper (not the SOCP

method).

The rest of this paper is organized as follows. Section 2

presents mathematical formulations of the proposed SOC-

ACOPF models. Section 3 proposes the heuristic algorithm

to recover feasible solutions. Section 4 discusses numerical

results for various IEEE test cases under different load

scenarios and power network congestions. A numerical

comparison with two other SOCP based convex ACOPF

models in the literature is conducted. Section 5 concludes

the improvements of the proposed SOC-ACOPF models.

2 SOC-ACOPF

It is assumed that the electric networks are three phase

and balanced (this assumption is generally used by many

OPF models such as the DCOPF model). Our proposed

SOC-ACOPF models use less approximations or assump-

tions than the DCOPF model. Considering the wide

application of DCOPF, the proposed SOC-ACOPF models

are more applicable. The proposed SOC-ACOPF models

are derived using line sending-end power injections and

voltage phase angle difference variables. In this way, we

can directly obtain voltage phase angle solutions from the

models. Note that in some of the derived models, instead of

using voltage magnitude variables vn; vsl ; vrl , voltage

magnitude square variables Vn,v
2
n;Vsl,v

2
sl
;Vrl,v

2
rl

are

included (voltage magnitude can be recovered from the

model by taking the root of the voltage magnitude square

solutions). n 2 N is the index of node set N, l is the index of

transmission line set L. vn is the voltage magnitude at node

n. vsl ; vrl are the voltage magnitudes at the sending end and

receiving end of transmission line l. The convexity of the

proposed SOC-ACOPF models are further validated

numerically by MOSEK solver which can only solve

convex programming models in general algebraic model-

ing system (GAMS). We want to emphasize that the

numerical validation by MOSEK is a double-check of the

convexity of the proposed SOC-ACOPF models. We have

detailed analytic explanations in following sections about

why our derived model are convex. In short, the funda-

mental reason is because all the derived constraints are

either linear or in the form of second-order cone which are

definitely convex constraints.

2.1 SOC-ACOPF: Model P

Model P of the SOC-ACOPF is set out in (1)–(10) [15].

Note psl ; qsl represent receiving end power flows in [15]

which are different in our formulation (sending end active

and reactive power flows). So some constraints are

accordingly different. The term s in psl ; qsl ; vsl ;Vsl is not an

index but only to imply the meaning of sending end of line

l. The term r in vrl ;Vrl is not an index but only to imply the

meaning of receiving end of line l. The term d in pdn ; qdn is

not an index but only to imply the meaning of power

demand. pdn ; qdn are active and reactive power demand

(parameters). Similar reasoning holds for the term o in

pol ; qol which is to denote the meaning of power loss.

pol ; qol are active and reactive power loss.

min
X

f ðpn; qn; pol ; qolÞ

s:t:
ð1Þ

pn � Pdn ¼
X

l2L

ðAþ
nlpsl � A�

nlpolÞ þ GnVn 8n 2 N ð2Þ

qn � Qdn ¼
X

l2L

ðAþ
nlqsl � A�

nlqolÞ � BnVn 8n 2 N ð3Þ

Kl � pol �
p2sl þ q2sl

Vsl

Rl 8l 2 L ð4Þ

polXl ¼ qolRl 8l 2 L ð5Þ

Vsl � Vrl ¼ 2Rlpsl þ 2Xlqsl � Rlpol � Xlqol 8l 2 L

ð6Þ

hl ¼ Xlpsl � Rlqsl 8l 2 L ð7Þ

Vmin;n �Vn �Vmax;n 8n 2 N ð8Þ

pmin;n � pn � pmax;n 8n 2 N ð9Þ

qmin;n � qn � qmax;n 8n 2 N ð10Þ

where X ¼ fpn; qn; psl ; qsl ; pol ; qol ;Vn; hlg 2 R is the set of

decision variables. Equations (2) and (3) represent the active

and reactive power balance. Aþ
nl and A�

nl are elements of

incidence matrix of the network with Aþ
nl ¼ 1; A�

nl ¼ 0 if n is

the sending end of line l and Aþ
nl ¼ �1; A�

nl ¼ �1 if n is the

receiving end of line l. Since we allow the variables psl ; qsl to

take both positive and negative values, the default power

flow direction of each line does not affect the final results

(negative values of these variables mean the actual power

flow direction is in the reverse direction of the default power

flow direction). Rl is the resistant of line l. Xl is the reactance

of line l. Vmin;n;Vmax;n are the lower and upper bounds of Vn.

pmin;n; pmax;n are the lower and upper bounds of pn.

qmin;n; qmax;n are lower and upper bounds of qn. Kl is the

upper bound of pol .Model P is convex because:� constraints

(2), (3) and (5)–(10) are linear;` constraint (4) is in the form

of second-order cone. Constraints (4) and (5) represent active

power and reactive power loss. The left side of (4) bounds pol
(which equivalently bounds capacity of line l). hl,hsl � hrl is

defined as the voltage phase angle difference of line l. hsl ; hrl
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are the voltage phase angles at the sending end and receiving

end of transmission line l. Equation (7) is approximated from

the nonconvex constraint (11) as below:

vslvrl sin hl ¼ Xlpsl � Rlqsl 8l 2 L ð11Þ

This approximation is based on following assumptions:

� assumption 1, voltage magnitude product vslvrl is

approximately equal to 1 per-unit in (11); ` assumption 2,

voltage phase angle difference across each line is small

enough such that sin hl � hl.

It is worth to mention that assumption 1 is only used to

linearize constraint (11). Voltage solutions from Model P

are allowed to take other values which do not satisfy

assumption 1. In this paper, we refer Model P summarized

in (1)–(10) as the original SOC-ACOPF model. We will

gradually improve Model P by dropping assumptions 1 and

2 in following sections. Constraint (7) in Model P is

replaced by different formulations in the new SOC-ACOPF

models. Assumptions 1 and 2 are valid for both transmis-

sion and distribution network in normal operations. How-

ever, there can be abnormal situations when these

assumptions do not hold. This is one of the reasons that we

want to drop assumptions 1 and 2, and propose new SOC-

ACOPF models in order to improve the solution accuracy.

2.2 SOC-ACOPF: Model R

To drop assumption 1 in Model P, we use the following

bilinear transformation:

vslvrl ¼
1

4
½ðvsl þ vrlÞ

2 � ðvsl � vrlÞ
2� 8l 2 L ð12Þ

If we introduce auxiliary variable vml
as (note the term m

in the subscript of vml
is not an index):

vml
¼ vslvrl 8l 2 L ð13Þ

And repeat transformation (12) then the left side of (11)

can be replaced by:

vml
hl ¼

1

4
½ðvml

þ hlÞ
2 � ðvml

� hlÞ
2� 8l 2 L ð14Þ

Introducing new variables uxl ; wxl ; uvl and wvl as (note

the terms x and v in the subscripts are not indexes but are

only to distinguish different variables):

uxl ¼ vsl þ vrl 8l 2 L ð15Þ

wxl ¼ vsl � vrl 8l 2 L ð16Þ

uvl ¼ vml
þ hl 8l 2 L ð17Þ

wvl ¼ vml
� hl 8l 2 L ð18Þ

Equations (12) and (14) can be expressed by the new

variables uxl ; wxl ; uvl and wvl as:

vslvrl ¼
1

4
ðu2xl � w2

xl
Þ 8l 2 L ð19Þ

vml
hl ¼

1

4
ðu2vl � w2

vl
Þ 8l 2 L ð20Þ

The quadratic functions u2xl ; w
2
xl
; u2vl and w2

vl
are relaxed

as following second-order cones:

uxal � u2xl 8l 2 L ð21Þ

wxal �w2
xl

8l 2 L ð22Þ

uval � u2vl 8l 2 L ð23Þ

wval �w2
vl

8l 2 L ð24Þ

where uxal ;wxal ; uval ;wval are auxiliary approximation

variables. Note the terms xa and va in the subscripts of the

corresponding variables are not indexes but are only to

distinguish different approximation variables.

The upper bounds are expressed linearly:

uxal �ð�uxl þ uxlÞuxl � �uxluxl 8l 2 L ð25Þ

wxal �ð �wxl þ wxl
Þwxl � �wxlwxl

8l 2 L ð26Þ

uval �ð�uvl þ uvlÞuvl � �uvluvl 8l 2 L ð27Þ

wval �ð �wvl þ wvl
Þwvl � �wvlwvl

8l 2 L ð28Þ

where constraints (21)–(24) are second-order cones and

constraints (25)–(28) are McCormick envelopes. �uxl ; �wxl , �uvl
and �wvl are upper bounds of the corresponding variables.

uxl ;wxl
; uvl and wvl

are lower bounds of the corresponding

variables. The variables vsl and vrl are linked to their squares

Vsl and Vrl by following convex constraints:

Vn � v2n 8n 2 N ð29Þ

Vn �ð�vn þ vnÞvn � �vnvn 8n 2 N ð30Þ

where �vn and vn are upper and lower bounds of voltage

magnitude. Constraint (30) tightens the cone relaxations in

(29). In Model R of SOC-ACOPF, we replace constraint

(7) of optimization problem (1)–(10) by constraints (15)–

(18), (21)–(30) and constraints (19), (20) where the

quadratic functions u2xl ;w
2
xl
; u2vl and w2

vl
are replaced by

uxal ; wxal ; uval and wval , the term vslvrl is replaced by vml
,

the term vml
hl is replaced by Xlpsl � Rlqsl . Model R is

summarized as following:

min
X

f ðpn; qn; pol ; qolÞ ð31Þ

s.t.

(2)–(6), (8)–(10), (15)–(18), (21)–(30)

vml
¼

1

4
ðuxal � wxalÞ 8l 2 L ð32Þ
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Xlpsl � Rlqsl ¼
1

4
ðuavl � wavlÞ 8l 2 L ð33Þ

Model R is convex because: � constraints (15)–(18),

(21)–(28), (30)–(33) are linear; ` constraint (29) is in the

form of second-order cone. For the convexity of other

constraints, please refer to the explanations of Model P in

Section 2.1.

2.3 SOC-ACOPF: Model T

To drop assumption 2 of Model R, we propose to apply

Taylor series expansion to approximate sine function:

sin hl ¼ hl �
h
3
l

6
þ

h
5
l

120
þ Oðh7l Þ 8l 2 L ð34Þ

As a trade-off between model complexity and accuracy,

fifth-order Taylor series expansion is selected. The

approximation error is less than 0.45% for hlj j\p=2.

Repeating the bilinear transformation procedure similar in

Section 2.2 of this paper, we have:

u
h
2
l
¼ h

2
l 8l 2 L ð35Þ

u
h
3
l
¼ h

3
l 8l 2 L ð36Þ

u
h
5
l
¼ h

5
l 8l 2 L ð37Þ

h
3
l ¼

1

4
½ðhl þ u

h
2
l
Þ2 � ðhl � u

h
2
l
Þ2� 8l 2 L ð38Þ

h
5
l ¼

1

4
½ðu

h
2
l
þ u

h
3
l
Þ2 � ðu

h
2
l
� u

h
3
l
Þ2� 8l 2 L ð39Þ

We introduce auxiliary variables to formulate

relaxations of quadratic equations:

hxl ¼ hl þ u
h
2
l

8l 2 L ð40Þ

yxl ¼ hl � u
h
2
l

8l 2 L ð41Þ

hvl ¼ u
h
2
l
þ u

h
3
l

8l 2 L ð42Þ

yvl ¼ u
h
2
l
� u

h
3
l

8l 2 L ð43Þ

uvl ¼ vml
þ hl �

u
h
3
l

6
þ

u
h
5
l

120

� �

8l 2 L ð44Þ

wvl ¼ vml
� hl �

u
h
3
l

6
þ

u
h
5
l

120

� �

8l 2 L ð45Þ

Higher order terms of hl can be expressed similarly by

introducing new auxiliary variables. Again, as in Model R,

using variables uvl and wvl , we have:

u
h
3
l
¼

1

4
ðh2xl � y2xlÞ 8l 2 L ð46Þ

u
h
5
l
¼

1

4
ðh2vl � y2vlÞ 8l 2 L ð47Þ

vslvrl sin hl �
1

4
ðu2vl � w2

vl
Þ 8l 2 L ð48Þ

Similarly, auxiliary variables hxal ; yxal ; hval and yval are

proposed:

hxal � h2xl 8l 2 L ð49Þ

yxal � y2xl 8l 2 L ð50Þ

hval � h2vl 8l 2 L ð51Þ

yval � y2vl 8l 2 L ð52Þ

The quadratic functions are upper bounded by:

hxal �ðhxl þ hxlÞhxl � hxlhxl 8l 2 L ð53Þ

yxal �ðyxl þ y
xl
Þyxl � yxlyxl

8l 2 L ð54Þ

hval �ðhvl þ hvlÞhvl � hvlhvl 8l 2 L ð55Þ

yval �ðyvl þ y
vl
Þyvl � yvlyvl

8l 2 L ð56Þ

where hxl ; yxl ; hvl and yvl are upper bounds of the

corresponding variables; parameters hxl ; yxl
; hvl and y

vl
are

lower bounds of the corresponding variables. u
h
2
l

is

bounded as follows:

u
h
2
l
� h

2
l 8l 2 L ð57Þ

u
h
2
l
� h

2

l 8l 2 L ð58Þ

where h
2

l is the upper bound of h2l . In Model T of SOC-

ACOPF, we replace constraint (7) of optimization problem

(1)–(10) by constraints (15), (16), (21)–(28), (40)–(45),

(49)–(58) and constraints (19), (46)–(48) where quadratic

functions u2xl ; w
2
xl
; h2xl ; y

2
xl
; h2vl ; y

2
vl
; u2vl and w2

vl
are replaced

by uxal ; wxal ; hxal ; yxal ; hval ; yval ; uval and wval , the term

vslvrl is replaced by vml
, the term vslvrl sin hl is replaced

by Xlpsl � Rlqsl . Model T is summarized as following:

min
X

f ðpn; qn; pol ; qolÞ ð59Þ

s.t.

(2)–(6), (8)–(10), (15)–(16), (21)–(28), (32), (33), (40)–

(45), (49)–(58)

u
h
3
l
¼

1

4
ðhxal � yxalÞ 8l 2 L ð60Þ

u
h
5
l
¼

1

4
ðhval � yvalÞ 8l 2 L ð61Þ

Model T is convex because: � constraints (40)–(45),

(53)–(56), (58)–(61) are linear; ` constraints (49)–(52) and

(57) are in the form of second-order cone. For the convexity
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of other constraints, please refer to the explanations ofModel

P in Section 2.1 and Model R in Section 2.2.

2.4 SOC-ACOPF: Model E

The Nonconvex term in the left side of (11) can be

directly replaced by McCormick envelopes described in

[33]. Employing (13) and introducing new variables zhl ¼

sin hl and zhl ¼ vsvr sin hl (note the term h in the subscript

of zhl and the term h in the subscript of zhl are not indexes

but are only to distinguish different variables), we have:

vslvrl sin hl ¼ vml
zhl 8l 2 L ð62Þ

zhl ¼ Xlpsl � Rlqsl 8l 2 L ð63Þ

McCormick envelopes for zhl ¼ vml
zhl are:

zhl > vml
zhl þ z

hl
vml

� vml
z
hl

8l 2 L ð64Þ

zhl > vml
zhl þ zhlvml

� vml
zhl 8l 2 L ð65Þ

zhl 6 vml
zhl þ zhlvml

� vml
zhl 8l 2 L ð66Þ

zhl 6 vml
zhl þ z

hl
vml

� vml
z
hl

8l 2 L ð67Þ

where vml
; z

hl
are lower bounds and vml

; zhl are upper

bounds for their corresponding variables. McCormick

envelopes for vml
¼ vslvrl are:

vml
> vslvr þ vrlvsl � vslvrl 8l 2 L ð68Þ

vml
> vslvr þ vrlvsl � vslvrl 8l 2 L ð69Þ

vml
6 vslvr þ vrlvsl � vslvrl 8l 2 L ð70Þ

vml
6 vslvr þ vrlvsl � vslvrl 8l 2 L ð71Þ

where vsl and vrl are lower bounds and vsl and vrl are upper

bounds for their corresponding variables. McCormick

envelopes for zhl are:

zhl > cos
hl

2

� �

hl þ
hl

2

� �

� sin
hl

2

� �

8l 2 L ð72Þ

zhl 6 cos
hl

2

� �

hl �
hl

2

� �

þ sin
hl

2

� �

8l 2 L ð73Þ

where hl is the upper bound of hl. Constraints (64)–(73) are

linear. Constraints (62) and (73) are valid for 0\hl\p=2.
Bounds of the variables can be determined a priori. In

Model E of SOC-ACOPF, we replace constraint (7) of

optimization problem (1)–(10) by constraints (63)–(73).

Accordingly, assumptions 1 and 2 are not required in

Model E. Model E is summarized as following:

min
X

f ðpn; qn; pol ; qolÞ

s:t: ð2Þ�ð6Þ; ð8Þ�ð10Þ; ð63Þ�ð73Þ

(

ð74Þ

Model E is convex because constraints (63)–(73) are

linear. For the convexity of other constraints, please refer

to the explanations of Model P in Section 2.1.

3 Feasibility

The proposed SOC-ACOPF models give relaxed solu-

tions of the ACOPF problem. In case the AC feasibility is

violated by the solutions of the derived SOC-ACOPF

models, we propose here a heuristic algorithm to recover

feasible solutions from the relaxed solutions. The heuristic

technique is summarized in Algorithm 1. We use the

relaxed solutions of the active power generation p�n from

the SOC-ACOPF models. If p�n are feasible for all the

ACOPF constraints, we can confirm that we have found the

global optimal solution of ACOPF. Otherwise, we propose

to fix pn ¼ p�n for the cheap cost generators and take the pn0

of the marginal generator (the most expensive generator in

N�) as a variable. Where N� � N is a dynamic set initiated

as 8n 2 N�; p�n[ 0. N� is updated by removing the element

n
0
which is the index of the dispatched generator with the

highest marginal cost in each iteration. This process is

repeated until the ACOPF is feasible in Algorithm 1. cn is

the marginal cost of generator at node n. imax is the max-

imum number of allowed iterations. We show in Section 4

of this paper that the feasible solution can be recovered by

this algorithm normally in few iterations.

Algorithm 1: Feasible solution recovery algorithm

Input: solution of SOC-ACOPF p∗

n ;

Output: feasible solution of ACOPF p∗∗

n ;

Initialization;

i = 1;

Define N ∗ N such that n N∗, p∗

n > 0;

pn = p∗

n ;

do

if cn
′ = max {cn }, n, n

′

N∗ then
Replace pn

′ = p∗

n
′ by

pmin ,n
′ < p n

′ < p max ,n
′ ;

N ∗ = N ∗ \ n
′

;

Solve nonconvex ACOPF;

i = i + 1;

while ACOPF is not feasible and i < i max;
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4 Numerical results

All the proposed SOC-ACOPF models (Model P, Model

R, Model T and Model E) are implemented in GAMS and

solved by MOSEK. A computer with 2.4 GHz CPU and 8

GB RAM is deployed for the computations (except the

computations in Section 4.2). It is worth to mention that

voltage phase angle solutions can be obtained from solving

the proposed SOC-ACOPF models directly since voltage

phase angle is one of the decision variables in all the SOC-

ACOPF models (see constraint (7) in Model P, constraints

(17), (18) in Model R, constraints (40)–(45) in Model T

and constraints (72), (73) in Model E). The convergence of

MOSEK solver is guaranteed by the convexity of all the

proposed SOC-ACOPF models. Solutions of ACOPF from

MATPOWER [34] and LINDOGLOBAL are set as the

benchmarks. The LINDOGLOBAL solver employs

branch-and-cut methods to find the global optimal solution.

MATPOWER uses MATLAB built-in interior point solver

(MIPS) to solve nonconvex ACOPF. If a solution is not

found, we denote the corresponding result as ‘NA’ (the

LINDOGLOBAL solver in GAMS currently cannot solve

optimization models with over 3000 variables and 2000

constraints). To compare with other SOC-ACOPF models

in the literature, we also implement the model in reference

[13] (denoted as Model 1 in the tables) and the model in

reference [28] (denoted as Model 2 in the tables). The data

for test case of 1354pegase and 2869pegase are from ref-

erence [35].

Since all the proposed SOC-ACOPF models are convex,

solutions from MOSEK solver in GAMS for the models are

global optimal. Please note the solutions of the proposed

SOC-ACOPF models are global optimal for the corre-

sponding SOC-ACOPF models. We do not mean that the

optimal solutions from SOC-ACOPF models are global

optimal for the nonconvex ACOPF model. Only the solu-

tions from LINDOGLOBAL here can be regarded as the

global optimal solution for the nonconvex ACOPF model.

The solutions from MATPOWER are local optimal and are

not guaranteed to be global optimal for the nonconvex

ACOPF model. The slight differences of the solutions from

the proposed SOC-ACOPF models are because the for-

mulations are different and they have different feasible

regions. In other words, the proposed SOC-ACOPF models

are not equivalent with each other. This is why we use

LINDOGLOBAL as a benchmark for the comparisons. The

relative gap termination tolerance of the solution algorithm

using by MOSEK to solve SOC-ACOPF models is 10�7. If

the GAMS solution report of the MOSEK solver claims

normal_completion, which means optimal solution is

found, we will report the numerical results. The convexity

of the proposed SOC-ACOPF models are further validated

numerically here since the MOSEK solver in GAMS can

only solve convex optimizal problems.

4.1 Performance of SOC-ACOPF models

4.1.1 Base case

The SOC-ACOPF objective values are listed in Table 1.

The best results compared with LIDOGLOBAL are in

bold. When LINDOGLOBAL cannot converge, we use the

recovered best feasible solutions from Section 4.2 as the

benchmark. The LINDOGLOBAL solver is able to find

global solutions for IEEE 14-bus, IEEE 57-bus and IEEE

118-bus cases. For larger power networks, the number of

variables and constraints exceed the limits of LINDO-

GLOBAL. The results of MATPOWER and LINDO-

GLOBAL are very close. All proposed SOC-ACOPF

models give very close results as compared to MAT-

POWER and LINDOGLOBAL solutions. Normally, since

our SOC-ACOPF models are relaxed models, the objective

solutions are slightly lower than the solutions from LIN-

DOGLOBAL which solves the nonconvex ACOPF model.

Compared to LINDOGLOBAL results, the objective val-

ues of IEEE 14-bus case from Model T and Model E are bit

higher. The reason is that the voltage phase angle con-

straint 0\hl\p=2 is included in Model E while this is not

Table 1 Objective value

Case Objective value ($)

Model P Model R Model T Model E Model 1 Model 2 MATPOWER LINDOGLOBAL

IEEE 14 8078.84 8075.22 8106.73 8092.32 8072.42 8073.16 8081.53 8081.54

IEEE 57 41696.94 41711.78 41713.25 41711.78 41673.10 NA 41737.79 41737.93

IEEE 118 12919.50 129339.60 129625.50 129376.00 129330.74 129325.68 129660.70 129660.54

IEEE 300 719381.80 718301.60 721368.40 718546.27 718091.78 719451.23 719725.11 NA

1354pegase 74053.90 74096.14 74100.85 74040.99 74006.84 73974.56 74069.35 NA

2869pegase 133877.00 133875.40 133931.40 133934.70 133866.95 133823.28 133999.29 NA
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necessary for the nonconvex ACOPF model in GAMS

solved by LINDOGLOBAL (this can be also due to the

accuracy tolerance differences of different optimization

solvers).

The computation time results are listed in Table 2.

Model P requires least computation time while Model T

requires the most. This is because model complexity

increases as we increase model accuracy. The accuracy

improvement is validated by the solution results in Table 1.

All proposed SOC-ACOPF models are computationally

competitive with MATPOWER. The proposed SOC-

ACOPF models require much less computation time as

compared to MATPOWER for large-scale network cases

(see the results of 1354pegase and 2869pegase cases in

Table 2). Our proposed SOC-ACOPF models are valid for

both radial and mesh power networks.

To compare the computational performance of different

SOCP-based ACOPF formulations, we have also imple-

mented the ACOPF models in [13] and [28]. The results are

listed in Tables 1 and 2. It is worth to mention that the

model in reference [28] takes much longer time than our

proposed SOC-ACOPF models for GAMS to generate the

executable model format to the solver though the solver

CPU time is short. In general, the model in [13] has the

least number of constraints and requires less computational

time. However, this model is not valid for mesh networks

because there is no voltage phase angle constraint in this

model (the results from the model in [13] are relaxed

solutions for mesh networks). For the model in [28],

MOSEK in GAMS cannot converge for the IEEE 57-bus

test case. These results show stronger robust performance

of our SOC-ACOPF models compared with the other two

convex ACOPF models in the literature.

4.1.2 Power load scenarios

We evaluate the performance of the proposed SOC-

ACOPF models under different power load scenarios and

compare the results with MATPOWER results. The

incremental power load scenarios are generated from 10%

to 100% of the power loads (both active power and reactive

power) in the base case. The SOC-ACOPF and ACOPF

models are solved repeatedly by using different power load

parameters. To demonstrate the relaxation performance of

the proposed SOC-ACOPF models, we also calculate and

plot the maximum value of relaxation gaps Gol . The

maximum relaxation gap Gol is calculated by:

Gol ¼ max
l

pol �
p2sl þ q2sl

Vsl

Rl

� �

ð75Þ

Small values of Gol mean better AC feasibility. The results

are shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

For IEEE 14-bus, IEEE 57-bus, IEEE 118-bus and IEEE

300-bus cases, Gol\10�6 is valid for all the power load

scenarios. For power load scenarios when MATPOWER

cannot converge, the MOSEK solver is convergent for our

proposed models however with large relaxation gaps (see

in Fig. 10 the results of relaxation gap for power load ratio

10%). These results show strong robustness of the proposed

SOC-ACOPF models over the power load scenarios.

4.1.3 Congested power networks

The network congestions are caused by reducing the

capacity of transmission lines to be 80% of the power flow

solutions in the base case. Each line is congested sequen-

tially. We summarize the statistics of the results in Table 3.
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Table 2 Computation CPU time

Case CPU time (s)

Model P Model R Model T Model E Model 1 Model 2 MATPOWER LINDOGLOBAL

IEEE 14 0.08 0.06 0.12 0.09 0.08 0.07 0.11 0.20

IEEE 57 0.09 0.11 0.25 0.17 0.11 NA 0.12 2.31

IEEE 118 0.09 0.27 0.54 0.36 0.13 0.09 0.30 27.10

IEEE 300 0.25 1.29 1.48 0.64 0.25 0.22 0.48 NA

1354pegase 0.76 2.78 3.92 2.50 0.64 2.56 8.58 NA

2869pegase 1.97 10.94 11.47 9.72 1.23 6.82 18.66 NA
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When some critical lines are congested, both MATPOWER

and GAMS cannot converge. All the proposed SOC-

ACOPF models are more robust than the nonconvex

ACOPF model in MATPOWER. The convergence per-

formance of Model P is very close to the nonconvex

ACOPF model in MATPOWER. These results show that

the improvements (robustness) of the proposed SOC-

ACOPF models compared with Model P are prominent.

4.2 Feasible solution

The heuristic algorithm described in Section 3 for

recovering a feasible solution is validated numerically in
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this section. We use the IPOPT solver in GAMS to solve

the nonconvex ACOPF model. A desktop with 3.4 GHz

CPU and 32 GB RAM is used to implement Algorithm 1.

For all the relaxed solutions of SOC-ACOPF models listed

in Table 1, the feasible solutions are recovered within two

iterations. The objective function values of the recovered

feasible solutions are listed in Table 4. The CPU time

required for the computation of the feasible solutions are

reported in Table 5. The feasible solutions from the models

in [13] and [28] are also recovered and reported. Feasible

solutions recovered from our SOC-ACOPF models are

better than [13] and [28]. For 1354pegase and 2869pegase

test cases, feasible solutions with lower objective function

values than the solutions from MATPOWER are recov-

ered. The disadvantage of the proposed heuristic feasible

solution recovery algorithm is that the computation time is

larger than solving the nonconvex ACOPF model by

MATPOWER. However, this algorithm is still useful when

computation time is not strictly constrained considering

some recovered feasible solutions are better than the

solutions obtained from MATPOWER. It is also worth to

mention that, since IPOPT is an open source solver, it may

not be suitable to compare the CPU time of IPOPT with the

MIPS solver in MATLAB which is commercial software.

The major reason of larger CPU time is due to the iterative

nature of the heuristic feasible solution recovery algorithm.
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5 Conclusion

Three second-order cone models (Model R, Model T

and Model E) for ACOPF are proposed using convex

relaxation and approximation techniques. Compared with

other SOCP-based ACOPF formulations in the literature,

our formulations are valid for both mesh and radial power

networks. The numerical results show that the proposed

SOC-ACOPF models can give accurate results. Though the

bilinear transformation based derivations lead to more

constraints in the proposed SOC-ACOPF models compared

with Model P, the accuracy improvement is achieved with

similar computation time as compared to MATPOWER.

The quality of results with respect to the global optimal

solution is also checked using LINDOGLOBAL solver in

GAMS. The computation results for various power load

scenarios show robust performance of the proposed SOC-

ACOPF models. An interesting observation from the

results of test cases with low power load levels when

MATPOWER cannot converge is that high relaxation gap

values from the solutions of the proposed SOC-ACOPF

models can actually be regarded as indicators of non-con-

vergence of the original nonconvex ACOPF model. In

these cases, the objective value solutions from the proposed

SOC-ACOPF models can serve as lower bounds of the

original nonconvex ACOPF model.

A computational comparison of different SOCP-based

ACOPF formulations shows the strong convergence

Table 5 Computation time of feasible solution recovery algorithm

Case CPU time (s)

Model P Model R Model T Model E Model 1 Model 2 MATPOWER LINDOGLOBAL

IEEE 14 0.11 0.18 0.26 0.12 0.22 0.25 0.11 0.20

IEEE 57 1.05 1.50 1.22 1.17 1.59 NA 0.12 2.31

IEEE 118 1.44 2.41 1.37 3.03 4.08 3.47 0.30 27.10

IEEE 300 14.55 24.56 15.13 131.55 15.28 13.42 14.53 NA

1354pegase 45.90 41.77 69.55 33.91 58.61 19.45 8.58 NA

2869pegase 234.61 769.156 140.58 525.00 203.69 127.30 18.66 NA

Table 3 Convergence performance in congested power networks

Case Number of convergent solutions Total number of transmission lines

Model P Model R Model T Model E MATPOWER

IEEE 14 20 20 20 20 19 20

IEEE 57 79 80 77 80 80 80

IEEE 118 186 186 185 186 182 186

IEEE 300 357 372 350 359 344 411

1354pegase 1391 1723 1655 1665 1366 1991

2869pegase 3897 4278 4221 4238 3409 4582

Table 4 Objective values of recovered feasible solution

Case Objective value ($)

Model P Model R Model T Model E Model 1 Model 2 MATPOWER LINDOGLOBAL

IEEE 14 8081.61 8081.63 8106.73 8091.10 8081.63 8081.63 8081.53 8081.54

IEEE 57 41738.11 41738.15 41738.14 41738.15 41738.15 NA 41737.79 41737.93

IEEE 118 129660.92 129668.43 129668.29 129667.12 129668.43 129670.80 129660.70 129660.54

IEEE 300 719900.86 719536.08 719516.79 719526.16 719522.19 720335.29 719725.11 NA

1354pegase 74064.77 74064.77 74064.77 74064.77 74064.77 74064.77 74069.35 NA

2869pegase 133987.76 133991.67 133991.67 133991.67 133991.67 133991.67 133999.29 NA
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performance of the proposed SOC-ACOPF models. To

recover feasible solutions from the relaxed solutions of the

proposed SOC-ACOPF models, we develop a heuristic

feasible solution recovery algorithm. This algorithm is

capable of recovering the feasible solutions from all the

relaxed solutions of the proposed SOC-ACOPF models in

the test cases. Another key observation from our research is

that, instead of seeking one single model to satisfy all test

cases under all scenarios, it is perhaps more realistic to

provide multiple models or methods, which can be valuable

or applicable for the power network operators to deal with

many different test cases or operational situations. This is

reasonable considering the large-scale changing nature of

power network parameters (such as power loads and net-

work congestions) in the real-world operations. Consider-

ing uncertainties for the proposed SOC-ACOPF models

can be good future work.
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