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With Directed Topologies and Nonlinear Dynamics
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Abstract—This paper considers a second-order consensus prob-
lem for multiagent systems with nonlinear dynamics and directed
topologies where each agent is governed by both position and ve-
locity consensus terms with a time-varying asymptotic velocity. To
describe the system’s ability for reaching consensus, a new concept
about the generalized algebraic connectivity is defined for strongly
connected networks and then extended to the strongly connected
components of the directed network containing a spanning tree.
Some sufficient conditions are derived for reaching second-order
consensus in multiagent systems with nonlinear dynamics based
on algebraic graph theory, matrix theory, and Lyapunov control
approach. Finally, simulation examples are given to verify the
theoretical analysis.

Index Terms—Algebraic connectivity, directed spanning tree,
multiagent system, second-order consensus, strongly connected
network.

I. INTRODUCTION

COLLECTIVE behaviors in networks of autonomous mo-
bile agents have received increasing attention in recent

years due to the growing interests in understanding animal
group behaviors, such as flocking and swarming [27], [28],
and also due to their wide applications in the coordination and
control of distributed sensor networks, unmanned-air-vehicle
formations, satellite clusters, robotic teams, etc. The study of
collective behavior focuses on analyzing how globally coordi-
nated group behavior emerges as a result of local interactions
among individuals. In many cooperative multiagent systems,
a group of agents only share information with their neighbors
locally and simultaneously try to agree on certain global criteria
of common interest.
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Recently, much progress has been made in the study of
collective behaviors in multiagent dynamical systems, such as
consensus [10], [11], [14], [19], [21], [22], [24]–[26], [40],
synchronization [1], [4], [15]–[18], [29]–[38], [41]–[43], and
swarming and flocking [20], [27], [28]. The consensus problem
usually refers to the problem of how to reach an agreement,
such as the position and velocity, among a group of autonomous
mobile agents in a dynamical system. In [28], Vicsek et al.
proposed a simple discrete-time model to simulate a group of
autonomous agents moving in the plane with the same speed
but different headings. Vicsek’s model in essence is a simplified
version of the model introduced earlier by Reynolds [27]. Based
on the algebraic graph theory [8], it has been shown that the
network connectivity is a key factor in reaching consensus [5],
[14], [19], [25]. It has also been proved that consensus in a
network with a dynamically changing topology can be reached
if and only if the time-varying network topology contains a
spanning tree frequently enough as the network evolves with
time [14], [25].

Up to date, most works on the consensus problem con-
sider the case where the agents are governed by first-order
dynamics [4], [14], [17]–[19], [25], [29]–[32], [34], [35], [38].
Nevertheless, the second-order consensus problem has come
to be recognized as an important topic [10], [11], [20], [22],
[24], where each agent is governed by second-order dynam-
ics. In general, the second-order consensus problem refers
to the problem of reaching an agreement among a group of
autonomous agents governed by second-order dynamics, such
as the position and velocity terms. A detailed analysis of the
second-order consensus protocols is a critical step to introduce
more complicated dynamics into the model of each individual
agent within the general framework of multiagent systems,
thus helping researchers and engineers implement distributed
cooperative control strategies in networked multiagent systems.

It has been found that, in sharp contrast to the first-order
consensus problem, second-order consensus may fail to be
achieved in many cases even if the network topology contains a
directed spanning tree [25]. More surprisingly, consensus may
no longer be reachable within a multiagent system by adding
one connection between a chosen pair of agents, which has
originally been able to reach consensus. This is inconsistent
with the intuition that more connections are helpful for reaching
consensus. Some sufficient conditions have been derived for
reaching second-order consensus in linear models [22], [24],
where the final velocity is constant. In [39], some necessary
and sufficient conditions have been obtained for second-order
consensus in a network containing a directed spanning tree with
delay. It has been found that both the real and imaginary parts
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of the eigenvalues of the Laplacian matrix of the network play
key roles in reaching second-order consensus in general.

It has also been noticed that there is still little work in the
literature on second-order consensus algorithms for directed
networks of agents with time-varying velocities. In [23], a
second-order consensus algorithm in the multiagent system
with directed topology and asymptotic oscillatory velocities
was considered where only linear model was studied. This
scenario arises naturally when agents have intrinsic nonlinear
dynamics [4], [17], [18], [21], [29]–[32], [34], [35], [38], [42],
[43]. In this paper, to deal with this challenging scenario, a
nonlinear term describing the intrinsic dynamics of each agent
is incorporated in the second-order consensus algorithm. As
a result, agents move with time-varying velocities, even after
a velocity consensus has been reached. A new concept about
the generalized algebraic connectivity is defined in the strongly
connected network components to describe the ability of reach-
ing consensus in a directed network, and some sufficient con-
ditions are derived for reaching second-order consensus among
agents with time-varying velocities.

The rest of this paper is organized as follows. In Section II,
some preliminaries on graph theory and the model formulation
are given. Second-order consensus algorithms for multiagent
dynamical systems in strongly connected networks and net-
works containing a directed spanning tree are discussed in
Sections III and IV, respectively. In Section V, numerical
examples are simulated to verify the theoretical analysis. Con-
clusions are finally drawn in Section VI.

II. PRELIMINARIES

In this section, preliminaries about algebraic graph theory
and model formulation are briefly introduced.

Let G = (V, E , G) be a weighted directed network of order
N , with the set of nodes V = {v1, v2, . . . , vN}, the set of
directed edges E ⊆ V × V , and a weighted adjacency matrix
G = (Gij)N×N . A directed edge Eij in the network G is de-
noted by the ordered pair of nodes (vi, vj), where vi and vj are
called the terminal and initial nodes, respectively, which means
that node vi can receive information from node vj . In view of
the definition of adjacency matrices for weighted graphs [12],
Gij > 0 if and only if there is a directed edge (vi, vj) in G. In
this paper, only positively weighted networks are considered.

Definition 1 [12]: A network G is called undirected if
there is a connection between two nodes vi and vj in G,
then Gij = Gji > 0; otherwise, Gij = Gji = 0 (i �= j; i, j =
1, 2, . . . , N). A network G is directed if there is a connection
from node vj to vi in G, then Gij > 0; otherwise, Gij = 0 (i �=
j; i, j = 1, 2, . . . , N).

Note that undirected networks are special cases of directed
networks with Gij = Gji for all i, j = 1, 2, . . . , N .

Definition 2 [12]: A directed (undirected) path from node
vj to vi is a sequence of edges (vi, vi1), (vi1 , vi2), . . . , (vil

, vj)
in the directed (undirected) network with distinct nodes vik

,
k = 1, 2, . . . , l. A directed (undirected) network G is strongly
connected (connected) if between any pair of distinct nodes vi

and vj in G, there exists a directed (undirected) path from vi to
vj , i, j = 1, 2, . . . , N .

Definition 3 [12]: A matrix G in a directed (undirected)
network G is reducible if there is a permutation matrix P ∈
RN×N and an integer m, 1 ≤ m ≤ N − 1, such that

PTGP =
(

G̃11 0
G̃21 G̃22

)
where G̃11 ∈ Rm×m, G̃21 ∈ R(n−m)×m, and G̃22 ∈
R(n−m)×(n−m). Otherwise, G is called irreducible.

Definition 4 [3]: A directed network is called a directed tree
if the underlying network is a tree when the direction of the
network is ignored. A directed rooted tree is a directed network
with at least one root r having the property that, for each node
v different from r, there is a unique directed path from r to v. A
directed spanning tree of a network G is a directed rooted tree,
which contains all the nodes and some edges in G.

The following notations are used throughout this paper for
simplicity. Let λmax(F ) be the largest eigenvalue of matrix
F , IN (ON ) be the N -dimensional identity (zero) matrix,
1N ∈ RN (0N ∈ RN ) be a vector with each entry being 1 (0),
R(u) and I(u) be the real and imaginary parts of a complex
number u, and ⊗ be the Kronecker product [13]. For matrices
Ã and B̃ with the same order, Ã > B̃ means that Ã − B̃ is
positive definite. A matrix G ∈ RN×N is nonnegative if every
entry Gij ≥ 0 (1 ≤ i, j ≤ N) and a vector x ∈ RN is positive
if every entry xi > 0 (1 ≤ i ≤ N). Finally, let ρ(A) be the
spectral radius of matrix A.

The commonly studied second-order consensus protocol is
described as follows [10], [11], [22], [24]:

ẋi(t) = vi(t)

v̇i(t) = α
N∑

j=1,j �=i

Gij (xj(t) − xi(t))

+ β
N∑

j=1,j �=i

Gij (vj(t) − vi(t)) , i = 1, 2, . . . , N

(1)

where xi ∈ Rn and vi ∈ Rn are the position and velocity states
of the ith agent, respectively, α > 0 and β > 0 are the coupling
strengths, G = (Gij)N×N is the coupling configuration matrix
representing the topological structure of the network, and the
Laplacian matrix L = (Lij)N×N is defined by

Lii = −
N∑

j=1,j �=i

Lij

Lij = − Gij , i �= j; i, j = 1, . . . , N (2)

which ensures the diffusion property that
∑N

j=1 Lij = 0. For
an undirected network, its Laplacian matrix L is positive semi-
definite; however, it may not be so for a directed network in
general.

When the network reaches second-order consensus in (1),
the velocities of all agents converge to

∑N
j=1 ξjvj(0), which

depends only on the initial velocities of the agents, where
ξ = (ξ1, . . . , ξN )T is the nonnegative left eigenvector of L
associated with eigenvalue zero satisfying ξT1N = 1 [22], [24].
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However, in most of the applications of multiagent formations,
the velocity of each agent is generally not a constant but a
time-varying variable. Therefore, in this paper, the following
second-order consensus protocol with time-varying velocities
is considered:

ẋi(t) = vi(t)

v̇i(t) = f (xi(t), vi(t), t) − α

N∑
j=1

Lijxj(t)

− β

N∑
j=1

Lijvj(t), i = 1, 2, . . . , N (3)

where f : Rn × Rn × R+ −→ Rn is a continuously differen-
tiable vector-valued function. Here, f can be taken as f =
−∇U(x, v), where U(x, v) is a potential function, then the
multiagent system (3) includes many popular swarming and
flocking models [9], [20] as special cases.

For convenience, we say a scalar is an irreducible matrix of
order one. Next, a lemma is given to show the relation between
an irreducible matrix and the corresponding strong connectivity
in the network.

Clearly, since
∑N

j=1 Lij = 0, if a consensus can be achieved,
the solution s(t) = (s1(t), s2(t)) ∈ R2n of the system (3) must
be a possible trajectory of an isolated node satisfying

ṡ1(t) = s2(t)

ṡ2(t) = f (s1(t), s2(t), t)

where s(t) may be an isolated equilibrium point, a periodic
orbit, or even a chaotic orbit.

Lemma 1 [3, Th. 3.2.1], [12, Th. 6.2.24]: A matrix G is ir-
reducible if and only if its corresponding network G is strongly
connected.

Lemma 2 [25]: The Laplacian matrix L has a simple eigen-
value zero, and all the other eigenvalues have positive real parts
if and only if the directed network has a directed spanning tree.

Lemma 3: Suppose that L is irreducible. Then, L1N = 0,
and there is a positive vector ξ = (ξ1, ξ2, . . . , ξN )T such that
ξTL = 0. In addition, there exists a positive-definite diagonal
matrix Ξ = diag(ξ1, ξ2, . . . , ξN ) such that L̂ = (1/2)(ΞL +
LTΞ) is symmetric, and

∑N
j=1 L̂ij =

∑N
j=1 L̂ji = 0 for all

i = 1, 2, . . . , N .
Proof: The first statement is proved in [17]. It is easy

to see that L̂ is symmetric, namely, L̂ij = L̂ji for all i, j =
1, 2, . . . , N . Then, one has ξ = Ξ1N , and LTΞ1N = 0. There-
fore, LTΞ is a matrix with the sum of the entries in each row
being zero. Since

∑N
j=1 Lij = 0, one has ΞL1N = 0, and the

sum of the entries in each row of ΞL is also zero. Thus, the sum
of the entries in each row of matrix L̂ is zero. In addition, since
L̂ is symmetric, the sum of the entries in each column of matrix
L̂ is also zero. The proof is completed. �

Lemma 4 (Schur Complement [2]): The following is a linear
matrix inequality: (

Q(x) S(x)
S(x)T R(x)

)
> 0

where Q(x) = Q(x)T, R(x) = R(x)T is equivalent to one of
the following conditions.

1) Q(x) > 0, R(x) − S(x)TQ(x)−1S(x) > 0.
2) R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0.

Lemma 5 [13]: For matrices A, B, C, and D with appropri-
ate dimensions, we have the following conditions.

1) (γA) ⊗ B = A ⊗ (γB), where γ is a constant.
2) (A + B) ⊗ C = A ⊗ C + B ⊗ C.
3) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).
4) (A ⊗ B)T = AT ⊗ BT.

Definition 5: The multiagent system (3) is said to achieve
second-order consensus if for any initial conditions

lim
t→∞

‖xi(t) − xj(t)‖ = 0

lim
t→∞

‖vi(t) − vj(t)‖ = 0 ∀ i, j = 1, 2, . . . , N.

III. SECOND-ORDER CONSENSUS IN STRONGLY

CONNECTED NETWORKS WITH

TIME-VARYING VELOCITIES

In this section, second-order consensus in strongly connected
networks with nonlinear dynamics (3) is first investigated.

Assumption 1: There exist nonnegative constants ρ1 and ρ2

such that

‖f(x, v, t) − f(y, z, t)‖ ≤ ρ1‖x − y‖ + ρ2‖v − z‖

∀x, y, v, z ∈ Rn;∀ t ≥ 0. (4)

Note that Assumption 1 is a Lipschitz-type condition, satisfied
by many well-known systems.

Let x̂i(t) = xi(t) −
∑N

k=1 ξkxk(t) and v̂i(t) = vi(t) −∑N
k=1 ξkvk(t) represent the position and velocity vectors rela-

tive to the average position and velocity of the agents in system
(3), where ξ = (ξ1, . . . , ξN )T is the positive left eigenvector of
L associated with eigenvalue zero satisfying ξT1N = 1. Then,
one obtains the following error dynamical system:

˙̂xi(t) = v̂i(t),

˙̂vi(t) = f (xi(t), vi(t), t) −
N∑

k=1

ξkf (xk(t), vk(t), t)

− α

N∑
j=1

Lijxj(t) − β

N∑
j=1

Lijvj(t)

+ α

N∑
k=1

ξk

N∑
j=1

Lkjxj(t) + β

N∑
k=1

ξk

N∑
j=1

Lkjvj(t),

i = 1, 2, . . . , N. (5)

Since ξTL = 0, one has
∑N

k=1 ξk

∑N
j=1 Lkjxj(t) = [(ξTL) ⊗

In]x = 0 and
∑N

k=1 ξk

∑N
j=1 Lkjvj(t) = [(ξTL) ⊗ In]v = 0.
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Note that
∑N

j=1 Lij = 0, so (5) can be written as

˙̂xi(t) = v̂i(t)

˙̂vi(t) = f (xi(t), vi(t), t) −
N∑

k=1

ξkf (xk(t), vk(t), t)

− α

N∑
j=1

Lij x̂j(t) − β

N∑
j=1

Lij v̂j(t),

i = 1, 2, . . . , N. (6)

Let x̂ = (x̂T
1 , x̂T

2 , . . . , x̂T
N )T, v = (v̂T

1 , v̂T
2 , . . . , v̂T

N )T, f(x,
v, t) = (fT(x1(t), v1(t), t), . . . , fT(xN (t), vN (t), t))T, and
ŷ = (x̂T, v̂T)T. Then, system (6) can be recasted in a compact
matrix form as follows:

˙̂y(t) = F (x, v, t) + (L̃ ⊗ In)ŷ(t) (7)

where F (x, v, t) =
(

0Nn

((IN − 1NξT) ⊗ In)f(x, v, t)

)
and

L̃ =
(

ON IN

−αL −βL

)
.

The algebraic graph theory, particularly the notion of al-
gebraic connectivity, has been well developed for undirected
networks [8]. For directed graphs, however, it has not been fully
developed yet. For example, there are no standard definitions
for the algebraic connectivity and consensus convergence rate
for directed graphs while their counterparts for undirected
graphs have been widely used to study the consensus problem.
Some useful concepts have been proposed in [31]. However,
in this paper, a new general algebraic connectivity is proposed
which can be used to describe consensus ability in multiagent
systems. Some additional properties about the derived general
algebraic connectivity are also discussed.

Definition 6: For a strongly connected network with Lapla-
cian matrix L, the general algebraic connectivity is defined by

a(L) = min
xTξ=0,x �=0

xTL̂x

xTΞx
(8)

where L̂ = (ΞL + LTΞ)/2, Ξ = diag(ξ1, . . . , ξN ), ξ = (ξ1,

ξ2, . . . , ξN )T > 0, and ξTL = 0,
∑N

i=1 ξi = 1.
Note that if Ξ = ηIN and the network is undirected, then

a(L) = λ2(L).
Lemma 6: Suppose that the matrix L̂ is symmetric, irre-

ducible, and satisfies
∑N

j=1 L̂ij = 0 with L̂ij ≥ 0, i �= j, i, j =
1, 2, . . . , N . Let

â(L̂) = min
xTξ=0,x �=0

xTL̂x

xTx
. (9)

Then, λ2(L̂) ≥ â(L̂) ≥ 0. In addition, â(L̂) = 0 if and only if ξ

is orthogonal to the left eigenvector of L̂ associated with eigen-
value zero. Moreover, â(L̂) = λ2(L̂) if ξ is the left eigenvector
of L̂ associated with eigenvalue zero.

Proof: From the Courant–Fischer minimum–maximum
theorem [12], one has λ2(L̂) ≥ â(L̂) ≥ 0. Let Λ be the di-

agonal matrix associated with L̂, i.e., there exists a P =
(p1, p2, . . . , pN ) such that L̂ = PΛPT, and let y = PTx. Then

â(L̂) = min
xTξ=0,xTx=1

xTL̂x = min
xTξ=0,xTx=1

xTPΛPTx

= min
xTξ=0,xTx=1

N∑
i=1

λi(L̂)y2
i

= min
yTPTξ=0,yTy=1

N∑
i=1

λi(L̂)y2
i

≤ min
yTPTξ=0,yTy=1,y3=···=yN=0

2∑
i=1

λi(L̂)y2
i

≤λ2(L̂). (10)

The inequalities hold if ∀ y ∈ RN under the conditions of
yTPTξ = 0, y1 = 0, pT

2 ξ = 0, and pT
1 ξ �= 0. If ξ is the left

eigenvector of L̂ associated with eigenvalue zero, then pT
1 ξ �= 0

and ξ ⊥ pi, i = 2, . . . , N , for any y with y1 = 0. Therefore,
â(L̂) = λ2(L̂) if ξ is the left eigenvector of eigenvalue zero.
Similarly

â(L̂) = min
yTPTξ=0,yTy=1

N∑
i=1

λi(L̂)y2
i ≥ λ1(L̂). (11)

The above inequality holds if and only if yTPTξ = 0, i.e.,
yTPTξ =

∑N
i=1 yip

T
i ξ, and y2 = · · · = yN = 0. It then fol-

lows that pT
1 ξ = 0. This completes the proof. �

Lemma 7: If the Laplacian matrix L is irreducible, then
a(L) > 0.

Proof: From Lemma 3, there exist a positive vector ξ =
(ξ1, ξ2, . . . , ξN ) and a positive definite diagonal matrix Ξ =
diag(ξ1, ξ2, . . . , ξN ), such that L̂ = (1/2)(ΞL + LTΞ) is sym-
metric and

∑N
j=1 L̂ij = 0, i = 1, 2, . . . , N . It is easy to see

that 1N is the left eigenvector of eigenvalue zero associated
with matrix L̂, and 1T

Nξ = 1 �= 0. From Lemma 6, a(L) ≥
â(L̂)/maxi ξi > 0. The proof is thus completed. �

Lemma 8: The general algebraic connectivity of a strongly
connected network can be computed by the following:

max δ

subject to QT(L̂ − δΞ)Q ≥ 0 (12)

where Q =
(

IN−1

− ξ̂T

ξN

)
∈ RN×(N−1) and ξ̂ = (ξ1, . . . , ξN−1)T.

Proof: It is easy to see that the columns of Q form a basis
of the orthogonal subspace of the vector ξ. Thus, by letting x =
Qz, one has

a(L) = min
z �=0

zTQTL̂Qz

zTQTΞQz
. (13)

The proof is completed. �
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Theorem 1: Suppose that the network is strongly connected
and Assumption 1 holds. Then, second-order consensus in
system (3) is achieved if

a(L) >
1
2

⎛⎝ρ1

α
+

α

β2
+

ρ1

β

+

√(
ρ1

α
− α

β2
− ρ1

β

)2

+
(α + β)2ρ2

2

α2β2

⎞⎠ . (14)

Proof: Consider the following Lyapunov function
candidate:

V (t) =
1
2
ŷT(t)(Ω ⊗ In)ŷ(t) (15)

where Ω =

(
2αL̂ αΞ

β
αΞ
β Ξ

)
. It will be shown that V (t) ≥ 0 and

V (t) = 0 if and only if ŷ = 0. From the definition of a(L),
one has

V (t) = αx̂T(t)(L̂ ⊗ In)x̂(t) +
α

2β
x̂T(t)(Ξ ⊗ In)v̂(t)

+
α

2β
v̂T(t)(Ξ ⊗ In)x̂(t) +

1
2
v̂T(t)(Ξ ⊗ In)v̂(t)

≥ 1
2
ŷT(t)(Q̂ ⊗ In)ŷ(t) (16)

where Q̂ =
(

2a(L)αΞ αΞ
β

αΞ
β Ξ

)
. By Lemma 4, Q̂ > 0 is

equivalent to that Ξ > 0 and 2a(L)αΞ − (α2/β2)Ξ > 0. From
(14), one has a(L) ≥ (1/2)((ρ1/α) + (α/β2) + (ρ1/β) +
|(ρ1/α) − (α/β2) − (ρ1/β)|) = max((ρ1/α), (α/β2) + (ρ1/

β)), and thus Q̂ > 0. Consequently, V (t) ≥ 0 and V (t) = 0 if
and only if ŷ = 0.

Let x =
∑N

j=1 ξjxj and v =
∑N

j=1 ξjvj . Taking the deriva-
tive of V (t) along the trajectories of (7) yields

V̇ (t) = ŷT(t)(Ω ⊗ In)
[
F (x, v, t) + (L̃ ⊗ In)ŷ

]
=

α

β
x̂T(t)

[(
Ξ(IN − 1NξT)

)
⊗ In

]
f(x, v, t)

+ v̂T(t)
[(

Ξ(IN − 1NξT)
)
⊗ In

]
f(x, v, t)

+ ŷT(t)
[
(ΩL̃) ⊗ In

]
ŷ

=
[
α

β
x̂T(t) + v̂T(t)

]
(Ξ ⊗ In)

× [f(x, v, t) − 1N ⊗ f(x, v, t)]

+
1
2
ŷT(t)

[
(ΩL̃ + L̃TΩ) ⊗ In

]
ŷ(t)

−
[
α

β
x̂T(t) + v̂T(t)

]
(Ξ ⊗ In)

[
(1NξT) ⊗ In

]
× f(x, v, t) +

[
α

β
x̂T(t) + v̂T(t)

]
(Ξ ⊗ In)

× [1N ⊗ f(x, v, t)] . (17)

Since x̂(t) = [(IN − 1NξT) ⊗ In]x(t), v̂(t) = [(IN −
1NξT) ⊗ In]v(t), and ξT1N = 1, one has

x̂T(t)(Ξ ⊗ In) [1N ⊗ f(x, v, t)]

=
[
1T

N ⊗ fT(x, v, t)
]
(Ξ ⊗ In)

[
(IN − 1NξT) ⊗ In

]
x(t)

=
{[

1T
NΞ(IN − 1NξT)

]
⊗ fT(x, v, t)

}
x(t)

=
{[

ξT(IN − 1NξT)
]
⊗ fT(x̄)

}
x(t) = 0 (18)

x̂T(t)(Ξ ⊗ In)
[
(1NξT) ⊗ In

]
f(x, v, t)

= fT(x, v, t)
[(

ξ1T
N

)
⊗ In

]
(Ξ ⊗ In)

×
[
(IN − 1NξT) ⊗ In

]
x(t)

= fT(x, v, t)
{[

ξ1T
NΞ(IN − 1NξT)

]
⊗ In

}
x(t)

= fT(x, v, t)
{[

ξξT(IN − 1NξT)
]
⊗ In

}
x(t) = 0. (19)

Similarly, one can obtain

v̂T(t)(Ξ ⊗ In) [1N ⊗ f(x, v, t)] = 0 (20)

v̂T(t)(Ξ ⊗ In)
[
(1NξT) ⊗ In

]
f(x, v, t) = 0. (21)

In addition

ΩL̃ =

(
2αL̂ αΞ

β
αΞ
β Ξ

)(
ON IN

−αL −βL

)

=

(
−α2

β ΞL 2αL̂ − αΞL

−αΞL αΞ
β − βΞL

)
. (22)

Note that L̂ = (1/2)(ΞL + LTΞ), so

1
2
(ΩL̃ + L̃TΩ) =

(
−α2

β L̂ ON

ON
αΞ
β − βL̂

)
. (23)

By Assumption 1, one obtains

x̂T(t)(Ξ ⊗ In) [f(x, v, t) − 1N ⊗ f(x, v, t)]

=
N∑

i=1

(xi − x)Tξi [f(xi, vi, t) − f(x, v, t)]

≤
N∑

i=1

‖x̂i‖ξi (ρ1‖x̂i‖ + ρ2‖v̂i‖)

= ρ1

N∑
i=1

ξi‖x̂i‖2 + ρ2

N∑
i=1

ξi‖x̂i‖v̂i‖ (24)

v̂T(t)(Ξ ⊗ In) [f(x, v, t) − 1N ⊗ f(x, v, t)]

≤ ρ1

N∑
i=1

ξi‖v̂i‖2 + ρ2

N∑
i=1

ξi‖x̂i‖‖v̂i‖. (25)
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Combining (18)–(25), one has

V̇ (t) =
[
α

β
x̂T(t) + v̂T(t)

]
(Ξ ⊗ In)

× [f(x, v, t) − 1N ⊗ f(x, v, t)]

+
1
2
ŷT(t)

[
(ΩL̃ + L̃TΩ) ⊗ In

]
ŷ(t)

≤ α

β
ρ1

N∑
i=1

ξi‖x̂i‖2 +
(

α

β
+ 1

)
ρ2

N∑
i=1

ξi‖x̂i‖‖v̂i‖

+ ρ1

N∑
i=1

ξi‖v̂i‖2 − α2

β
x̂T(L̂ ⊗ In)x̂

+ v̂T

[(
αΞ
β

− βL̂

)
⊗ In

]
v̂

≤
[
α

β
ρ1 −

α2

β
a(L)

] N∑
i=1

ξi‖x̂i‖2

+
(

α

β
+ 1

)
ρ2

N∑
i=1

ξi‖x̂i‖‖v̂i‖

+
[
ρ1 +

α

β
− βa(L)

] N∑
i=1

ξi‖v̂i‖2

= ‖x̂‖TQ‖x̂‖ (26)

where ‖x̂‖ = (‖x̂1‖, . . . , ‖x̂N‖)T and

Q =

⎛⎝[
α
β ρ1 − α2

β a(L)
]
Ξ 1

2

(
α
β + 1

)
ρ2Ξ

1
2

(
α
β + 1

)
ρ2Ξ

[
ρ1 + α

β − βa(L)
]
Ξ

⎞⎠ .

By Lemma 4, Q < 0 is equivalent to that

a(L) >
ρ1

α[
a(L) − ρ1

α

] [
a(L) − α

β2
− ρ1

β

]
>

(α + β)2ρ2
2

4α2β2
.

By simple calculations, one obtains (14). Therefore, the second-
order consensus is achieved in system (3) under condition (14).
This completes the proof. �

Corollary 1: Suppose that the network is undirected and
Assumption 1 holds. Then, second-order consensus in system
(3) is achieved if

λ2(L) >
1
2

⎛⎝ρ1

α
+

α

β2
+

ρ1

β

+

√(
ρ1

α
− α

β2
− ρ1

β

)2

+
(α + β)2ρ2

2

α2β2

⎞⎠ .

Proof: If the network is undirected, then by Definition 6,
a(L) = λ2(L). This completes the proof. �

Remark 1: In Definition 6, the general algebraic connectivity
is defined for a strongly connected network, which is shown in

Theorem 1 to be the key factor for reaching network consensus.
The right-hand side of condition (14) depends on the coupling
strengths α and β, and the nonlinear constants ρ1 and ρ2. Thus,
a(L) is a key factor concerning the network structure that can
be used to describe the ability for reaching consensus.

If f = 0, then ρ1 = ρ2 = 0, and system (3) is reduced to the
linear system (1).

Corollary 2: Suppose that the network is strongly connected.
Then, second-order consensus in system (1) is achieved if

a(L) >
α

β2
. (27)

Up to this point, it is still a challenging problem to com-
pute a(L) and to find the relationship between a(L) and the
eigenvalues of L. Fortunately, the following useful result can
be obtained as a byproduct of the previous results.

Corollary 3: Suppose that the network is strongly connected.
Then, the following statement holds:

a(L) ≤ min
2≤i≤N

R(μi)
[
R2(μi) + I2(μi)

]
I2(μi)

= min
2≤i≤N

[
R(μi) +

R3(μi)
I2(μi)

]
. (28)

In addition, if the network is undirected, then a(L) = λ2(L).
Proof: From the results in [39], one knows that second-

order consensus in system (1) is achieved if and only if the
network contains a directed spanning tree and moreover

min
2≤i≤N

R(μi)
[
R2(μi) + I2(μi)

]
I2(μi)

>
α

β2
.

By Corollary 2, one obtains a sufficient condition a(L) >
(α/β2) for the network consensus. Thus, (28) is satisfied. �

Remark 2: In general, it is very difficult to compute a(L),
not to mention finding the relationship between a(L) and
the eigenvalues of L. However, if the network is strongly
connected, Corollary 3 yields that a(L) ≤ min2≤i≤N [R(μi) +
(R3(μi)/I2(μi))]. This result is useful for both theoretical
analyses in algebraic graph theory and relevant applications.

IV. SECOND-ORDER CONSENSUS IN NETWORKS

CONTAINING A DIRECTED SPANNING TREE

WITH TIME-VARYING VELOCITIES

In this section, second-order consensus in networks contain-
ing a directed spanning tree with time-varying velocities is
further investigated.

Lemma 9 [3]: There exist a permutation matrix P of order
N and an integer m ≥ 1, such that

PTLP =

⎛⎜⎜⎝
L1 O · · · O
L21 L2 · · · O

...
...

. . . O
Lm1 Lm2 · · · Lm

⎞⎟⎟⎠ (29)

where L1 ∈ Rq1×q1 , L2 ∈ Rq2×q2 , . . . , Lm ∈ Rqm×qm are
square irreducible matrices, which are uniquely determined
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to within simultaneous permutation of their lines, but their
ordering is not necessarily unique.

Next, we recall the concept of the condensation network G∗

of a directed network G, which has no closed directed walks [3].
Definition 7 [3]: Let G be a directed network and let

G1,G2, . . . ,Gm be the strongly connected components of G
with the connection matrices L1, L2, . . . , Lm. Then, G∗ is a
condensation network of G if there is a connection from a
node in V(Gj) to a node in V(Gi) (i �= j), then the weight
G∗

ij > 0; otherwise, G∗
ij = 0 for i, j = 1, 2, . . . ,m; G∗

ii = 0,
for i = 1, 2, . . . , m.

Lemma 10: For every i = 2, 3, . . . ,m, there is an integer
j < i such that G∗

ij > 0 if and only if the directed network G
contains a directed spanning tree.

Proof: If the directed network G contains a directed span-
ning tree, then there is a directed path from the root (a node in
G1) to every other node. If for an integer i, 2 ≤ i ≤ m, G∗

ij = 0
for all j < i, then because of the network structure in (29),
G∗

ij = 0 for all j �= i, i.e., there are no paths from the root to
the ith strongly connected components. This contradicts the fact
that G contains a directed spanning tree.

If, for every i = 2, 3, . . . , m, there is an integer j < i such
that G∗

ij > 0, then there exists a directed connection from node
j to node i in G∗. When i = 2, there is a directed path from
node 1 to node 2. Suppose there is a directed path from node 1
to all the nodes 2, 3, . . . , k. Then, it suffices to prove that there is
a directed path from node 1 to node k + 1. By assumption, there
is an integer j < k + 1 and a directed path from j to k + 1, such
that a directed path from 1 to k + 1 exists from 1 to j and, then,
to k + 1. Therefore, G∗ contains a directed spanning tree with
root node 1, which implies that G has a directed spanning tree
with every node in G1 being a root. �

One can change the order of the node indexes to obtain the
Frobenius normal form (29). Without loss of generality, assume
that the adjacency matrix G of G is in the Frobenius normal
form. Suppose that the condition (14) in Theorem 1 holds in
the first strongly connected component, so that the final states
of the nodes in this component satisfy [17], [31]

ẋs(t) = vs(t) + O(eεt)
v̇s(t) = f(xs, vs, t) + O(eεt) (30)

where xs ∈ Rn, vs ∈ Rn, and ε < 0. Let Li = Lii + Ai,
where Lii is a zero-row-sum matrix and Ai ≥ 0 is a
diagonal matrix. By Lemma 3, there exists a positive
vector ξi = (ξi1, ξi2, . . . , ξiqi

)T with appropriate dimensions

such that ξ
T
i Lii = 0 and

∑qi

j=1 ξij = 1. Let x̃i =xi − xs, ṽi =
vi − vs, si =

∑i
j=1 qj , ei = (x̃T

si−1
, . . . , x̃T

si
, ṽT

si−1
, . . . , ṽT

si
)T,

e=(eT
2 , . . . , eT

m)T, L̃∗
ii =

(
Oqi

Iqi

−αLi −βLi

)
, L̃∗

ij =(
Oqi×qj

Iqi×qj

−αLij −βLij

)
, f ∗

i (x, v, t) = (fT(xsi−1 , vsi−1 , t), . . . ,

fT(xsi
, vsi

, t))T, and F ∗
i (x, v, t) =(

0qin

f ∗
i (x, v, t) − 1qi

⊗ f(xs, vs, t)

)
, i = 1, 2, . . . , m. Then, the

network (3) can be recast in a compact matrix form as follows:

ė(t) = F ∗(x, v, t) + (L̃∗ ⊗ In)e(t) + O(eεt) (31)

where F ∗(x, v, t) = (F ∗T
2 (x, v, t), . . . , F ∗T

N (x, v, t))T, and
L̃∗ = (L̃∗

ij)(m−1)×(m−1), 2 ≤ i, j ≤ m.
Lemma 11: Let

L̃∗ =

⎛⎜⎜⎜⎝
L̃∗

22 O · · · O

L̃∗
32 L̃∗

33 · · · O
...

...
. . . O

L̃∗
m1 L̃∗

m2 · · · L̃∗
mm

⎞⎟⎟⎟⎠ . (32)

If there exist positive-definite diagonal matrices

Q∗
j =

(
2αLj

αΞj

β

αΞj

β Ξj

)

where Ξj = diag(ξj1, ξj2, . . . , ξjpj
), such that

Q∗
jL̃

∗
jj + L̃∗T

jj Q∗
j < 0, j = 2, . . . , m (33)

then there exists a positive-definite diagonal matrix Δ =
diag(Δ2I2p2 , . . . ,ΔmI2pm

) such that

ΔQ̃∗L̃∗ + L̃∗TQ̃∗Δ < 0 (34)

where Q̃∗ = diag(Q̃∗
2, . . . , Q̃

∗
m) and Δj are positive constants,

j = 2, . . . ,m.
Proof: Let Φi be in (35), shown at the bottom of the page.

Then, Φm = ΔQ̃∗L̃∗ + L̃∗TQ̃∗Δ. By (33), it is easy to see that
Φ2 < 0. Next, it is to prove the lemma by induction. Suppose
that Φi < 0. It suffices to show that Φi+1 < 0. By Lemma 4,
Φi+1 < 0 is equivalent to Q∗

i+1L̃
∗
i+1,i+1 + L̃∗T

i+1,i+1Q
∗
i+1 < 0

according to (33) and

Φi − Δi+1Πi+1

(
Q∗

i+1L̃
∗
i+1,i+1 + L̃∗T

i+1,i+1Q
∗
i+1

)−1

ΠT
i+1 <0

(36)

where ΠT
i+1 = Q∗

i+1(L̃
∗
(i+1)2, L̃

∗
(i+1)3, . . . , L̃

∗
(i+1)i). If Δi+1 is

sufficiently smaller than Δj for j < i + 1, then (36) can be
satisfied. Therefore, by choosing Δi+1 sufficiently smaller than

Φi =

⎛⎜⎜⎜⎜⎜⎝
Δ2

(
Q∗

2L̃
∗
22 + L̃∗T

22 Q∗
2

)
Δ3L̃

∗T
32 Q∗

3 · · · ΔiL̃
∗T
i2 Q∗

i

Δ3Q
∗
3L̃

∗
32 Δ3

(
Q∗

3L̃
∗
33 + L̃∗T

33 Q∗
3

)
· · · ΔiL̃

∗T
i3 Q∗

i

...
...

. . .
...

ΔiQ
∗
i L̃

∗
i2 ΔiQ

∗
i L̃

∗
i3 · · · Δi

(
Q∗

i L̃
∗
ii + L̃∗T

ii Q∗
i

)

⎞⎟⎟⎟⎟⎟⎠ (35)
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Δj for j < i + 1, the condition in (36) can be satisfied. The
proof is thus completed. �

Lemma 12 [38]: If L is irreducible, Lij = Lji ≥ 0 for i �= j,
and

∑N
j=1 Lij = 0 for all i = 1, 2, . . . , N , then all eigenvalues

of the matrix ⎛⎜⎜⎝
L11 + ε L12 . . . L1N

L21 L22 . . . L2N
...

...
. . .

...
LN1 LN2 . . . LNN

⎞⎟⎟⎠
are positive for any constant ε > 0.

Definition 8: For a network containing a directed spanning
tree and the Laplacian matrix in the form of (29), the general
algebraic connectivity of the ith strongly connected component
(2 ≤ i ≤ m) is defined by

b(Li) = min
x�=0

xTL̂ix

xTΞix

= min
x�=0

(
√

Ξix)T
√

Ξ
−1

i L̂i

√
Ξ
−1

i (
√

Ξix)

(
√

Ξx)T(
√

Ξix)

= min
y �=0

yT
√

Ξ
−1

i L̂i

√
Ξ
−1

i y

yTy

= λmin

√
Ξ
−1

i L̂i

√
Ξ
−1

i (37)

where L̂i = (ΞiLi + L
T
i Ξi)/2, Ξi = diag(ξi1, . . . , ξiqi

),√
Ξi = diag(

√
ξi1, . . . ,

√
ξiqi

)ξi = (ξi1, . . . , ξiqi
)T > 0, and

ξ
T
i Li = 0 with

∑qi

j=1 ξij = 1.
Lemma 13: If the Laplacian matrix L has a directed span-

ning tree, then min2≤j≤m{a(L1), b(Lj)} > 0.
Proof: From Lemma 7, one has a(L1) > 0. It suffices to

prove that min2≤j≤m b(Lj) > 0. Note that

b(Li) = λmin

√
Ξ
−1

i L̂i

√
Ξ
−1

i

= λmin

√
Ξ
−1

i

(
ΞiLii + L

T
iiΞi

2
+ AiΞi

)√
Ξ
−1

i

where (ΞiLii + L
T
iiΞi)/2 is a zero-row-sum symmetric matrix

and Ai ≥ 0. By Lemma 10, there is at least one positive
diagonal entry in Ai. According to Lemma 11, b(Li) > 0 for
all i = 2, . . . , m. �

Theorem 2: Suppose that the network contains a directed
spanning tree and Assumption 1 holds. Then, second-order
consensus in system (3) is achieved if

min
2≤j≤m

{
a(L1), b(Lj)

}
>

1
2

⎛⎝ρ1

α
+

α

β2
+

ρ1

β
+

√(
ρ1

α
− α

β2
− ρ1

β

)2
+

(α + β)2ρ2
2

α2β2

⎞⎠.

(38)

Proof: From Theorem 1, one knows that under condi-
tion (38), second-order consensus can be achieved in the first
strongly connected component. Thus, all the states of the nodes
in this component satisfy (30).

Consider the Lyapunov functional candidate

V (t) =
m∑

i=2

Δie
T
i (t) (Q∗

i ⊗ In) ei(t) (39)

where Q∗
i =

(
2αLj

αΞi

β

αΞi

β Ξi

)
, Ξi = diag(ξi1, ξi2, . . . , ξiqi

),

and Δi are positive constants, i = 2, . . . , m.
Taking the derivative of V (t) along (31) and using (23)–(25),

one gets (40), shown at the bottom of the page, where ‖ei‖ =
(‖x̃si−1‖, . . . , ‖x̃si

‖, ‖ṽT
si−1

‖, . . . , ‖ṽsi
‖)T

Γi =

⎛⎝ α
β ρ1Ξi − α2

β b(Li)Ξi
1
2

(
α
β + 1

)
ρ2Ξi

1
2

(
α
β + 1

)
ρ2Ξi

(
ρ1 + α

β

)
Ξi − βb(Li)Ξi

⎞⎠
and Γij are matrices with appropriate dimensions, 2 ≤ i, j ≤
m. From Lemma 11, one knows that if Γi < 0 (2 ≤ i ≤ m)
and by choosing Δi+1 sufficiently smaller than Δj for j < i +
1, then second-order consensus can be achieved in system (3).
This completes the proof. �

V̇ = 2
m∑

i=2

Δie
T
i (t) (Q∗

i ⊗ In) ėi(t) ≤ 2
m∑

i=2

Δie
T
i (t) (Q∗

i ⊗ In)

⎡⎣F ∗
i (x, v, t) +

i∑
j=1

(
L̃∗

ij ⊗ In

)
ej(t) + O(eεt)

⎤⎦
≤ 2

m∑
i=2

Δi‖ei‖

⎛⎝ α
β ρ1Ξi

1
2

(
α
β + 1

)
ρ2Ξi

1
2

(
α
β + 1

)
ρ2Ξi ρ1Ξi

⎞⎠ ‖ei‖ + 2
m∑

i=2

Δie
T
i (t)

(
Q∗

i L̃
∗
ii ⊗ In

)
ei(t)

+ 2
m∑

i=2

Δi

∥∥∥∥∥∥eT
i (t) (Q∗

i ⊗ In)

⎡⎣ i−1∑
j=1

(
L̃∗

ij ⊗ In

)
ej(t) + O(eεt)

⎤⎦∥∥∥∥∥∥
≤2

m∑
i=2

Δi‖ei‖Γi‖ei‖ + 2
m∑

i=2

i−1∑
j=1

Δi‖ei‖
[
Γij‖ej‖ + O(eεt)

]
(40)
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Fig. 1. Network structure of a network with a directed spanning tree.

Similarly, as in Corollary 3, one can prove the following
general result.

Corollary 4: Suppose that the network has a directed span-
ning tree. Then

min
2≤j≤m

{
a(L1), b(Lj)

}
≤ min

2≤i≤N

R(μi)
[
R2(μi) + I2(μi)

]
I2(μi)

= min
2≤i≤N

[
R(μi) +

R3(μi)
I2(μi)

]
. (41)

Remark 3: In addition to the general algebraic connectivity
a(L1) in strongly connected networks, the general algebraic
connectivity b(Li) (2 ≤ i ≤ m) in each strongly connected
component of a directed network has also been defined here.
It is shown in Theorem 2 that min2≤j≤m{a(L1), b(Lj)} plays
a key role in reaching consensus and can be used to describe
the consensus ability in a network with fixed structure. As a
byproduct, (41) is obtained, which is useful in algebraic graph
theory in its own right.

Remark 4: Theorem 2 can also be used to study various
leader–follower multiagent systems. Suppose that the network
has a directed spanning tree and the first strongly connected
component has only one node that is a root of the directed
network. Then, all the states of the followers converge to that
of the leader if

min
2≤j≤m

{
b(Lj)

}

>
1
2

⎛⎝ρ1

α
+

α

β2
+

ρ1

β
+

√(
ρ1

α
− α

β2
− ρ1

β

)2
+

(α+β)2ρ2
2

α2β2

⎞⎠.

V. SIMULATION EXAMPLES

In this section, a simulation example is given to demonstrate
the potentials of our theoretical analysis.

Consider the second-order consensus protocol with time-
varying velocities in system (3), where the network structure
is shown in Fig. 1 with the weights on the connections. The
nonlinear function f is described by Chua’s circuit [6]

f (xi(t), vi(t), t)

= (ς (−vi1 + vi2 − l(vi1)) , vi1 − vi2 + vi3,−
vi2) (42)

Fig. 2. Position and velocity states of multiple agents in a network with time-
varying velocities.

where l(vi1)= bvi1+ 0.5(a − b)(|vi1+ 1| − |vi1 − 1|). The
isolated system (42) is chaotic when ς = 10, 
 = 18, a =
−4/3, and b=−3/4, as shown in [35]. In view of Assumption 1,
by computation, one obtains ρ1 = 4.3871 and ρ2 = 0. Let
α = 5 and β = 6. From Fig. 1, it is easy to see that the
network contains a directed spanning tree, where the nodes 1–4
and 5–7 belong to the first and second strongly connected
components, respectively. By Lemma 8 and Definition 8,
one has a(L1) = 1.8118 and b(L2) = 1.0206, where ξ1 =
(0.2727, 0.1818, 0.1364, 0.4091)T and ξ2 = (0.4615, 0.3077,
0.2308)T. By Theorem 2, one has that min{a(L1), b(L2)}=
1.0206 > (ρ1/α) + (α/β2) + (ρ1/β) + |(ρ1/α) + (α/β2) +
(ρ1/β)| = 0.8701. Therefore, second-order consensus can
be achieved in the multiagent system (3). The position and
velocity states of all the agents are shown in Fig. 2.

VI. CONCLUSION

In this paper, some second-order consensus algorithms for
multiagent dynamical systems with directed topologies and
nonlinear dynamics have been studied. Detailed analysis has
been performed on the case in which the second-order dynam-
ics of each agent are determined by both position and velocity
terms. Two notions of generalized algebraic connectivity have
been introduced to strongly connected network components so
as to describe the ability of reaching consensus in a directed
network. Some sufficient conditions have also been derived for
reaching second-order consensus in multiagent systems with
time-varying velocities.

The study of second-order consensus protocols in multiagent
systems with directed network topologies is still a challenging
problem, and this paper can serve as a stepping stone to
study more complicated agent dynamics by combining ideas
in algebraic graph theory and control approach. Future works
will be on the effects of group behaviors in more complicated
networks, such as time-varying networks, stochastic networks,
and switching networks, among others.
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