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Abstract. Inspired by the works of Rodnianski and Schlein [31]
and Wu [34, 35], we derive a new nonlinear Schrödinger equation
that describes a second-order correction to the usual tensor prod-
uct (mean-field) approximation for the Hamiltonian evolution of
a many-particle system in Bose-Einstein condensation. We show
that our new equation, if it has solutions with appropriate smooth-
ness and decay properties, implies a new Fock space estimate.
We also show that for an interaction potential v(x) = ǫχ(x)|x|−1,
where ǫ is sufficiently small and χ ∈ C∞

0
even, our program can

be easily implemented locally in time. We leave global in time
issues, more singular potentials and sophisticated estimates for a
subsequent part (part II) of this paper.

1. Introduction

An advance in physics in 1995 was the first experimental observation
of atoms with integer spin (Bosons) occupying a macroscopic quantum
state (condensate) in a dilute gas at very low temperatures [1, 4]. This
phenomenon of Bose-Einstein condensation has been observed in many
similar experiments since. These observations have rekindled interest
in the quantum theory of large Boson systems. For recent reviews, see
e.g. [23, 29].

A system ofN interacting Bosons at zero temperature is described by
a symmetric wave function satisfying theN -body Schrödinger equation.
For large N , this description is impractical. It is thus desirable to
replace the many-body evolution by effective (in an appropriate sense)
partial differential equations for wave functions in much lower space
dimensions. This approach has led to “mean-field” approximations
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in which the single particle wave function for the condensate satisfies
nonlinear Schrödinger equations (in 3 + 1 dimensions). Under this
approximation, the N -body wave function is viewed simply as a tensor
product of one-particle states. For early related works, see the papers
by Gross [15, 16], Pitaevskii [28] and Wu [34, 35]. In particular, Wu [34,
35] introduced a second-order approximation for the Boson many-body
wave function in terms of the pair-excitation function, a suitable kernel
that describes the scattering of atom pairs from the condensate to other
states. Wu’s formulation forms a nontrivial extension of works by Lee,
Huang and Yang [21] for the periodic Boson system. Approximations
carried out for pair excitations [21, 34, 35] make use of quantized fields
in the Fock space. (The Fock space formalism and Wu’s formulation
are reviewed in sections 1.1 and 1.3, respectively.)

Connecting mean-field approaches to the actual many-particle Hamil-
tonian evolution raises fundamental questions. One question is the
rigorous derivation and interpretation of the mean field limit. Elgart,
Erdős, Schlein and Yau [6, 7, 8, 9, 10, 11] showed rigorously how mean-
field limits for Bosons can be extracted in the limit N → ∞ by using
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchies for re-
duced density matrices. Another issue concerns the convergence of the
microscopic evolution towards the mean field dynamics. Recently, Rod-
nianski and Schlein [31] provided estimates for the rate of convergence
in the case with Hartree dynamics by invoking the formalism of Fock
space.

In this paper, inspired by the works of Rodnianski and Schlein [31]
and Wu [34, 35], we derive a new nonlinear Schrödinger equation de-
scribing an improved approximation for the evolution of the Boson
system. This approximation offers a second-order correction to the
usual tensor product (mean field limit) for the many-body wave func-
tion. Our equation yields a corresponding new estimate in Fock space,
which complements nicely the previous estimate [31].

The static version of the many-body problem is not studied here. The
energy spectrum was addressed by Dyson [5] and by Lee, Huang and
Yang [21]. A mathematical proof of the Bose-Einstein condensation
for the time-independent case was provided recently by Lieb, Seiringer,
Solovej and Yngvanson [22, 23, 24, 25].

1.1. Fock space formalism. Next, we review the Fock space F over
L2(R3), following Rodnianski and Schlein [31]. The elements of F are
vectors of the form ψ = (ψ0, ψ1(x1), ψ2(x1, x2), · · · ), where ψ0 ∈ C and
ψn ∈ L2

s(R
3n) are symmetric in x1, . . . , xn. The Hilbert space structure

of F is given by (φ,ψ) =
∑

n

∫
φnψndx.
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For f ∈ L2(R3) the (unbounded, closed, densely defined) creation
operator a∗(f) : F → F and annihilation operator a(f̄) : F → F are
defined by

(a∗(f)ψn−1) (x1, x2, · · · , xn) =
1√
n

n∑

j=1

f(xj)ψn−1(x1, · · · , xj−1, xj+1, · · · xn) ,

(
a(f)ψn+1

)
(x1, x2, · · · , xn) =

√
n+ 1

∫
ψ(n+1)(x, x1, · · · , xn)f(x) dx .

The operator valued distributions a∗x and ax defined by

a∗(f) =

∫
f(x)a∗x dx ,

a(f) =

∫
f(x) ax dx .

These distributions satisfy the canonical commutation relations

[ax, a
∗
y] = δ(x− y) , (1)

[ax, ay] = [a∗x, a
∗
y] = 0 .

Let N be a fixed integer (the total number of particles), and v(x) be
an even potential. Consider the Fock space Hamiltonian HN : F → F
defined by

HN =

∫
a∗x∆axdx+

1

2N

∫
v(x− y)a∗xa

∗
yaxay dx dy (2)

=: H0 +
1

N
V .

ThisHN is a diagonal operator which acts on each ψn in correspondence
to the Hamiltonian

HN,n =
n∑

j=1

∆xj
+

1

2N

∑

i6=j

v(xi − xj) .

In the particular case n = N , this is the mean field Hamiltonian.
Except for the introduction, this paper deals only with the Fock space
Hamiltonian. The reader is alerted that “PDE” Hamiltonians such as
HN,n will always have two subscripts. The sign of v will not play a
role in our analysis. However, the reader is alerted that due to our
sign convention, v ≤ 0 is the ”good” sign. The time evolution in the
coordinate space for Bose-Einstein condensation deals with the function

eitHn,nψ0 (3)
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for tensor product initial data, i.e., if

ψ0(x1, x2, · · · , xn) = φ0(x1)φ0(x2) · · ·φ0(xn) ,

where ‖φ0‖L2(R3) = 1. This approach has been highly successful, even
for very singular potentials, in the work of Elgart, Erdős, Schlein and
Yau [6, 7, 8, 9, 10, 11]. In this context, the convergence of evolution
to the appropriate mean field limit (tensor product) as N → ∞ is

established at the level of marginal density matrices γ
(N)
i in the trace

norm topology. The density matrices are defined as

γ
(N)
i (t, x1, · · · , xi;x

′
1, · · · x′i) =

∫
ψ(t, x1, · · · , xN)ψ(t, x′1, · · · , x′N)dxi+1 · · · dxN

1.2. Coherent states. There are alternative approaches, due to Hepp
[17], Ginibre and Velo [13], and, most recently, Rodnianski and Schlein
[31] which can treat Coulomb potentials v. These approaches rely on
studying the Fock space evolution eitHNψ0 where the initial data ψ0 is
a coherent state,

ψ0 = (c0, c1φ0(x1), c2φ0(x1)φ0(x2), · · · ) ;

see (4) below. The evolution (3) can then be extracted as a “Fourier
coefficient” from the Fock space evolution; see [31]. Under the as-
sumption that v is a Coulomb potential, this approach leads to strong

L2-convergence, still at the level of the density matrices γ
(N)
i , as we

will briefly explain below.
To clarify the issues involved, let us consider the one-particle wave

function φ(t, x) (to be determined later as the solution of a Hartree
equation), satisfying the initial condition φ(0, x) = φ0(x). Define the
skew-Hermitian unbounded operator

A(φ) = a(φ) − a∗(φ)

and the vacuum state Ω = (1, 0, 0, · · · ) ∈ F . Accordingly, consider the
operator

W (φ) = e−
√

NA(φ) ,

which is the Weyl operator used by Rodnianski and Schlein [31]. The
coherent state for the initial data φ0 is

ψ0 = W (φ0)Ω = e−
√

NA(φ0)Ω

= e−N‖φ‖2/2

(
1, · · · ,

(
Nn

n!

)1/2

φ0(x1) · · ·φ0(xn), · · ·
)

. (4)
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Hence, the top candidate approximation for eitHNψ0 reads

ψtensor(t) = e−
√

NA(φ(t,·))Ω . (5)

Rodnianski and Schlein [31] showed that this approximation works (un-
der suitable assumptions on v), in the sense that

1

N
‖
(
eitHNψ0, a

∗
yaxe

itHNψ0

)
−
(
e−

√
NA(φ(t,·))Ω, a∗yaxe

−
√

NA(φ(t,·))Ω
)
‖Tr

= O(
eCt

N
) N → ∞ ;

the symbol Tr here stands for the trace norm in x ∈ R
3 and y ∈

R
3. The first term in the last relation, including 1

N
, is essentially the

density matrix γ
(N)
1 (t, x, y). For the precise statement of the problem

and details of the proof, see Theorem 3.1 of Rodnianski and Schlein
[31].

Our goal here is to find an explicit approximation for the evolution
in the Fock space. For this purpose, we adopt an idea germane to
Wu’s second-order approximation for theN -body wave function in Fock
space [34, 35].

1.3. Wu’s approach. We first comment on the case with periodic
boundary conditions, when the condensate is the zero-momentum state.
For this setting, Lee, Huang and Yang [21] studied systematically the
scattering of atoms from the condensate to states of opposite momenta.
By diagonalizing an approximation for the Hamiltonian in Fock space,
these authors derived a formula for the N -particle wave function that
deviates from the usual tensor product, as it expresses excitation of
particles from zero monentum to pairs of opposite momenta.

For non-periodic settings, Wu [34, 35] invokes the splitting ax =
a0(t)φ(t, x) + ax,1(t) where a0 corresponds to the condensate, [a0, a

∗
0] =

1, and ax,1 corresponds to states orthogonal to the condensate, [a0, ax,1] =
0 = [a0, a

∗
x,1]. Wu applies the following ansatz for the N -body wave

function in Fock space:

N (t) eP[K0]ψ0
N(t) , (6)

where ψ0
N(t) describes the tensor product, N (t) is a normalization fac-

tor, and P [K0] is an operator that averages out in space the excitation
of particles from the condensate φ to other states with the effective
kernel (pair excitation function) K0. An explicit formula for P [K0] is

P [K0] = [2N0(t)]
−1

∫
a∗x,1a

∗
y,1K0(t, x, y) a0(t)

2 , (7)
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where N0 is the expectation value of particle number at the condensate.
This K0 is not a-priori known (in contrast to the case of the classical
Boltzmann gas) but is determined by means consistent with the many-
body dynamics. In the periodic case, (6) reduces to the many-body
wave function of Lee, Huang and Yang [21].

Wu derives a coupled system of dispersive hyperbolic partial differen-
tial equations for (φ,K0) via an approximation for the N -body Hamil-
tonian that is consistent with ansatz (6). A feature of this system is
the spatially nonlocal couplings induced by K0. Observable quantities
such that the depletion of the condensate can be computed directly
from solutions of this PDE system. This system has been solved only
in a limited number of cases [35, 26, 27].

1.4. Scope and outline. Our objective in this work is to find an
explicit approximation for the evolution

eitHNψ0

in the Fock space norm, where ψ0 is the coherent state (4). This would
imply an approximation for the evolution

eitHN,Nψ0

in L2(R3N) as N → ∞. To the best of our knowledge, no such ap-
proximation is available in the mathematics or physics literature. In
particular, the tensor product type approximation (5) for φ satisfying
a Hartree equation, as in [31], is not known to be such a Fock space
approximation (nor do we expect it to be).

To accomplish our goal, we propose to modify (5) in two ways. One
minor correction is the multiplication by an oscillatory term. A second
correction is a composition with a second-order “Weyl operator”. Both
corrections are inspired by the work of Wu [34, 35]; see also [26, 27].
However, our set-up and derived equation is essentially different from
these works.

We proceed to describe the second order correction. Let k(t, x, y) =
k(t, y, x) be a function (or kernel) to be determined later, with k(0, x, y) =
0. The minimum regularity expected of k is k ∈ L2(dx dy) for a.e. t.

We define the operator

B =
1

2

∫ (
k(t, x, y)axay − k(t, x, y)a∗xa

∗
y

)
dx dy . (8)

Notice that B is skew-Hermitian, i.e., iB is self-adjoint. The operator
eB could be defined by the spectral theorem; see [30]. However, we
prefer the more direct approach of defining it first on the dense subset
of vectors with finitely many non-zero components, where it can be
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defined by a convergent Taylor series if ‖k‖L2(dxdy) is sufficiently small.
Indeed, B restricted to the subspace of vectors with all entries past the
first N identically zero has norm ≤ CN‖k‖L2 . Then eB is extended to
F as a unitary operator.

Now we have described all ingredients needed to state our results
and derivations. The remainder of the paper is organized as follows.
In section 2 we state our main result and outline its proof. In section 3
we study implications of the Hartree equation satisfied by the one-
particle wave function φ(t, x). In section 4 we develop bookkeeping
tools of Lie algebra for computing requisite operators containing B. In
section 5 we study the evolution equation for a matrix K that involves
the kernel k. In section 6 we develop an argument for the existence of
solution to the equation for the kernel k. In section 7 we find conditions
under which terms involved in the error term eBV e−B are bounded. In
section 8 we study similarly the error term eB[A, V ]e−B. In section 9
we show that we can control traces needed in derivations.

2. Statement of main result and outline of proof

In this section we state our strategy for general potentials satisfying
certain properties. Later in the paper we show that all assumptions of
the related theorem are satisfied locally in time for v(x) = χ(x) ǫ

|x| , ǫ:

sufficiently small, and χ ∈ C∞
0 : even.

Theorem 2.1. Suppose that v is an even potential. Let φ be a smooth
solution of the Hartree equation

i
∂φ

∂t
+ ∆φ+ (v ∗ |φ|2)φ = 0 (9)

with initial conditions φ0, and assume the three conditions listed below:

(1) Assume that we have k(t, x, y) ∈ L2(dxdy) for a.e. t, where k
is symmetric, and solves

(iut + ugT + gu− (1 + p)m) = (ipt + [g, p] + um)(1 + p)−1u , (10)

where all products in (10) are interpreted as spatial compositions
of kernels, “1” is the identity operator, and

u(t, x, y) := sh(k) := k +
1

3!
kkk + . . . , (11)

δ(x− y) + p(t, x, y) := ch(k) := δ(x− y) +
1

2!
kk + . . . ,

g(t, x, y) := −∆xδ(x− y) − v(x− y)φ(t, x)φ(t, y) − (v ∗ |φ|2)(t, x)δ(x− y) ,

m(t, x, y) := v(x− y)φ(t, x)φ(t, y) .
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(2) Also, assume that the functions

f(t) := ‖eB[A, V ]e−BΩ‖F
and

g(t) := ‖eBV e−BΩ‖F

are locally integrable (V is defined in (2)).
(3) Finally, assume that

∫
d(t, x, x) dx is locally integrable in time,

where

d(t, x, y) =
(
ish(k)t + sh(k)gT + gsh(k)

)
sh(k)

− (ich(k)t + [g, ch(k)]) ch(k)

−sh(k)mch(k) − ch(k)msh(k) .

Then, there exist real functions χ0, χ1 such that

‖e−
√

NA(t)e−B(t)e−i
R t

0
(Nχ0(s)+χ1(s))dsΩ − eitHNψ0‖F

≤
∫ t

0
f(s)ds√
N

+

∫ t

0
g(s)ds

N
. (12)

Recall that we defined (see section 1)

ψ0 = e−
√

NA(0)Ω an arbitrary coherent state (initial data) ,

A(t) = a(φ(t, ·)) − a∗(φ(t, ·)) ,

B(t) =
1

2

∫ (
k(t, x, y)axay − k(t, x, y)a∗xa

∗
y

)
dx dy .

A few remarks on Theorem 2.1 are in order.

Remark 2.2. Written explicitly, the left-hand side of (10) equals

iut + ugT + gu− (1 + p)m =

(
i
∂

∂t
− ∆x − ∆y

)
u(t, x, y)

− φ(t, x)

∫
v(x− z)φ(t, z)u(t, z, y) dz − φ(t, y)

∫
u(t, x, z)v(z − y)φ(t, z) dz

− (v ∗ |φ|2)(t, x)u(t, x, y) − (v ∗ |φ|)2(t, y)u(t, x, y)

− v(x− y)φ(t, x)φ(t, y)

− φ(t, y)

∫
(1 + p)(t, x, z)v(z − y)φ(t, z) dz .
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The main term in the right-hand side equals

ipt + [g, p] + um = i
∂

∂t
p(t, x, y) + (−∆x + ∆y) p(t, x, y)

− φ(t, x)

∫
v(x− z)φ(t, z)p(t, z, y) dz

+ φ(t, y)

∫
p(t, x, z)v(z − y)φ(t, z) dz

− (v ∗ |φ|2)(t, x)p(t, x, y) + (v ∗ |φ|)2(t, y)p(t, x, y)

+

∫
u(t, x, z)v(z − y)φ(t, z)φ(t, x) dz .

Remark 2.3. The algebra, as well as the local analysis presented in this
paper do not depend on the sign of v. However, the global in time
analysis of our equations would require v to be non-positive.

Remark 2.4. Our techniques would allow us to consider more general

initial data of the form ψ0 = e−
√

NA(0)e−B(0)Ω. For convenience, we
only consider the case of tensor products (B(0) = 0) in this paper.

Proof. Since e
√

NA and eB are unitary, the left-hand side of (12) equals

‖ei
R t

0
(Nχ0(s)+χ1(s))dseB(t)e

√
NA(t)eitHN e−

√
NA(0)Ω − Ω‖F .

Define

Ψ(t) = eB(t)e
√

NA(t)eitHe−
√

NA(0)Ω .

In Corollary 5.2 of section 5 we show that our equations for φ, k insure
that

1

i

∂

∂t
Ψ = LΨ ,

where L = L̃ − Nχ0 − χ1 for some L̃: Hermitian, i.e. L̃ = L̃∗, where

L̃ commutes with functions of time, χ0, χ1 are real functions of time,
and, most importantly (see corollary 5.2 of section 5 and the remark
following it),

‖L̃Ω‖F ≤ N−1/2‖eB[A, V ]e−BΩ‖F +N−1‖eBV e−BΩ‖F . (13)

We apply energy estimates to
(

1

i

∂

∂t
− L̃

)
(ei

R t

0
(Nχ0(s)+χ1(s))dsΨ − Ω) = L̃Ω .
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Explicitly,

∂

∂t

(
‖(ei

R t

0
(Nχ0(s)+χ1)dsΨ − Ω)‖2

F

)

= 2ℜ
(
∂

∂t
(ei

R t

0
(Nχ0(s)+χ1)dsΨ − Ω), ei

R t

0
(Nχ0(s)+χ1)dsΨ − Ω

)

= 2ℜ
((

∂

∂t
− iL̃

)
(ei

R t

0
(Nχ0(s)+χ1)dsΨ − Ω), ei

R t

0
(Nχ0(s)+χ1)dsΨ − Ω

)

= 2ℜ
(
iL̃Ω, ei

R t

0
(Nχ0(s)+χ1)dsΨ − Ω

)

≤ 2
(
N−1/2‖eB[A, V ]e−BΩ‖F +N−1‖eBV e−BΩ‖F

)
‖(ei

R t

0
(Nχ0(s)+χ1)dsΨ − Ω)‖F .

Thus
∂

∂t
‖(ei

R t

0
(Nχ0(s)+χ1)dsΨ − Ω)‖ ≤ N−1/2‖eB[A, V ]e−BΩ‖F +N−1‖eBV e−BΩ‖F .

and (12) holds. This concludes the proof. �

�

3. The Hartree equation

In this section we see how far we can go by using only the Hartree
equation for the one-particle wave function φ.

Lemma 3.1. The following commutation relations hold (where the t
dependence is suppressed, A denotes A(φ) and V is defined by formula
(2)):

[A, V ] =

∫
v(x− y)

(
φ(y)a∗xaxay + φ(y)a∗xa

∗
yax

)
dx dy

[
A, [A, V ]

]
(14)

=

∫
v(x− y)

(
φ(y)φ(x)axay + φ(y)φ(x)a∗xa

∗
y + 2φ(y)φ(x)a∗xay

)
dx dy

+ 2

∫ (
v ∗ |φ2|

)
(x)a∗xax dx

[
A,
[
A, [A, V ]

]]

= 6

∫ (
v ∗ |φ2|

)
(x)
(
φ(x)a∗x + φ(x)ax

)
dx

[
A,
[
A,
[
A, [A, V ]

]]]

= 12

∫ (
v ∗ |φ2|

)
(x)|φ(x)|2 dx .
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Proof. This is an elementary calculation and is left to the interested
reader. �

Now, we consider Ψ1(t) = e
√

NA(t)eitHe−
√

NA(0)Ω for which we have
the basic calculation in the spirit of Hepp [17], Ginibre-Velo [13], and
Rodnianski-Schlein [31]; see equation (3.7) in [31].

Proposition 3.2. If φ satisfies the Hartree equation

i
∂φ

∂t
+ ∆φ+ (v ∗ |φ|2)φ = 0

while

Ψ1(t) = e
√

NA(t)eitHe−
√

NA(0)Ω ,

then Ψ1(t) satisfies

1

i

∂

∂t
Ψ1(t) =

(
H0 +

1

2
[A, [A, V ]]

+N−1/2[A, V ] +N−1V − N

2

∫
v(x− y)|φ(t, x)|2|φ(t, y)|2dx dy

)
Ψ1(t) .

Proof. Recall the formulas
(
∂

∂t
eC(t)

)(
e−C(t)

)
= Ċ +

1

2!
[C, Ċ] +

1

3!

[
C, [C, Ċ]

]
+ . . .

and

eCHe−C = H + [C,H] +
1

2!

[
C, [C,H]

]
+ . . . .

Applying these relations to C =
√
NA we get

1

i

∂

∂t
ψ1(t) = L1ψ1 , (15)

where

L1 =
1

i

(
∂

∂t
e
√

NA(t)

)
e−

√
NA(t) + e

√
NA(t)He−

√
NA(t)

=
1

i

(
N1/2Ȧ+

N

2
[A, Ȧ]

)
+H +N1/2[A,H0]

+N−1/2[A, V ] +
N

2

[
A, [A,H0]

]

1

2

[
A, [A, V ]

]
+
N1/2

3!

[
A,
[
A, [A, V ]

]]
+
N

4!

[
A,
[
A,
[
A, [A, V ]

]]]
.
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Eliminating the terms with a weight of
√
N , or setting

1

i
Ȧ+ [A,H0] +

1

3!

[
A,
[
A, [A, V ]

]]
= 0 , (16)

is exactly equivalent to the Hartree equation (9). By taking an addi-
tional bracket with A in (16), we have

1

i
[A, Ȧ] +

[
A, [A,H0]

]
+

1

3!

[
A,
[
A,
[
A, [A, V ]

]]]
= 0 ,

and thus simplify (15) to

1

i

∂

∂t
ψ1(t) =

(
H0 +

1

2
[A, [A, V ]]

+N−1/2[A, V ] +N−1V −N
1

4!

[
A,
[
A,
[
A, [A, V ]

]]]
)
ψ1 .

This concludes the proof. �

�

The first two terms on the right-hand side are the main ones. The

next two terms are O
(

1√
N

)
and O

(
1
N

)
. The last term equals

−N
2

∫
v(x− y)|φ(t, x)|2|φ(t, y)|2dx dy := −Nχ0 .

Notice that ‖L1(Ω)‖ is not small because of the presence of a∗xa
∗
y in[

A, [A, V ]
]
. In order to eliminate these terms, we introduce B (see (8))

and take
ψ = eBψ1 .

Accordingly, we compute

1

i

∂

∂t
ψ = Lψ ,

where

L =
1

i

(
∂

∂t
eB

)
e−B + eBL1e

−B

= LQ +N−1/2eB[A, V ]e−B +N−1eBV e−B −Nχ0 ,

and

LQ =
1

i

(
∂

∂t
eB

)
e−B + eB

(
H0 +

1

2

[
A, [A, V ]

])
e−B (17)

contains all quadratics in the operators a, a∗.
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Equation (10) for k turns out to be equivalent to the requirement
that L has no terms of the form a∗a∗ . Terms of the form aa∗ will
occur, and will be converted to a∗a at the expense of χ1.

In other words, we require that LQ have no terms of the form a∗a∗.
For a similar argument (but for a different set-up), see Wu [35].

4. The Lie algebra of “symplectic matrices”

In this section we describe the bookkeeping tools needed to compute
LQ of (17) in closed form. The results of this section are essentially
standard, but they are included here for the sake of completeness.

We start with the remark that

[a(f1) + a∗(g1), a(f2) + a∗(g2)] =

∫
f1g2 − f2g1 (18)

= −
(
f1 g1

)
J

(
f2

g2

)

where

J =

(
0 −δ(x− y)

δ(x− y) 0

)
.

This observation explains why we have to invoke symplectic linear al-
gebra. We thus consider the infinite-dimensional Lie algebra sp of
“matrices” of the form

S(d, k, l) =

(
d k
l −dT

)

for symmetric kernels k = k(t, x, y) and l = l(t, x, y), and arbitrary
kernel d(t, x, y). (The dependence on t will be suppressed when not
needed.) This situation is analogous to the Lie algebra of the finite-
dimensional complex symplectic group, with x, y playing the role of i
and j. We also consider the Lie algebra Quad of quadratics of the form

Q(d, k, l) :=
1

2

(
ax a∗x

)(d k
l −dT

)(
−a∗y
ay

)
(19)

= −
∫
d(x, y)

axa
∗
y + a∗yax

2
dx dy +

1

2

∫
k(x, y)axay dx dy

− 1

2

∫
l(x, y)a∗xa

∗
y dx dy

(k, l and d as before). Furthermore, we agree to identify operators
which differ (formally) by a scalar operator. Thus,

∫
d(x, y)axa

∗
y is
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considered equivalent to
∫
d(x, y)a∗yax. We recall the following result

related to the metaplectic representation (see, e.g. [12]).

Theorem 4.1. Let S = S(d, k, l), Q = Q(d, k, l) related as above. Let
f , g be functions (or distributions). Denote

(ax, a
∗
x)

(
f
g

)
:=

∫
(f(x)ax + g(x)a∗x) dx .

We have the following commutation relation:

[Q, (ax, a
∗
x)

(
f
g

)
] = (ax, a

∗
x)S

(
f
g

)
(20)

where products are interpreted as compositions. We also have

eQ(ax, a
∗
x)

(
f
g

)
e−Q = (ax, a

∗
x)e

S

(
f
g

)
, (21)

provided that eQ makes sense as a unitary operator (Q: skew-Hermitian).

Proof. The commutation relation (20) can be easily checked directly,
but we point out that it follows from (18). In fact, using (18), for any
rank one quadratic we have

[(a(f1) + a∗(g1)) (a(f2) + a∗(g2)) , a(f) + a∗(g)]

= −
(
ax a∗x

)((f2

g2

)(
f1 g1

)
+

(
f1

g1

)(
f2 g2

))
J

(
f
g

)
.

Thus, for any R we have

[
(
ax a∗x

)
R

(
ay

a∗y

)
, a(f) + a∗(g)] = −

(
ax a∗x

) (
R +RT

)
J

(
f
g

)
.

Now specialize to R = 1
2
SJ , S ∈ sp, and use ST = JSJ to complete

the proof.
The second part, equation (21), follows from the identity

eQCe−Q = C + [Q,C] +
1

2!

[
Q, [Q,C]

]
+ . . . ,

or, in the language of adjoint representations, Ad(eQ)(C) = ead(Q)(C),
which is applied to C = a(f) + a∗(g). �

�

A closely related result is provided by the following theorem.

Theorem 4.2. (1) The linear map I : sp → Quad defined by

S(d, k, l) → Q(d, k, l)

is a Lie algebra isomorphism.
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(2) Moreover, if S = S(t), Q = Q(t) and I(S(t)) = Q(t) is skew-
Hermitian, so that eQ is well defined, we have

I
((

∂

∂t
eS

)
e−S

)
=

(
∂

∂t
eQ

)
e−Q . (22)

(3) Also, if R ∈ sp, we have

I
(
eSRe−S

)
= eQI(R)e−Q . (23)

Remark 4.3. In the finite-dimensional case, this is (closely related to)
the “infinitesimal metaplectic representation”; see p. 186 in [12] . In
the infinite dimensional case, we must be careful, as some of our oper-
ators are not of trace class. For instance,

∫
axa

∗
x does not make sense.

Proof. First, we point out that (21) implies (23), at least in the case
where R is the “rank one” matrix

R =

(
f
g

)(
h i

)
.

Notice that (21) can also be written as

eQ
(
f g

)(ax

a∗x

)
e−Q =

(
f g

)
eST

(
ax

a∗x

)
.

In conclusion, we find

eQ
(
ax a∗x

)
R

(
−a∗y
ay

)
e−Q

= eQ
(
ax a∗x

)(f
g

)(
h i

)
J

(
ay

a∗y

)
e−Q

= eQ
(
ax a∗x

)(f
g

)
e−QeQ

(
h i

)
J

(
ay

a∗y

)
e−Q

=
(
ax a∗x

)
eS

(
f
g

)(
h i

)
JeJSJ

(
ay

a∗y

)

=
(
ax a∗x

)
eSRe−S

(
−a∗y
ay

)

since ST = JSJ if S ∈ sp, and JeJSJ = e−SJ .
We now give a direct proof that (19) preserves Lie brackets. Denote

the quadratic building blocks by Qxy = axay, Q
∗
xy = a∗xa

∗
y, Nxy =

1
2

(
axa

∗
y + a∗yax

)
. One can verify the following commutation relations,
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which will be also needed below:
[
Qxy, Q

∗
zw

]
= δ(x− z)Nyw + δ(x− w)Nyz + δ(y − z)Nxw + δ(y − w)Nxz ,

(24)
[
Qxy, Nzw

]
= δ(x− w)Qyz + δ(y − w)Qxz , (25)

[
Nxy, Q

∗
zw

]
= δ(x− z)Q∗

yw + δ(x− w)Qyz , (26)
[
Nxy, Nzw

]
= δ(x− w)Nzy − δ(y − z)Nxw . (27)

Using (24) we compute
[1
2

∫
k(x, y)axaydxdy,−

1

2

∫
l(x, y)a∗xa

∗
ydxdy

]
= −

∫
(kl)(x, y)Nxy dx dy ,

which corresponds to the relation
[(

0 k
0 0

)
,

(
0 0
l 0

)]

=

(
kl 0
0 −lk

)
.

The other three cases are similar.
To prove (22), expand both the left-hand side and the right-hand

side as

I
((

∂

∂t
eS

)
e−S

)

= I
(
Ṡ +

1

2
[S, Ṡ] + · · ·

)

= Q̇+
1

2
[Q, Q̇] + · · ·

=

(
∂

∂t
eQ

)
e−Q .

The proof of (23) is along the same lines. �

�

Remark 4.4. Note on rigor: All the Lie algebra results that we have
used are standard in the finite-dimensional case. In our applications, S
will be K where K is a matrix of the form (29), see below, and Q will
be B = I(K). The unbounded operator B is skew-Hermitian and eBψ
is defined by a convergent Taylor series if ψ ∈ F has only finitely many
non-zero components, provided ‖k(t, ·, ·)‖L2(dx dy) is small . We then
extend eB to all F as a unitary operator. The norm ‖k(t, ·, ·)‖L2(dx dy)
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iterates under compositions; thus, the kernel eK is well defined by its
convergent Taylor expansion. In the expression

eBPe−B = P + [B,P ] + . . . (28)

for P , a first- or second-order polynomial in a, a∗, we point out that the
right-hand side stays a polynomial of the same degree, and converges
when applied to a Fock space vector with finitely many non-zero com-
ponents. For our application, we need to know (28) is true when applied
to Ω. The same comment applies to the series

(
∂

∂t
eB

)
e−B = Ḃ +

1

2
[B, Ḃ] + . . . .

5. Equation for kernel k

Now apply the isomorphism of the previous section to the operator

B = I(K)

for

K =

(
0 k(t, x, y)

k(t, x, y) 0

)
. (29)

This agrees to the letter with the isomorphism (19). The next two
isomorphisms, (30) and (31), require special treatment because aa∗

terms mirroring the a∗a terms are missing in (2), (14). However, the
discrepancy only happens on the diagonal. Once the relevant terms are
commuted with B, they fit the pattern exactly. It isn’t quite true that

H0 =I
((

−(∆δ)(x− y) 0
0 (∆δ)(x− y)

))

=I
((

−∆ 0
0 ∆

))
(30)

since, strictly speaking,

I
((

−(∆δ)(x− y) 0
0 (∆δ)(x− y)

))
=

∫
a∗x∆ax + ax∆a

∗
x

2
dx

is undefined. However, one can compute directly that [∆xax, a
∗
y] =

(∆δ)(x− y) . Using that, we compute

[B,H0] =
1

2

∫ (
(∆x + ∆y)k(x, y)axay + (∆x + ∆y)k(x, y)a

∗
xa

∗
y

)
dx dy .

This commutator is in agreement with (29), (30), and the result can
be represented in accordance with (19), namely
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[B,H0] = I
([(

0 k
k 0

)
,

(
−(∆δ)(x− y) 0

0 (∆δ)(x− y)

)])
.

We also have

eBH0e
−B −H0

= I
(
eK

(
−(∆δ)(x− y) 0

0 (∆δ)(x− y)

)
e−K −

(
−(∆δ)(x− y) 0

0 (∆δ)(x− y)

))

since eBH0e
−B−H0 = [B,H0]+

1
2

[
B, [B,H0]

]
+ · · · The same comment

applies to the diagonal part of

1

2

[
A, [A, V ]

]
=

I
(
−v12φ1φ2 − (v ∗ |φ|2) δ12 v12φ1φ2

−v12φ1φ2 v12φ1φ2 + (v ∗ |φ|2) δ12

)
, (31)

where v12φ1φ2 is an abbreviation for the product v(x−y)φ(x)φ(y), etc.
Formula (31) isn’t quite true either, but becomes true after commuting
with B.

To apply our isomorphism, we quarantine the “bad” terms in (30)
and the diagonal part of (31). Define

G =

(
g 0
0 −gT

)
and M =

(
0 m

−m 0

)

where

g = −∆δ12 − v12φ1φ2 − (v ∗ |φ|2)δ12 ,
m = v12φ1φ2 ,

and split

H0 +
1

2

[
A, [A, V ]

]
= HG + I(M)

where

HG = H0+

∫
v(x− y)φ(y)φ(x)a∗xay dx dy

+

∫ (
v ∗ |φ2|

)
(x)a∗xax dx . (32)

By the above discussion we have

[B,HG] = I([K,G]) and

[eB, HG]e−B = I([eK , G]e−K) .
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Write

LQ =
1

i

(
∂

∂t
eB

)
e−B

+eB

(
H0 +

1

2

[
A, [A, V ]

])
e−B

=
1

i

(
∂

∂t
eB

)
e−B

+HG + [eB, HG]e−B + eBI(M)e−B

=HG + I
((

1

i

∂

∂t
eK

)
e−K + [eK , G]e−K + eKMe−K

)

= HG + I(M1 + M2 + M3) . (33)

Notice that if K is given by (29), then

eK =

(
ch(k) sh(k)

sh(k) ch(k)

)
,

where

ch(k) = I +
1

2
kk +

1

4!
kkkk + . . . , (34)

and similarly for sh(k). Products are interpreted, of course, as compo-
sitions of operators.

We compute

M1 =
1

i

(
ch(k)t sh(k)t

sh(k)t ch(k)t

)(
ch(k) −sh(k)

−sh(k) ch(k)

)

=
1

i

(
ch(k)tch(k) − sh(k)tsh(k) −ch(k)tsh(k) + sh(k)tch(k)

∗ ∗

)

[eK , G] =

(
[ch(k), g] −sh(k)gT − gsh(k)

∗ ∗

)

and

M2 = [eK , G]e−K =
(

[ ch, g] ch + (shgT + gsh)sh −[ ch, g]sh − (shgT + gsh)ch
∗ ∗

)
,

where sh is an abbreviation for sh(k), etc, and

M3 = eKMe−K =

(
−shm ch − chmsh shmsh + chmch

∗ ∗

)
.
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Now define

M = M1 + M2 + M3 .

We have proved the following theorem.

Theorem 5.1. Recall the isomorphism (19) of Theorem 4.2.

(1) If LQ is given by (17), then

LQ =H0 +

∫
v(x− y)φ(y)φ(x)a∗xay dx dy (35)

+

∫ (
v ∗ |φ2|

)
(x)a∗xax dx+ I (M) .

(2) The coefficient of axay in I (M) is −M12 or

(ish(k)t + sh(k)gT + gsh(k))ch(k) − (ich(k)t − [ch(k), g])sh(k)

− sh(k)msh(k) − ch(k)mch(k) .

(3) The coefficient of a∗xa
∗
y equals minus the complex conjugate of

the coefficient of axay.

(4) The coefficient of −axa∗

y+a∗

yax

2
is M11, or

d(t, x, y) =
(
ish(k)t + sh(k)gT + gsh(k)

)
sh(k)

− (ich(k)t + [g, ch(k)]) ch(k)

−sh(k)mch(k) − ch(k)msh(k) . (36)

Corollary 5.2. If φ and k satisfy (9) and (10) of theorem (2.1), then
the coefficients of axay and a∗xa

∗
y drop out and LQ becomes

LQ =H0 +

∫
v(x− y)φ(t, y)φ(t, x)a∗xay dx dy +

∫ (
v ∗ |φ2|

)
(x)a∗xax dx

−
∫
d(t, x, y)

axa
∗
y + a∗yax

2
dx dy ,

where d is given by (36) and the full operator reads

L =H0 +

∫
v(x− y)φ(y)φ(t, x)a∗xaydxdy +

∫ (
v ∗ |φ2|

)
(x)a∗xaxdx

−
∫
d(t, x, y)a∗yaxdx+N−1/2eB[A, V ]e−B +N−1eBV e−B −Nχ0 − χ1

:= L̃−Nχ0 − χ1 ,

and

χ0 =
1

2

∫
v(x− y)|φ(t, x)|2|φ(t, y)|2dx dy ,
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χ1(t) = −1

2

∫
d(t, x, x)dx .

Remark 5.3. Notice that

L̃Ω =
(
N−1/2eB[A, V ]e−B +N−1eBV e−B

)
Ω ,

and therefore we can derive the bound

‖L̃Ω‖ ≤ N−1/2‖eB[A, V ]e−BΩ‖ +N−1‖eBV e−BΩ‖ .
Also, L is (formally) self-adjoint by construction. The kernel d(t, x, y),
being the sum of the (1,1) entry of the self-adjoint matrices

(
1
i

∂
∂t
eK
)
e−K ,

[eK , G]e−K = eKGe−K−G and the visibly self-adjoint term −sh(k)mch(k)−
ch(k)msh(k), is self-adjoint; thus, it has a real trace. Hence, L̃ is also
self-adjoint.

In the remainder of this paper, we check that the hypotheses of our
main theorem are satisfied, locally in time, for the potential v(x) =
χ(x) ǫ

|x| .

6. Solutions to equation (10)

Theorem 6.1. Let ǫ0 be sufficiently small and assume that v(x) = ǫ0
|x| ,

or v(x) = χ(x) ǫ0
|x| for χ ∈ C∞

0 (R3) . Assume that φ is a smooth solution

to the Hartree equation (16), ‖φ‖L2(dx) = 1. Then there exists k ∈
L∞([0, 1])L2(dxdy) solving (10) with initial conditions k(0, x, y) = 0 for
0 ≤ t ≤ 1. The solution k satisfies the following additional properties.

(1)

‖
(
i
∂

∂t
− ∆x − ∆y

)
k‖L∞[0,1]L2(dxdy) ≤ C .

(2)

‖
(
i
∂

∂t
− ∆x − ∆y

)
sh(k)‖L∞[0,1]L2(dxdy) ≤ C .

(3)

‖
(
i
∂

∂t
− ∆x + ∆y

)
p‖L∞[0,1]L2(dxdy) ≤ C .

(4) The kernel k agrees on [0, 1] with a kernel k̃ for which

‖k̃‖
X

1
2

, 1
2
+ ≤ C ;

see (38) for the definition of the space Xs,δ and, of course, 1
2
+

denotes a fixed number slightly bigger than 1
2
.
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Proof. We first establish some notation. Let S denote the Schrödinger
operator

S = i
∂

∂t
− ∆x − ∆y

and let T be the transport operator

T = i
∂

∂t
− ∆x + ∆y .

Let ǫ : L2(dxdy) → L2(dxdy) denote schematically any linear operator
of operator norm ≤ Cǫ0, where C is a “universal constant”. In practice,
ǫ will be (composition with) a kernel of the type φ(t, x)φ(t, y)v(x− y),
or multiplication by v ∗ |φ|2. Also, recall the inhomogeneous term

m(t, x, y) = v(x− y)φ(t, x)φ(t, y) .

Then, equation (10), written explicitly, becomes

Sk = m+S(k− u) + ǫ(u) + ǫ(p) + (Tp+ ǫ(p) + ǫ(u))(1 + p)−1u . (37)

Note that ch(k)2 − sh(k)sh(k) = 1; thus, 1 + p = ch(k) ≥ 1 as an
operator and (1 + p)−1 is bounded from L2 to L2. We plan to iterate
in the norm N(k) = ‖k‖L∞[0,1]L2(dxdy) + ‖Sk‖L∞[0,1]L2(dxdy). Notice that
‖m‖L2(dxdy) ≤ Cǫ0.

Now solve

Sk0 = m

with initial conditions k0(0, ·, ·) = 0, where N(k0) ≤ Cǫ0. Define u0, p0

corresponding to k0.
For the next iterate, solve

Sk1 = m+S(k0−u0)+ǫ(u0)+ǫ(p0)+(Tp0 +ǫ(p0)+ǫ(u0))(1+p0)
−1u0 ;

the non-linear terms satisfy

‖S(u0 − k0)‖L∞[0,1]L2(dxdy) =

‖ 1

3!

(
(Sk0)k0k0 − k0(Sk0)k0 + k0k0Sk0

)
+ · · · ‖L∞[0,1]L2(dxdy)

= O(N(k0)
3) .

Also, recalling that p0 = ch(k0) − 1, we have

‖T (p0)‖L∞[0,1]L2(dxdy) = ‖1

2

(
(Sk0)k0 − k0(Sk0)

)
+ · · · ‖L∞[0,1]L2(dxdy)

= O
(
N(k0)

2
)
.

Thus, N(k1) ≤ Cǫ0 + Cǫ20. Continuing this way, we obtain a fixed
point solution in this space which satisfies the first three requirements
of theorem 6.1.
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In fact, we can apply the same argument to
(

∂
∂t

)N
Dak, since

(
∂
∂t

)N
Dam ∈

L∞[0, 1]L2(dx dy) for 0 ≤ a < 1
2
. However, we cannot repeat the argu-

ment for D1/2k.
We would like to have ‖SD1/2k‖L∞[0,1]L2(dx dy) finite. Unfortunately,

this misses “logarithmically” because of the singularity of v.
Fortunately, we can use the well-known Xs,δ spaces (see [2, 18, 20])

to show that ‖|S|sD1/2u‖L2(dt)L2(dx dy) is finite locally in time for (all)
1 > s > 1

2
. This assertion will be sufficient for our purposes. Recall

the definition of Xs,δ:

‖|ξ|s
(
|τ − |ξ|2| + 1

)δ
û‖L2(dτdξ) := ‖u‖Xs,δ . (38)

Going back to (37), we write

S(k) = m+ F

where we define the expression

F (k) := S(k − u) − ǫ(u) + pm+ (T (p) + ǫ(p) + um) (1 + p)−1u .

The idea is to localize in time on the right-hand side:

S(k̃) = χ(t) (m+ F ) ,

where χ ∈ C∞
0 (R), χ = 1 on [0, 1]. Then, k̃ = k on [0, 1].

As we already pointed out, we can estimate ‖S
(

∂
∂t

)N
Dak‖L2[0,1]L2(dx dy) ≤

C for 0 ≤ a < 1
2
. We can further localize k̃ in time to insure that

these relations hold globally in time. By using the triangle inequality
|τ − |ξ|2| + |τ | ≥ |ξ|2, we immediately conclude that

‖|ξ| 32−
(
|τ − |ξ|2| + 1

) 1

2
+
k̂χ‖L2(dτdξ) ≤ C .

�

�

7. Error term eBV e−B

The goal of this section is to list explicitly all terms in eBV e−B and
to find conditions under which these terms are bounded. Recall that
V is defined by V =

∫
v(x0 − y0)Q

∗
x0y0

Qx0y0
dx0 dy0. For simplicity,

shb(k) denotes either sh(k) or sh(k), and chb(k) denotes either ch(k)

or ch(k).
Let x0 6= y0; we obtain

eBQ∗
x0y0

Qx0y0
e−B = eBQ∗

x0y0
e−BeBQx0y0

e−B .
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According to the isomorphism (19), we have

Q∗
x0y0

= I
(

0 0
−2δ(x− x0)δ(y − y0) 0

)

where the operator

eBQ∗
x0y0

e−B

= I
((

ch(k) sh(k)

sh(k) ch(k)

)(
0 0

−2δ(x− x0)δ(y − y0) 0

)(
ch(k) −sh(k)

−sh(k) ch(k)

))

is a linear combination of the terms∫
chb(k)(x, x0)chb(k)(y0, y)Q

∗
xydx dy , (39)

∫
shb(k)(x, x0)chb(k)(y0, y)Nxydx dy ,

∫
shb(k)(x, x0)shb(k)(y0, y)Qxydx dy .

A similar calculation shows that eBQx0y0
e−B is a linear combination

of ∫
chb(k)(x, x0)chb(k)(y0, y)Qxydx dy , (40)

∫
shb(k)(x, x0)chb(k)(y0, y)Nxydx dy ,

∫
shb(k)(x, x0)shb(k)(y0, y)Q

∗
xydx dy .

Thus, eBQ∗
x0y0

Qx0y0
e−B is a linear combination of the nine possible

terms obtained by combining the above.
Now we list all terms in eBV e−BΩ. Terms in eBV e−B ending in

Qxy are automatically discarded because they contribute nothing when
applied to Ω. The remaining six terms are listed below.

∫
chb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)chb(k)(y0, y2)

v(x0 − y0)Q
∗
x1y1

Nx2y2
Ωdx1 dy1 dx2 dy2 dx0 dy0 , (41)

∫
chb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)shb(k)(y0, y2)

v(x0 − y0)Q
∗
x1y1

Q∗
x2y2

Ωdx1 dy1 dx2 dy2 dx0 dy0 , (42)
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∫
shb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)chb(k)(y0, y2)

v(x0 − y0)Nx1y1
Nx2y2

Ωdx1 dy1 dx2 dy2 dx0 dy0 , (43)

∫
shb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)shb(k)(y0, y2) (44)

v(x0 − y0)Nx1y1
Q∗

x2y2
Ωdx1 dy1 dx2 dy2 dx0 dy0 ,

∫
shb(k)(x1, x0)shb(k)(y0, y1)shb(k)(x2, x0)chb(k)(y0, y2)

v(x0 − y0)Qx1y1
Nx2y2

Ωdx1 dy1 dx2 dy2 dx0 dy0 , (45)

∫
shb(k)(x1, x0)shb(k)(y0, y1)shb(k)(x2, x0)shb(k)(y0, y2)

v(x0 − y0)Qx1y1
Q∗

x2y2
Ωdx1 dy1 dx2 dy2 dx0 dy0 . (46)

To compute the above six terms, recall (24) through (27) as well as
(1). In general, NxyΩ = 1/2δ(x − y)Ω, while

∫
f(x, y)Q∗

xydxdyΩ =
(0, 0, f(x, y), 0, · · · ) up to symmetrization and normalization.

The resulting contributions (neglecting symmetrization and normal-
ization) follow.

From (41):

ψ(x1, y1) = (47)
∫

chb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)chb(k)(y0, x2)v(x0 − y0)

× dx2 dx0 dy0 .

From (42):

ψ(x1, y1, x2, y2) = (48)
∫

chb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x2, x0)shb(k)(y0, y2)v(x0 − y0)

× dx0 dy0 .

From (43):

ψ = (49)
∫

shb(k)(x1, x0)chb(k)(y0, x1)shb(k)(x2, x0)chb(k)(y0, x2)v(x0 − y0)

× dx1 dx2 dx0 dy0 .

From (44), with the N and Q∗ reversed, we get
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ψ(x2, y2) = (50)
∫

shb(k)(x1, x0)chb(k)(y0, x1)shb(k)(x2, x0)shb(k)(y0, y2)v(x0 − y0)

× dx1 dx0 dy0 ,

as well as the contribution from [N,Q∗], i.e.

ψ(y1, y2) = (51)
∫

shb(k)(x1, x0)chb(k)(y0, y1)shb(k)(x1, x0)shb(k)(y0, y2)v(x0 − y0)

× dx1 dx0 dy0 .

The contribution of (45) is zero, and, finally, the contribution of (46),
using (24), consists of four numbers, which can be represented by the
two formulas

ψ =

∫
shb(k)(x1, x0)shb(k)(y0, x1)shb(k)(x2, x0)shb(k)(y0, x2)v(x0 − y0)

(52)

× dx1 dx2 dx0 dy0

and

ψ =

∫
|shb(k)|2(x1, x0)|shb(k)|2(y0, y1)v(x0−y0)dx1 dy1 dx0 dy0 . (53)

We can now state the following proposition.

Proposition 7.1. The state eBV e−BΩ has entries on the zeroth, sec-
ond and fourth slot of a Fock space vector of the form given above. In
addition, if

‖
(
i
∂

∂t
− ∆x − ∆y

)
sh(k)‖L1[0,T ]L2(dxdy) ≤ C1,

‖
(
i
∂

∂t
− ∆x + ∆y

)
p‖L1[0,T ]L2(dxdy) ≤ C2

and v(x) = 1
|x| , or v(x) = χ(x) 1

|x| , then

∫ T

0

‖eBV e−BΩ‖2
F dt ≤ C ,

where C only depends on C1 and C2.
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Proof. This follows by writing ch(k) = δ(x − y) + p and applying
Cauchy-Schwartz and local smoothing estimates as in the work of Sjölin
[32], Vega [33]; see also Constantin and Saut [3]. In fact, we need the
following slight generalization (see Lemma 7.2 below): If

‖
(
i
∂

∂t
− ∆x1

− ∆x2
± ∆x3

· · · ± ∆xn

)
f(t, x1, · · · xn)‖L1[0,T ]L2(dtdx) ≤ C ,

with initial conditions 0, then

‖f(t, x1, x2, · · · )
|x1 − x2|

‖L2[0,T ]L2(dxdy) ≤ C . (54)

We will check a typical term, (48). This amounts to proving the fol-
lowing three terms are in L2.

(1)

ψpp(t, x1, y1, x2, y2) =
∫
p(t, x1, x0)p(t, y0, y1)shb(k)(t, x2, x0)shb(k)(t, y0, y2)v(x0 − y0) dx0 dy0 .

We use Cauchy-Schwartz in x0, y0 to get

∫ T

0

∫
|ψpp|2dt dx1 dx2 dy1 dy2

≤ sup
t

∫
|p(t, x1, x0)p(t, y0, y1)|2dx1 dx0 dy1 dy0

×
∫ T

0

∫
|shb(k)(t, x2, x0)shb(k)(t, y0, y2)v(x0 − y0)|2dt dx2 dx0 dy2 dy0 ≤ C .

The first term is estimated by energy, and the second one is
an application of (54) with f = shb(k)shb(k). Notice that,
because of the absolute value, we can choose either sh(k) or

sh(k) to insure that the Laplacians in x0, y0 have the same
signs.

(2)

ψpδ(t, x1, y1, x2, y2) =
∫
p(t, x1, x0)shb(k)(t, x2, x0)shb(k)(t, y1, y2)v(x0 − y1) dx0 .
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Here, we use Cauchy-Schwartz in x0 to estimate, in a similar
fashion,

∫ T

0

∫
|ψpδ|2dt dx1 dx2 dy1 dy2

≤ sup
t

∫
|p(t, x1, x0)|2dx1 dx0

×
∫ T

0

∫
|shb(k)(t, x2, x0)shb(k)(t, y1, y2)v(x0 − y1)|2dt dx2 dx0 dy2 dy0 ≤ C .

(3)

ψδδ(x1, y1, x2, y2) = shb(k)(t, x2, x1)shb(k)(t, y1, y2)v(x1 − y1) ,

which is just a direct application of (54).

All other terms are similar. �

�

We have to sketch the proof of the local smoothing estimate that we
used above.

Lemma 7.2. If f : R
3n+1 → C satisfies

‖
(
i
∂

∂t
− ∆x1

− ∆x2
± ∆x3

· · · ± ∆xn

)
f(t, x1, · · · xn)‖L1[0,T ]L2(dxdy) ≤ C

with initial conditions f(0, · · · ) = 0, then

‖f(t, x1, x2, · · · )
|x1 − x2|

‖L2[0,T ]L2(dx) ≤ C .

Proof. We follow the general outline of Sjolin, [32]. Using Duhamel’s
principle, it suffices to assume that

(
i
∂

∂t
− ∆x1

− ∆x2
± ∆x3

· · · ± ∆xn

)
f(t, x1, · · · xn) = 0 (55)

with initial conditions f(0, · · · ) = f0 ∈ L2. Furthermore, after the
change of variables x1 → x1+x2√

2
, x2 → x2−x1√

2
, it suffices to prove that

‖f(t, x1, x2, · · · )
|x1|

‖L2[0,T ]L2(dx) ≤ C ,

where f satisfies the same equation (55). Changing notation, denote
x = (x2, x3, · · · ) and let < ξ >2 be the relevant expression ±|ξ2|2 ±
|ξ3|2 . . .. Write

f(t, x1, x) =

∫
eit(|ξ1|2+<ξ>2)eix1·ξ1+ix·ξf̂0(ξ1, ξ) dξ1 dξ .
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Thus, we obtain
∫ |f(t, x1, x)|2

|x1|2
dtdx1dx

=

∫ ∫
eit(|ξ1|2−|η1|2+<ξ>2−<η>2) e

ix1·(ξ1−η1)+ix·(ξ−η)

|x1|2
f̂0(ξ1, ξ)f̂ 0(η1, η)dξ1 dξ dη1 dη

× dt dx dx1

= c

∫
δ(|ξ1|2 − |η1|2)

1

|ξ1 − η1|
f̂0(ξ1, ξ)f̂ 0(η1, ξ)dξ1dη1dξ

≤
∫

|f̂0(ξ1, ξ)|2dx1 dξ ,

because one can easily check that

sup
ξ1

∫
δ(|ξ1|2 − |η1|2)

1

|ξ1 − η1|
dη1 ≤ C .

Thus, the kernel δ(|ξ1|2−|η1|2) 1
|ξ1−η1| is bounded from L2(dη1) to L2(dξ1).

�

�

8. Error terms eB[A, V ]e−B

We proceed to check the operator eB[A, V ]e−B. The calculations
of this section are similar to those of the preceding section with the
notable exception of (61)–(64). Recall the calculations of Lemma 3.1
and write

eB[A, V ]e−B =

∫
v(x− y)

(
φ(y)eBa∗xe

−BeBaxaye
−B (56)

+ φ(y)eBa∗xa
∗
ye

−BeBaxe
−B
)
dx dy . (57)

Now fix x0. We start with the term (56). According to Theorem 4.1,
we have

eBa∗x0
e−B =

∫ (
sh(k)(x, x0)ax + ch(k)(x, x0)a

∗
x

)
dx

while eBax0
ay0
e−B has been computed in (40). The relevant terms are
∫

shb(k)(x, x0)chb(k)(y0, y)Nxydx dy and
∫

shb(k)(x, x0)shb(k)(y0, y)Q
∗
xydx dy .
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Combining these two terms, there are three non-zero terms (which will
act on Ω):

(1)
∫
v(x0 − y0)φ(y0)shb(k)(x1, x0)shb(k)(x2, x0)shb(k)(y0, y2)ax1

Q∗
x2y2

Ω

(58)

× dx1dx2 dy2 dx0 dy0 .

This term contributes terms of the form

ψ(t, y2) =

∫
v(x0 − y0)φ(t, y0)(shb(k)(t, x1, x0))

2shb(k)(t, y0, y2)dx1 dx0 dy0

(59)

as well as the term

ψ(t, x2) =

∫
v(x0 − y0)φ(t, y0)shb(k)(t, x1, x0)shb(k)(t, x2, x0)shb(k)(t, y0, x1)

(60)

× dx1 dx0 dy0 ,

which we know how to estimate. The second contribution is
(2)

∫
v(x0 − y0)φ(y0)chb(k)(x1, x0)shb(k)(x2, x0)chb(k)(y0, y2)a

∗
x1
Nx2y2

Ω

(61)

× dx1dx2 dy2 dx0 dy0 .

Commuting a∗x1
with ax2

, we find that (61) contributes

ψ(t, y2) =

∫
v(x0 − y0)φ(t, y0)chb(k)(t, x1, x0)shb(k)(t, x1, x0)chb(k)(t, y0, y2)

(62)

× dx1 dx0 dy0 .

We expand chb(k)(t, x1, x0) = δ(x1−x0)+p(k)(t, x1−x0). The
contributions of p are similar to previous terms, but δ(x1 − x0)
presents a new type of term, which will be addressed in Lemma
8.2. These contributions are

ψδp(t, y2) =

∫
v(x1 − y0)φ(t, y0)shb(k)(t, x1, x1)p(k)(t, y0, y2) (63)

dx1 dy0

and

ψδδ(t, y2) = φ(t, y2)

∫
v(x1 − y2)shb(k)(t, x1, x1)dx1 . (64)
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The last contribution of (56) is
(3)

∫
v(x0 − y0)φ(y0)chb(k)(x1, x0)shb(k)(x2, x0)shb(k)(y0, y2)a

∗
x1
Q∗

x2y2
Ω

× dx1dx2 dy2 dx0 dy0 ∼ ψ(x1, x2, y2)

where

ψ(t, x1, x2, y2)

=

∫
v(x0 − y0)φ(t, y0)chb(k)(t, x1, x0)shb(k)(t, x2, x0)shb(k)(t, y0, y2)dx0 dy0 ,

modulo normalization and symmetrization. This term, as well
as all the terms in (57), are similar to previous ones and are
omitted.

We can now state the following proposition.

Proposition 8.1. The state eB[A, V ]e−BΩ has entries in the first and
third slot of a Fock space vector of the form given above. In addition,
if

‖
(
i
∂

∂t
− ∆x − ∆y

)
sh(k)‖L1[0,T ]L2(dxdy) ≤ C1,

‖
(
i
∂

∂t
− ∆x + ∆y

)
p‖L1[0,T ]L2(dxdy) ≤ C1

and

‖shb(k)(t, x, x)‖L2([0,T ]L2(dx)) ≤ C3 , (65)

and v(x) = χ(x)
|x| for χ a C∞

0 cut-off function, then
∫ T

0

‖eB[A, V ]e−BΩ‖2
F ≤ C ,

where C only depends on C1, C2, C3.

Proof. The proof is similar to that of Proposition 7.1, the only excep-
tion being the terms (63), (64). It is only for the purpose of handling
these terms that the Coulomb potential has to be truncated, since the
convolution of the Coulomb potential with the L2 function shb(k)(x, x)
does not make sense. If v is truncated to be in L1(dx), then we estimate
the convolution in L2(dx), and take φ ∈ L∞(dydt). �

�

To apply this proposition, we need the following lemma.
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Lemma 8.2. Let u ∈ X
1

2
, 1
2
+. Then,

‖u(t, x, x)‖L2(dt dx) ≤ C‖u‖
X

1
2

, 1
2
+ .

Proof. As it is well known, it suffices to prove the result for u satisfying

(
i
∂

∂t
− ∆x − ∆y

)
u(t, x, y) = 0

with initial conditions u(0, x, y) = u0(x, y) ∈ H
1

2 . This can be proved
as a “Morawetz estimate”, see [14], or as a space-time estimate as in
[19]. Following the second approach, the space-time Fourier transform
of u (evaluated at 2ξ rather than ξ for neatness) is

ũ(τ, 2ξ) = c

∫
δ(τ − |ξ − η|2 − |ξ + η|2)ũ0(ξ − η, ξ + η)dη

= c

∫
δ(τ − |ξ − η|2 − |ξ + η|2)

(|ξ − η| + |ξ + η|)1/2
F (ξ − η, ξ + η)dη ,

where F (ξ − η, ξ + η) = (|ξ − η| + |ξ + η|)1/2ũ0(ξ − η, ξ + η). By
Plancherel’s theorem, it suffices to show that

‖ũ‖L2(dτdξ) ≤ C‖F‖L2(dξdη) .

This, in turn, follows from the pointwise estimate (Cauchy-Schwartz
with measures)

|ũ(τ, 2ξ)|2

≤ c

∫
δ(τ − |ξ − η|2 − |ξ + η|2)

|ξ − η| + |ξ + η| dη

×
∫
δ(τ − |ξ − η|2 − |ξ + η|2)|F (ξ − η, ξ + η)|2dη

and the remark that
∫
δ(τ − |ξ − η|2 − |ξ + η|2)

|ξ − η| + |ξ + η| dη ≤ C .

�

�
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9. The trace
∫
d(t, x, x)dx

This section addresses the control of traces involved in derivations.
Recall that

d(t, x, y) =
(
ish(k)t + sh(k)gT + gsh(k)

)
sh(k)

− (ich(k)t + [g, ch(k)]) ch(k)

−sh(k)mch(k) − ch(k)msh(k) .

Notice that if k1(x, y) ∈ L2(dx dy) and k2(x, y) ∈ L2(dx dy) then
∫

|k1k2|(x, x)dx ≤
∫

|k1(x, y)||k2(y, x)|dy dx

≤ ‖k1‖L2‖k2‖L2 .

Recall from Theorem 6.1 that if v(x) = ǫ
|x| or v(x) = χ(x) ǫ

|x| then

ish(k)t+sh(k)gT +gsh(k), ich(k)t+[g, ch(k)] and sh(k) are in L∞([0, 1])L2(dxdy).
This allows us to control all traces except the contribution of δ(x− y)
to the second term. But, in fact, we have

ich(k)t + [g, ch(k)] = (ikt − ∆xk − ∆yk) k − k(ikt − ∆xk − ∆yk) + . . . ,

which has bounded trace, uniformly in [0, 1].

References

[1] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., Cornell,
E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor.
Science 269, 198–201 (1995)

[2] Bourgain, J.: Fourier transform restriction phenomena for certain lattice sub-
sets and applications to non-linear evolution equations I, II. Geom. Funct.
Analysis 3, 107–156 (1993) and 202–262 (1993)

[3] Constantin, P., Saut, S.: Local smoothing properties of dispersive equations.
JAMS 1, 431–439 (1988)

[4] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S.,
Kurn, D. M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium
atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

[5] Dyson, F.J.: Ground-state energy of a hard sphere gas. Phys. Rev. 106, 20–26
(1957)
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