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SECOND-ORDER DIFFERENTIAL

EQUATIONS:

CONDITIONS OF COMPLETE

INTEGRABILITY 1

Vasilij Petrovich Ermakov (1845–1922)

from

Lectures on Integration of Differential Equations

1

Linear second-order equations with variable coefficients can be completely
integrated only in very rare cases. We consider the most important of them.

To begin we prove that, if a particular integral of the equation

(1)
d2y

dx2
+ A

dy

dx
+ By = 0

is known, then the determination of a complete integral is reduced to a quadrature.

Let u be a particular integral of this equation, ie

(2)
d2u

dx2
+ A

du

dx
+ Bu = 0.

We eliminate B from (1) and (2) to obtain

(3) u
d2y

dx2
− y

d2u

dx2
+ A

(

u
dy

dx
− y

du

dx

)

= 0.
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A first integral of (3) is

u
dy

dx
− y

du

dx
= C1 exp

(

−
∫

Adx

)

.

When we integrate again, we obtain the complete integral2

y = C1u
∫

exp
(

−
∫

Adx
) dx

u2
+ C2u.

2

Any linear differential equation of the second order, videlicet

d2y

dx2
+ A

dy

dx
+ By = 0,

can always be reduced by a transformation of the dependent variable to a form in
which the first derivative is absent. Explicitly we set

y = z exp
(

−1

2

∫

Adx
)

to obtain
d2z

dx2
=

(

1

4
A2 +

1

2

dA

dx
− B

)

z.

We see below that this form makes it easy to discover conditions of integrability
for differential equations.

3

The majority of differential equations for which it is possible to find conditions
of integrability reduce to the form

(4)
(

Ax2 + Bx + C
) d2y

dx2
+ (Dx + E)

dy

dx
+ Fy = 0,

where the uppercase coefficients are parameters independent of the variables, x and
y. When we take the nth derivative of (4) and set

z =
dny

dxn
,

we obtain

(5)
(

Ax2 + Bx + C
) d2z

dx2

(

(D+2An)x+E+Bx
)dz

dx
+
(

F + An + Dn + An2
)

z = 0.

2Editor’s Note: The integral for the second solution is known as Abel’s formula.
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Thus, if an integral of (4) is known, we can find an integral of (5) when n is a

natural number.

An integral of (4) can always be found in the case that F = 0, ie the equation
has the form

(6)
(

Ax2 + Bx + C
) d2y

dx2
+ (Dx + E)

dy

dx
= 0.

We write
∫

Dx + E

Ax2 + Bx + C
dx = −ϕ(x).

Then we determine an integral of (5) of the form

y = α
∫

exp
(

ϕ(x)
)

dx + β,

where α and β are the arbitrary constants of integration. Consequently we have
proven that, if n is a natural number, then a particular integral of the equation

(

Ax2 + Bx + C
) d2z

dx2

(

(D + 2An)x + E + Bx
) dz

dx
+ n (D + A + An) z = 0

is given by the formula

z =
dn−1

dxn−1

(

exp
(

ϕ(x)
)

)

.

4

We pass to a more thorough investigation of particular cases. From what we
proved above it is evident that the differential equation,

(7) (x+a)(x+b)
d2z

dx2
+
(

(n−λ)(x+b)+(n−µ)(x+a)
) dz

dx
+n(n−1−λ−µ)z = 0,

is completely integrable if n is a natural number. In the present case

ϕ(x) =

∫

λ(x + b) + µ(x + a)

(x + a)(x + b)
dx = λ log(x + a) + µ log(x + b).

Hence a particular integral of the equation is given by the formula

z =
dn−1

dxn−1

(

(x + a)λ(x + b)µ
)

.

We apply the transformation of §2 to (7). When we set

z = (x + a)(λ−n)/2(x + b)(µ−n)/2y,
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we reduce (7) to the form

(x + a)(x + b)
d2z

dx2
=

(

(n − λ − 1)2 − 1

4

b − a

x + a

+
(n − µ − 1)2 − 1

4

a − b

x + b
+

(λ + µ + 1)2 − 1

4

)

z.

When we compare this equation with

(x + a)(x + b)
d2y

dx2
=

(

α

x + a
+

β

x + b
+ γ

)

y,

we obtain three algebraic equations the solutions of which are

n =
1

2

(

1 ±
√

1 +
4α

b − a
±
√

1 +
4β

a − b
±
√

1 + 4γ

)

,

λ = − 1

2

(

1 ±
√

1 +
4α

b − a
∓
√

1 +
4β

a − b
∓
√

1 + 4γ

)

,(8)

µ = − 1

2

(

1 ∓
√

1 +
4α

b − a
±
√

1 +
4β

a − b
∓
√

1 + 4γ

)

.

Before each of the roots in these equations either upper or lower sign can be taken
so that altogether there are eight solutions which leads to the following result.

To find the complete integrability conditions of the differential equation

(9)
d2y

dx2
=

Ax2 + Bx + C

(x + a)2(x + b)2
y

decompose the fraction
Ax2 + Bx + C

(x + a)(x + b)

into partial fractions according to

Ax2 + Bx + C

(x + a)(x + b)
=

α

x + a
+

β

x + b
+ γ.

The equation can be completely integrated if one of the eight expressions

√

1 +
4α

b − a
±
√

1 +
4β

a − b
±
√

1 + 4γ

is an odd integer.

If this condition be satisfied, a particular integral of (9) is

(10) y = (x + a)(n−λ)/2(c + b)(n−µ)/2 dn−1

dxn−1

(

(a + a)λ(x + b)µ
)

,
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where n, λ and µ are given by the formulæ (8) in which, naturally, signs should
be chosen so that n be a positive integer. If two of the numbers in (10) are odd
integers, we can find two independent particular integrals and consequently the
complete integral without the use of quadratures.

5

The conditions of integrability found above are not unique. We demonstrate
the existence of other conditions.

It is easy to verify that the complete integral of the equation

(11) (t2 + b − a)
d2z

dt2
+ t

dz

dt
− δ2z = 0

is given by the formula

(12) C1

(

t +
√

t2 + b − a
)δ

+ C2

(

t −
√

t2 + b − a
)δ

.

As was proven in §3, the nth derivative of (12) is the complete integral of the
equation

(13) (t2 + b − a)
d2z

dt2
+ (2n + 1) t

dz

dt
+
(

n2 − δ2
)

z = 0.

The nth derivative of (12) is nothing but the coefficient of un in the expansion of
the expression,

(14) C1

(

t + u +
√

t2 + b − a
)δ

+ C2

(

t + u −
√

t2 + b − a
)δ

,

in increasing powers of u.

Under the change of independent variable t −→
√

x + a equation (13) be-
comes

(15) (x + a)(x + b)
d2z

dx2
+

1

2

(

(x + b) + (2n + 1)(x + a)
) dz

dx
+

1

4

(

n2 − δ2
)

z = 0.

When we substitute for t into (14), we find that the complete integral of (15) is the
coefficient of un in the expansion of the expression

C1

(√
x + a + u +

√

x + b + 2u
√

x + a + u2

)δ

(16)

+ C2

(√
x + a + u −

√

x + b + 2u
√

x + a + u2

)δ

in increasing powers of u.
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When we take the mth derivative of (15) and set s = dmz/dxm, we obtain

(x + a)(x + b)
d2s

dx2
+

1

2

(

(2m + 1)(x + b) + (2m + 2n + 1)(x + a)
) ds

dx
(17)

+
1

4

(

(2m + n)2 − δ2
)

z = 0.

The complete integral of (18) is the mth derivative of the coefficient of un in the
expansion of (16) in increasing powers of u.

We apply the transformation of §2 to (18). When we set

s = (x + a)−(2m+1)/4(x + b)−(2m+2n+1)/4y,

we obtain

(x + a)(x + b)
d2y

dx2
=

(

(2m − 1)2 − 4

16

b − a

x + a
(18)

+
(2m + 2n− 1)2 − 4

16

a − b

x + b
+

δ2 − 1

4

)

y.

If we compare (18) with

(19) (x + a)(x + b)
d2y

dx2
=

(

α

x + a
+

β

x + b
+ γ

)

y,

we make the identifications

m =
1

2
+

√

1 +
4α

b − a
, m + n =

1

2
+

√

1 +
4β

a − b
and δ =

√

1 + 4γ.

Thus (19) is completely integrable if

1

2
+

√

1 +
4α

b − a
and

1

2
+

√

1 +
4β

a − b

are integers. In this case we obtain the complete integral through multiplying

(x + a)(2m+1)/4(x + b)(2m−2n+1)/4

by the mth derivative of the coefficient of un in the expansion of (16) in increasing
powers of u.

6

We have found that the equation

(20) (x + a)(x + b)
d2y

dx2
=

(

α

x + a
+

β

x + b
+ γ

)

y,
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can be completely integrated if

1

2
+

√

1 +
4α

b − a
and

1

2
+

√

1 +
4β

a − b

are whole numbers. To find further conditions for integrability we transform the
variables of (20) according to

x + a −→ (b − a)2

t + a
and y −→ z

t + a

to obtain

(21) (t + a)(t + b)
d2z

dt2
=

(

γ(b − a)

t + a
+

β

t + b
+

α

b − a

)

z.

This equation is of the same form as (20) and hence is completely integrable if

1

2
+
√

1 + 4γ and
1

2
+

√

1 +
4β

a − b

are whole numbers. With this condition (20) is also integrable. In the same way
we can prove that (20) is also integrable in the case that

1

2
+
√

1 + 4γ and
1

2
+

√

1 +
4α

a − b

are integers. Thus we obtain the result that

The equation

(x + a)(x + b)
d2y

dx2
=

(

α

x + a
+

β

x + b
+ γ

)

y,

in addition to the cases indicated in §4, is completely integrable if two among the

three numbers,

1

2
+

√

1 +
4α

b − a
,

1

2
+

√

1 +
4β

a − b
and

√

1 + 4γ,

are whole numbers.

7

The equation

(22) (x + a)(x + b)(x + c)
d2y

dx2
=

(

α

x + a
+

β

x + b
+

γ

x + c

)

y
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can be transformed to the form of the equation, (20), examined above by a trans-
formation of variables. When we make the change

(23) x + c = − (c − a)(c − b)

t + a + b − c
, y =

z

t + a + b − c
,

we obtain

(24) (t + a)(t + b)
d2z

dt2
=

(

α

(c − a)(t + a)
+

β

(c − b)(t + b)
+

γ

(c − a)(c − b)

)

z.

The integrability conditions for this equation can be found following the rules given
in §4 and §6. Thus we obtain the following result.

To find the integrability conditions for the differential equation

d2y

dx2
=

Ax2 + Bx + C

(x + a)2(x + b)2(x + c)2
y

decompose the fraction

Ax2 + Bx + C

(x + a)2(x + b)2(x + c)2

into partial fractions according to

Ax2 + Bx + C

(x + a)2(x + b)2(x + c)2
=

α

x + a
+

β

x + b
+

γ

x + c
.

The equation is completely integrable if

√

1 +
4α

(a − b)(a − c)
±

√

1 +
4β

(b − a)(b − c)
±
√

1 +
4γ

(c − a)(c − b)

is an odd integer. The equation is completely integrable also in the case when two

of the three numbers,

1

2
+

√

1 +
4α

(a−b)(a−c)
,

1

2
+

√

1 +
4β

(b−a)(b−c)
and

1

2
+

√

1 +
4γ

(c−a)(c−b)
,

are whole numbers.

8

We now pass to a new form of the equation

(25) (x + a)
d2z

dx2
+
(

n − µ − λ(x − a)
) dz

dx
− λnz = 0.
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This equation, as was shown in §3, is completely integrable if n is a positive integer.
In the present case

(26) ϕ(x) =

∫
(

λ +
µ

x + a

)

dx = λx + µ log(x + a).

Therefore a particular integral of (25) is given by the formula

(27) z =
dn−1

dxn−1

(

(x + a)µeλx
)

.

We apply the transformation of §2 to (25). When we set

(28) z = (x + a)(µ−n)eλx/2,

(25) becomes

(29)
d2y

dx2
=

(

λ2

4
+

λ(n + µ)

2(x + a)
+

(n − µ − 1)2 − 1

4(x + a)2

)

y.

Comparing this equation with the equation

(30)
d2y

dx2
=

(

α +
β

x + a
+

γ

(x + a)2

)

y

we make the identifications

n =
1

2
± 1

2

√

1 + 4γ ± β

2
√

α
,

µ = − 1

2
∓ 1

2

√

1 + 4γ ± β

2
√

α
and(31)

λ = ± 2
√

α.

Thus we obtain the result that

The differential equation

d2y

dx2
=

(

α +
β

x + a
+

γ

(x + a)2

)

y

is completely integrable if
√

1 + 4γ ± β√
α

is an integer.

Given that this condition holds, a particular integral of the equation is

(32) y = (x + a)(n−µ)/2e−λx/2 dn−1

dxn−1
(x + a)µeλx,

where n, λ and µ are given by (31).
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9

The integrability condition found in §8 is not unique. Moreover it does not
hold in the case that α = 0, ie when the equation has the form

(33)
d2y

dx2
=

(

β

x + a
+

γ

(x + a)2

)

y.

To find the integrability condition for this equation we apply the transformation

(34) x + a =
1

2
(t + a)2, y = z

√
t + a.

Then (33) becomes

(35)
d2z

dt2
=

(

2β +
3 + 16γ

4(t + a)2

)

z.

Equation (35), hence (33), is completely integrable if 2
√

1 + 4γ is an odd integer.
Thus we obtain

The differential equation

d2y

dx2
=

(

α +
β

x + a
+

γ

(x + a)2

)

y

is completely integrable if α = 0 and 2
√

1 + 4γ is an odd integer.

In addition to the two cases indicated the equation is also completely inte-
grable when α = β = 0, ie, the equation is

(36)
d2y

dx2
=

γ

(x + a)2
y.

The solution of (36) is

(37) y = C1(x + a)µ + C2(x + a)1−µ,

where

µ =
1

2

(

1 +
√

1 + 4γ
)

.

10

We demonstrate the determination of the integrability condition and solution
given in §9.

It is easy to show that

(38) s(x) = C1 exp
(

2δ
√

x + a
)

+ C2 exp
(

− 2δ
√

x + a
)
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is the solution of the equation

(39) (x + a)
d2s

dx2
+

1

2

ds

dx
− δ2s = 0.

We differentiate (39) n times and set

z =
dns

dxn
.

Then the equation becomes

(40) (x + a)
d2z

dx2
+

(

n +
1

2

)

dz

dx
− δ2z = 0.

The solution of (40) is given by the formula

(41) z(x) =
dn

dxn

(

C1 exp
(

2δ
√

x + a
)

+ C2 exp
(

− 2δ
√

x + a
)

)

.

We apply the transformation of §2 to (41). When we set

(42) z = (x + a)−(1+2n)/4y,

we obtain

(43)
d2y

dx2
=

(

δ2

x + a
+

(2n − 1)2 − 4

16(x + a)2

)

y.

On comparison of (43) with

(44)
d2y

dx2
=

(

β

x + a
+

γ

(x + a)2

)

y

we obtain

δ =
√

β and n =
1

2
+
√

1 + 4γ .

For n a positive integer the solution of (43) is

(45) y(x) = (x + a)(1+2n)/4 dn

dxn

(

C1 exp
(

2δ
√

x + a
)

+ C2 exp
(

− 2δ
√

x + a
)

)

.

11

The differential equation

(46) (x + b)2
d2y

dx2
=

(

α

(x + b)2
+

β

(x + a)(x + b)
+

γ

(x + a)2

)
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can be transformed by a change of variables to the form of the equation examined
in the three previous sections. When we apply the transformation

(47) x + b =
a − b

t + a − 1
and y =

z

t + a − 1

to (46), we obtain

(48) (a − b)2
d2z

dt2
=

(

α +
β

t + a
+

γ

(t + a)2

)

.

The integrability conditions for (48) can be found according to the rules developed
in the three previous sections. Thus we obtain

The differential equation

(x + b)2
d2y

dx2
=

(

α

(x + b)2
+

β

(x + a)(x + b)
+

γ

(x + a)2

)

is completely integrable in the following three cases :

1. if
√

1 +
4γ

(a − b)2
± β

(a − b)
√

α

is an odd integer,

2. if α = 0 and

1

2
+

√

1 +
4γ

(a − b)2

is an integer and

3. if α = β = 0.

12

The differential equation

(49)
d2y

dx2
=

(

α

(x + a)4
+

β

(x + a)3
+

γ

(x + a)2

)

y

can be transformed by a change of variables to the form of the equation examined
in §§8, 9 and 10. If we set

x + a =
1

t + a
and y =

z

t + a
,
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(49) becomes

(50)
d2z

dt2
=

(

α +
β

t + a
+

γ

(t + a)2

)

z.

Thus we obtain

The differential equation

d2y

dx2
=

(

α

(x + a)4
+

β

(x + a)3
+

γ

(x + a)2

)

y

is completely integrable in the following three cases :

1. if
√

1 + 4γ ± β√
α

is an odd integer,

2. if α = 0 and 2
√

1 + 4γ is an odd integer and

3. if α = β = 0.

13

The first of the integrability conditions given in §12 and the solution of (50)
can also be obtained as below.

As was shown in §3, the differential equation

(51) (x + a)2
d2z

dx2
+
(

(2n − λ)(x + a) + µ
) dz

dx
+ n(n − 1 − λ)z = 0

is completely integrable if n is an integer. In the present case

(52) ϕ(x) =

∫
(

λ

x + a
− µ

(x + a)2

)

dx = λ log(x + a) +
µ

x + a
.

A particular integral of the equation is expressed by the formula

(53) z(x) =
dn−1

dxn−1

(

(x + a)λ exp
( µ

x + a

)

)

.

When we apply the transformation of §2, namely

z = (x + a)(λ−2n)/2 exp
( µ

2(x + a)

)

y,

we obtain

(54)
d2y

dx2
=

(

µ2

4(x + a)4
+

µ(2n − λ − 2)

2(x + a)3
+

(λ + 1)2 − 1

4(x + a)2

)

y.
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On comparison with (49), namely

d2y

dx2
=

(

α

(x + a)4
+

β

(x + a)3
+

γ

(x + a)2

)

y,

we obtain

n =
1

2

(

1 ±
√

1 + 4γ ± β

2
√

α

)

, λ = −1 ±
√

1 + 4γ and µ = ±2
√

α.

If n is found to be a positive integer, a particular integral of the equation may be
written as

(55) y = (x + a)(2n−λ)/2 exp
(

− µ

2(x + a)

) dn−1

dxn−1

(

(x + a)λ exp
( µ

x + a

)

)

.

14

The differential equation

(56)
d2y

dx2
=
(

αx2 + βx + γ
)

y

can be transformed by a change of variables to a particular form of the equation
examined in §8. If we set

x +
β

2α
=

√
t + a and y = z(t + a)−1/4,

we obtain

(57)
d2z

dt2
=

(

α

4
+

4αγ − β2

16α(t + a)
− 3

16(t + a)2

)

z.

As has been proved in §8, we obtain

The differential equation

d2y

dx2
=
(

αx2 + βx + γ
)

y

is completely integrable if
1

2

(

1 ± 4αγ − β

4α
√

α

)

is an odd integer.
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15

The integrability condition given in the previous section and the solution can
be found as follows.

As has been shown in §3, the differential equation

(58)
d2z

dx2
− (2λ + µ)

dz

dx
− 2λnz = 0

is completely integrable if n is a positive integer. In the case of (58)

ϕ(x) =
∫

(2λx + µ) dx = λx2 + µx.

Therefore a particular integral of the equation is given by

z =
dn−1

dxn−1
exp

(

λx2 + µx
)

.

When we apply the transformation of §2, videlicet

z = exp
(

1

2
(2λx + µ)

)

y,

we obtain

(59)
d2y

dx2
=

(

λ2x2 + λµx +
µ2

4
− λ + 2λn

)

y.

When we compare (59) with (56), videlicet

d2y

dx2
=
(

αx2 + βx + γ
)

y,

we find that

λ = ±
√

α, µ = ± β√
α

and n =
1

2

(

1 ± 4αγ − β

4α
√

α

)

.

If n is a positive integer, the solution of (56) is

(60) y(x) = exp
(

−1

2
(2λx + µ)

) dn−1

dxn−1

(

exp(λx2 + µx)
)

.

16

The differential equation

(61)
d2y

dx2
=

(

α

(x + a)6
+

β

(x + a)5
+

γ

(x + a)4

)
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can be transformed to (56) by the change of variables

x + a =
1

t
and y =

z

t
.

Specifically we obtain
d2z

dt2
=
(

αt2 + βt + γ
)

z.

As a consequence of the result of §15 we have

The differential equation

d2y

dx2
=

(

α

(x + a)6
+

β

(x + a)5
+

γ

(x + a)4

)

can be completely integrated if

1

2

(

1 ± 4αγ − β

4α
√

α

)

is an integer.

17

All of the differential equations examined thus far can be expressed in terms
of a single general formula, videlicet

(62)
d2y

dx2
=

Ax2 + Bx + C

(Dx3 + Ex2 + Fx + G)2
y.

The methods of integration of (62) and its integrability conditions essentially de-
pend upon the roots of the equation

(63) Dx3 + Ex2 + Fx + G = 0.

The sections in which we examined the different particular cases are

1. §7 when all roots of (63) are different,

2. §11 when (63) has two roots equal,

3. §16 when (63) has three roots equal,

4. §§4 and 6 when D = 0 and the roots of the equation

(64) Ex2 + Fx + G = 0

are unequal,
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5. §§12 and 13 when D = 0 and the roots of (64) are equal,

6. §§8, 9 and 10 when D = E = 0 and

7. §§14 and 15 when D = E = F = 0.

We can transform the differential equation,

(65)
(

Ex2 + Fx + G
) d2y

dx2
+ (Hx + K)

dy

dx
+ Ly = 0,

to the standard form by the application of the transformation of §2, videlicet

y = z exp

(
∫

−1

2

Hx + K

Ex2 + Fx + G
dx

)

.

Equation (65) becomes

(66)
d2z

dx2
=

Ax2 + Bx + C

(Ex2 + Fx + G)2
y

which is a particular case of (62) with D = 0.

18

There are many differential equations which can be reduced to the equations
examined above by a change of variables. We consider some of them.

The differential equation

(67)
d2y

dx2
=

ae2x + bex + c

(αex + β)2
y

is transformed to

(68)
d2z

dt2
=

(

− 1

4t2
+

at2 + bt + c

t2(αt + β)

)

z

by the transformation

x = log t and y =
z√
t
.

The integrability conditions for this equation can be found according to the rules
developed in §§4, 6, 8, 9, 10, 12 and 13.

The differential equation

(69) x2 d2y

dx2
=

a(log x)2 + b logx + c

(α log x + β)2
y
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is transformed to

(70)
d2z

dt2
=

(

1

4
+

at2 + bt + c

(αt + β)

)

z

by the transformation

x = et and y = z exp(t/2).

The integrability conditions for (69) can be found according to the rules developed
in §§8, 9, 10, 14 and 15.

The differential equation

(71) cos2x
d2y

dx2
=
(

a sin2 x + b sinx + c
)

y

is transformed to

(72)
(

t2 − 1
)2 d2z

dt2
=

(

(

a − 1

4

)

t2 + bt + c − 1

2

)

z

by the transformation

sin x = t and y = z
(

1 − t2
)

−1/4
.

According to the rule developed in §4 (72), hence (71), is completely integrable if

√

1

4
+ a − b + c ±

√

1

4
+ a + b + c ±

√
a

is an odd integer. According to the rule developed in §6 this equation is also
completely integrable in the case when two of the three numbers

1

2
+

√

1

4
+ a − b + c,

1

2
+

√

1

4
+ a + b + c and

1

2
+
√

a

are integers.

The differential equation

(73)
d2y

dx2
=
(

a tan2 x + b tanx + c
)

y

is transformed to

(74)
(

t2 + 1
)2 d2z

dt2
=
(

at2 + bt + c
)

z

by the transformation

tan x = t and y = z
(

1 + t2
)

−1/2
.
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According to the rule developed in §4 (74), hence (73), is completely integrable if
√

1 + 4a ±
√

a − c + ib ±
√

a − c − ib

is an odd integer.

Pfaff’s equation,

(75)
(

axδ + b
)

x2 d2y

dx2
+
(

cxδ + e
)

x
dy

dx
+
(

fxδ + g
)

y = 0,

can be transformed to the form

(76)
(

axδ + b
)

x2 d2z

dx2
=
(

αx2δ + βxδ + γ
)

z

by using the transformation of §2. Under the change of variables

(77) x = t1/δ and z = st(1−δ)/(2δ)

equation (76) becomes

(78) δ2 d2s

dt2
=

(

1 − δ2

4t2
+

αt2 + βt + γ

t2(at + b)2

)

s.

The integrability conditions for (78) can be found according to the rules developed
in §§4, 6, 8, 9, 10, 12 and 13. When we set a = β = γ = 0 and b = 1 in (76), we
obtain

(79)
d2z

dx2
= αx2(δ−1)z,

which is known as Riccati’s equation. When we apply the transformation (77),
equation (79) becomes

δ2 d2s

dt2
=

(

α +
1 − δ2

4t2

)

s.

According to the rule developed in §8 we find that Riccati’s equation is completely
integrable if 1/δ is an odd integer.

19

Some nonlinear differential equations of the first and second orders are re-
duced to linear form by a transformation of the dependent variable. The equation

(80)
dy

dx
= y2 + Ay + B

is reduced to the linear second-order equation

(81)
d2z

dx2
− A

dz

dx
+ Bz = 0
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under the transformation

y = −1

z

dz

dx
.

The more general equation

(82)
dy

dx
= Ay2 + By + C,

where A, B and C may be functions of x, can be reduced to (80) by a change of
the independent variable. We set

y =
z

A

to obtain
dz

dx
= z2 +

1

A

(

B +
dA

dx

)

z + AC.

As has been shown above, this equation can be reduced to a linear second-order
differential equation.

The differential equation

(83) y
d2y

dx2
+ A

(

dy

dx

)2

+ By
dy

dx
+ Cy2 = 0

can be transformed to the form of (82) by a change of the dependent variable. If
we set

(84) y = exp
(

−
∫

z dx
)

,

we obtain
dz

dx
= (A + 1)z2 − Bz + C.

As we have proven above, this equation can be reduced to the linear second-order
differential equation.

The particular case of (83) with A = −1, videlicet

(85) y
d2y

dx2
−
(

dy

dx

)2

+ By
dy

dx
+ Cy2 = 0,

deserves special attention. Equation (85) can always be completely integrated since
it reduces to the linear first-order equation

dz

dx
+ Bz = C

under the transformation (84).
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20

Some nonlinear differential equations are related to linear second-order dif-
ferential equations.

If an integral of the equation

(86)
d2y

dx2
= My

is known, one can find an integral of the equation

(87)
d2z

dx2
= Mz +

α

z3
,

where α is some constant.

We eliminate M from (86) and (87) to obtain

(88)
d

dx

(

y
dz

dx
− z

dy

dx

)

=
αy

z3
.

When we multiply both sides of (88) by

2

(

y
dz

dx
− z

dy

dx

)

,

(88) becomes

d

dx

(

y
dz

dx
− z

dy

dx

)2

= −2αy

z

d

dx

(y

z

)

.

We integrate this to obtain

(89)

(

y
dz

dx
− z

dy

dx

)2

= C − αy2

z2
.

If y1 and y2 are two particular integrals of (86), we obtain two first integrals of (87)
when we substitute them for y in (89). The integrals are

(

y1
dz

dx
− z

dy1

dx

)2

= C1 −
αy 2

1

z2
and

(

y2
dz

dx
− z

dy2

dx

)2

= C2 −
αy 2

2

z2
.

On the elimination of dz/dx from these two first integrals we obtain the solution
of (87).

The solution of (87) can also be obtained as follows. From (89) we obtain

dx =
y dz − z dy
√

C − αy
2

z2

.
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When we divide both sides by y2, this becomes

dx

y2
=

z

y
d

(

z

y

)

√

C
z
2

y2
− α

.

We multiply by C and integrate both sides to obtain

(90) C

∫

dx

y2
+ C0 =

√

C
z2

y2
− α ,

where C0 is the second constant of integration. In (90) we have the solution of (87).
Instead of y it is sufficient to take any particular solution3 of (86).

Conversely, if a particular solution of (87) is known, we can find the complete

solution of (86).

Since it is sufficient to find particular integrals of (86), we can set C = 0 in
(89). Thus we obtain

y
dz

dx
− z

dy

dx
= ±y

z

√
−α

which is variables separable and can be written as

dy

y
=

dz

z
± dx

√
−α

z2
.

On integration this becomes

log y = log z ±
√
−α

∫

dx

z2

from which it follows that

y = z exp

(

±
√
−α

∫

dx

z2

)

.

We take the upper and then the lower sign to obtain two particular integrals of
(86).

21

The theorem proven in §20 can be generalised as below.

If p is some known function of x and f is some other given function, then the

solution of the equation

(91) p
d2y

dx2
− y

d2p

dx2
=

1

p2
f

(

y

p

)

3Editor’s Note: In (90) one has a generalisation of Abel’s formula for a second solution of a
linear second-order differential equation given a particular solution.
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can be determined by means of quadratures.

The multiplication of (91) by

2

(

p
dy

dx
− y

dp

dx

)

dx

leads to the differential form

d

(

p
dy

dx
− y

dp

dx

)2

= 2f

(

y

p

)

d

(

y

p

)

.

We integrate this to obtain
(

p
dy

dx
− y

dp

dx

)2

= ϕ

(

y

p

)

+ C,

where ϕ(z) = 2
∫

f(z) dz. This is the expression for a first integral of (91). We
solve for dx, namely

dx =
p dy − y dp
√

ϕ

(

y

p

)

+ C

,

divide by p2 and integrate to obtain

(92)

∫

dx

p2
+ C0 =

∫ d

(

y

p

)

√

ϕ

(

y

p

)

+ C

,

where C0 is the second constant of integration. Equation (92) represents the com-
plete integral of the equation.

In the particular case for which p = x equation (91) takes the form

x3 d2y

dx2
= f

( y

x

)

.
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