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Abstract

We discretize in time with step-size h a Stochastic Differential
Equation whose solution has a unique invariant probability measure
µ; if (X

h

p , p ∈ IN) is the solution of the discretized system, we give an
estimate of

|
∫
f(x)dµ(x)− lim

N−→+∞

1
N

N∑
p=1

f(X
h

p)| (1)

in terms of h for several discretization methods.
In particular, methods which are of second order for the approxi-

mation of Ef(Xt) in finite time are shown to be generically of second
order for the ergodic criterion (1).

Résumé
Nous discrétisons en temps avec un pas de temps noté h une Equa-

tion Différentielle Stochastique dont la solution possède une unique
mesure invariante µ ; si (X

h

p , p ∈ IN) est la solution du système discrétisé,
nous estimons en fonction de h l’erreur

|
∫
f(x)dµ(x)− lim

N−→+∞

1
N

N∑
p=1

f(X
h

p)|

∗Stochastics and Stochastic Reports, 29(1):13–36, 1990.
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correspondant à plusieurs méthodes de discrétisation.
En particulier, nous montrons que les méthodes du second ordre

pour l’approximation de Ef(Xt) en temps fini sont génériquement du
second ordre pour le critère ergodique (1).
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1 Introduction

We consider the Stochastic Differential System of dimension d, driven by a
Wiener process of dimension r :

Xt = X0 +
∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dWs (2)

The solution starting at x ∈ IRd will be denoted by (Xt(x)).

At our knowledge, up to now the numerical analysis of the Stochastic Dif-
ferential Systems has essentially followed five directions : mean-square ap-
proximation (Clark and Cameron [2], Milshtein [10], Platen [17], Rumelin [18]),
pathwise approximation (Talay [19]), approximation of expectations of the
solution (Milshtein [11], Milshtein [12], Talay [20], Talay [21]), construction
of schemes asymptotically efficient for the minimization of the normalized
quadratic mean error (Clark [3], Newton [13]), numerical computation of
Lyapunov exponents of bilinear systems (Pardoux & Talay [16]).

A review of the main results concerning the first three points can be
found in Pardoux & Talay [15].

Here, we will suppose that the solution of the system (2) has a unique
invariant measure µ.

For some applications, it is interesting to compute the integral of a given
function f with respect to µ, for example in order to get the asymptotic
value of Ef(Xt).

Under the hypotheses of this paper, µ will have a density, p. One way to
compute

∫
f(x)dµ(x) could be to solve the stationary Focker-Planck equa-

tion L∗p = 0, where L∗ is the adjoint of the infinitesimal generator of the
process (Xt).

But the stationary Focker-Planck equation is a P.D.E., and its numerical
resolution could be extremely difficult or impossible, especially when the
dimension of the state-space, d, is large.

In [5], Gerardi, Marchetti & Rosa propose to approximate (Xt) by a
sequence of pure jump processes which converge in law.

We propose an alternative strategy.
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We discretize in time the system (2), so that the solution of the dis-
cretized system can easily be simulated on a computer; h denoting the step-
size of the discretization, (Xh

p , p ∈ IN) will denote the approximating pro-
cess. We will see that, the discretization method being conveniently chosen,
(Xh

p , p ∈ IN) has a unique invariant probability measure too, denoted by µh.

Then we choose a large enough N , and we compute :

1
N

N∑
p=1

f(Xh
p) (3)

(when N goes to infinity, the above average converges to
∫
f(x)dµh(x)).

The error due to this method cumulates, first the “discretization error”

|
∫
f(x)dµ(x)−

∫
f(x)dµh(x)|

related to the choosen discretization scheme, and, second, the error

|
∫
f(x)dµh(x)− 1

N

N∑
p=1

f(Xh
p)|

which only depends on the choice of the integration time Nh.

We will see in Section (4.2) that the estimation of the second error cor-
responding to each choice of N is extremely difficult, and up to now we do
not know how to optimize the choice of N corresponding to a given wished
accuracy.

Here our objective is to present efficient numerical schemes which lead
to a weak discretization error. More precisely, we consider a family of dis-
cretization schemes, and we give, in terms of h, a bound for the discretization
error :

|
∫
f(x)dµ(x)− lim

N−→+∞

1
N

N∑
p=1

f(Xh
p)|

In particular, we show schemes such that this error is of order h2. In
addition, these schemes seem to be more numerically stable that first-order
schemes.

The paper is organized as follows :
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Section 2 : we present discretization methods of Stochastic Differential
Equations, and for a particular S.D.E., we compute the order of the
errors (1) ;

Section 3 : we formulate our hypotheses, and we state our main results ;

Section 4 : we give results of illustrative numerical experiments ;

Sections 5,6,7 : these Sections are devoted to the proofs.

2 Discretization Methods of S.D.E.

2.1 Notations and definitions

• for any real process (Yt) :

∆h
p+1Y := Y(p+1) h − Yp h

• for any matrix σ, σj will denote the jth column of σ ; if σ(x1, . . . , xd) is
a matrix-valued application, ∂σj denotes the matrix-valued application
whose element of the ith row and kth column is ∂kσ

i
j .

• the sequence

(U j
p+1 , Z

kj
p+1 , j, k = 1, . . . , r , p ∈ IN)

will be a family of independent random variables ; the (U j
p+1) are i.i.d.

and must satisfy the following conditions :

E[U j
p+1] = E[U j

p+1]
3 = E[U j

p+1]
5 = 0 (4)

E[U j
p+1]

2 = 1 (5)

E[U j
p+1]

4 = 3 (6)

E[U j
p+1]

6 < +∞ (7)

the (Zkj
p+1) are i.i.d., their common law being defined by :

P (Zkj
p =

1
2
) = P (Zkj

p = −1
2
) =

1
2
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for example, one could choose :

U j
p+1 =

1√
h

∆h
p+1W

j

but also one could choose for U j
p+1 the discrete law of mass 2

3 at 0 and
of mass 1

6 at the points +
√

3 and −
√

3 ;

• the family (Skj
p ) is defined by :

Skj
p+1 =

1
2
Uk

p+1 U
j
p+1 + Zkj

p+1 , k < j

Skj
p+1 =

1
2
Uk

p+1 U
j
p+1 − Zjk

p+1 , k > j

Sjj
p+1 =

1
2

[
(U j

p+1)
2 − 1

]
Finally, in all the sequel of this Section, we will suppose that the functions

b, σ are of class C∞ with bounded derivatives.

2.2 Milshtein scheme

The “Milshtein scheme” is defined by :

X
h
p+1 = X

h
p+

r∑
j=1

σj(X
h
p)U j

p+1

√
h+b(Xh

p)h+
r∑

j,k=1

∂σj(X
h
p)σk(X

h
p)Skj

p+1h (8)

Under the above assumptions on b and σ, for all function f of class C∞
such that f and all its derivatives have an at most polynomial growth at
infinity, one can show (see Talay [20] or [21], Milshtein [12]) :

∀p > 0 , ∃Cp , ∀h < 1 : |Ef(Xph)− Ef(Xh
p)| ≤ Cph

2.3 Two examples of second-order discretization schemes

We define the matrix a and the vectors Aj by (with the usual convention
for the summation indices) :

a = σσ∗

Aj =
1
2
ak

l ∂klσj =
1
2

d∑
k,l=1

ak
l ∂klσj
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Besides, we will denote by L the infinitesimal generator of the process
(Xt) :

L = bi∂i +
1
2
ai

j∂ij

We consider the scheme defined by :

X
h
p+1 = X

h
p +

r∑
j=1

σj(X
h
p)U j

p+1

√
h+ b(Xh

p)h+
r∑

j,k=1

∂σj(X
h
p)σk(X

h
p)Skj

p+1h

+
1
2

r∑
j=1

{
∂b(Xh

p)σj(X
h
p) + ∂σj(X

h
p)b(Xh

p) +Aj(X
h
p)

}
U j

p+1h
3
2 +

1
2
Lb(Xh

p)h2(9)

Then, under the same hypotheses on b, σ and f as above, one can
show (see Talay [20] or [21],Milshtein [12]) :

∀p > 0 , ∃Cp , ∀h < 1 : |Ef(Xph)− Ef(Xh
p)| ≤ Cph

2 (10)

Another example of a scheme satisfying the previous property is the
“MCRK” scheme of Talay [21].

2.4 Second-order discretization schemes

In this Section, Fp will be the σ-algebra generated by (Xh
0 , ..., X

h
p).

In Talay [21], it is shown that a sufficient condition for a scheme to
satisfy (10) is the set of hypotheses (C1), (C2), (C3) below (which is satisfied
by the Monte-Carlo and the MCRK schemes) :

(C1) X
h
0 = X0

(C2) ∀n ∈ IN , ∀N ∈ IN , ∃C > 0 , ∀p ≤ N , E|Xh
p |n ≤ C

(C3) the following properties are satisfied for all p ∈ IN, where all the right-
side terms of the equalities must be understood evaluated at Xh

p :

E
(
∆h

p+1X|Fp

)
= bh+

1
2
(Lb)h2 + ξp+1 , E|ξp+1| ≤ Ch3

E
(
(∆h

p+1X)i1(∆h
p+1X)i2)|Fp

)
= σi1

j σ
i2
j h+ (bi1bi2 +

1
2
∂k1σ

i1
j ∂k2σ

i2
j σ

k1
l σ

k2
l
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+
1
2
∂kb

i2σi1
j σ

k
j +

1
2
∂kb

i1σi2
j σ

k
j

+
1
2
σi1

j ∂kσ
i2
j b

k +
1
2
σi2

j ∂kσ
i1
j b

k

+
1
4
σi1

j ∂klσ
i2
j σ

k
nσ

l
n +

1
4
σi2

j ∂klσ
i1
j σ

k
nσ

l
n)h2

+ ξi1i2
p+1 , E|ξi1i2

p+1| ≤ Ch3

E
(
(∆h

p+1X)i1 . . . (∆h
p+1X)i3)|Fp

)
= (bi1σi2

j σ
i3
j + bi2σi3

j σ
i1
j + bi3σi1

j σ
i2
j

+
1
2
σi2

l ∂kσ
i3
l σ

i1
j σ

k
j +

1
2
σi3

l ∂kσ
i2
l σ

i1
j σ

k
j

+
1
2
σi3

l ∂kσ
i1
l σ

i2
j σ

k
j +

1
2
σi1

l ∂kσ
i3
l σ

i2
j σ

k
j

+
1
2
σi1

l ∂kσ
i2
l σ

i3
j σ

k
j +

1
2
σi2

l ∂kσ
i1
j σ

i3
j σ

k
j )h2

+ ξi1i2i3
p+1 , E|ξi1i2i3

p+1 | ≤ Ch3

E
(
(∆h

p+1X)i1 . . . (∆h
p+1X)i4)|Fp

)
= (σi1

j σ
i2
j σ

i3
l σ

i4
l + σi1

j σ
i3
j σ

i2
l σ

i4
l + σi1

j σ
i4
j σ

i2
l σ

i3
l )h2

+ ξi1...i4
p+1 , E|ξi1...i4

p+1 | ≤ Ch3

E
(
(∆h

p+1X)i1 . . . (∆h
p+1X)i5)|Fp

)
= ξi1...i5

p+1 , E|ξi1...i5
p+1 | ≤ Ch3

E
(
(∆h

p+1X)i1 . . . (∆h
p+1X)i6)|Fp

)
= ξi1...i6

p+1 , E|ξi1...i6
p+1 | ≤ Ch3

Definition

A discretization scheme will be called a “second-order scheme” if it satisfies
the Conditions (C2) and (C3).

2.5 Ergodic situation : one example

Let us consider the Ornstein-Uhlenbeck process solution of :

Xt = X0 −
∫ t

0
Xsds+

√
2Wt

Its invariant measure µ is the Gaussian law N (0, 1) .

Proposition 2.1 For any continuous function f which has an at most poly-
nomial growth at infinity, and for any starting point x :
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1. if (Xh
p(x)) is defined by the Milshtein scheme (8) with initial value

X
h
0(x) = x

with the particular choice
√
hU j

p+1 = ∆h
p+1W

then :

lim
N→∞

1
N

N∑
p=1

f(Xh
p(x)) =

∫
f(x)dµ(x) +O(h) , a.s. (11)

2. if (Xh
p(x)) is defined by the scheme (9), with

√
hU j

p+1 = ∆h
p+1W ,then :

lim
N→∞

1
N

N∑
p=1

f(Xh
p(x)) =

∫
f(x)dµ(x) +O(h2) , a.s. (12)

Proof

Let us show (11).

The gaussian measure µh with mean zero and variance equal to

1
1− h

2

is invariant for the Markov chain (Xh
p).

All the transition probabilities of that chain are equivalent to Lebesgue
measure. Therefore, any invariant measure has the same property ; hence, as
a consequence of the ergodic theorem, µh is the unique invariant probability
measure of (Xh

p) , and (11) follows directly.

The proof of (12) is similar , except that the invariant probability mea-
sure is the gaussian measure with mean zero and variance equal to

1− h+ h2

4

1− h+ h2

2 − h3

8
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3 Main Results

3.1 Hypotheses

We recall that we will denote by L the infinitesimal generator of the process
(Xt), given by :

L = bi∂i +
1
2
ai

j∂ij

We suppose :

(H1) the functions b, σ are of class C∞ with bounded derivatives of any
order ; the function σ is bounded

(H2) the operator L is uniformly elliptic : there exists a positive constant
α such that :

∀x, ξ ∈ IRd ,
∑
i,j

ai
j(ξ)xixj ≥ α|x|2

(H3) there exists a strictly positive constant β and a compact set K such
that :

∀x ∈ IRd −K , x · b(x) ≤ −β|x|2

It is well known that (H1) and (H3) is a (even too strong) sufficient
condition for (Xt) to be ergodic (see Hasminskii [6] e.g.) : (Xt) has a unique
invariant probability measure, µ, and (H2) implies the existence of a smooth
density p(x) for µ.

Moreover :

Proposition 3.1 (i) Under (H1) and (H3), the following holds :

∀n ∈ IN , ∃Cn > 0 , ∃γn > 0 : E|Xt(x)|n ≤ Cn(1+|x|n exp(−γnt)) , ∀t , ∀x
(13)

(ii) The unique invariant probability measure of (Xt), µ, has a smooth
density p(x) and finite moments of any order.
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Proof

(i) The inequality can easily be proved by recurrence and by applying the
Ito formula.

(ii) We just remark that for any compact set K :∫
K
|x|np(x)dx = lim

t→+∞
E(|Xt(x)|n1K(Xt(x))) ≤ Cn

where Cn is the constant in (13).

It remains to let K increase to IRd. 2

3.2 Statement of the Theorems

We will say that a discretization scheme is ergodic if the Markov chain
defined by the scheme is ergodic.

The common law of the family (U j
p+1) may be so singular that the asso-

ciated scheme is not ergodic.

Let us give an example of such a situation : let us consider the one-
dimensional system defined by b(x) = sign(x) and σ(x) ≡ 1, h =

√
3,

Milshtein scheme, and let us choose the discrete law defined in Section 2.1 ;
then the law of (Xh

p(x)) charges the set x +
√

3Z (where Z is the set of
relative integers); therefore, the process has an infinite number of invariant
probability measures.

But that degenerate situation cannot arise with the natural choice for
defining (U j

p+1) (other choices are also possible, but there is no reason to
simulate more complicated laws than gaussian laws on a computer, so we
have not searched to state a more general result).

Theorem 3.2 Suppose
√
hU j

p+1 = ∆h
p+1W

Then, for all step-size h small enough, the Milshtein scheme, as well as the
second-order schemes Monte-Carlo and MCRK of Section (2.4), are ergodic.
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Now we will state our main result.

The space C∞p will denote the space of numerical functions f of IRd of
class C∞, which have the property that f , as well as all its derivatives, have
an at most polynomial growth at infinity.

Theorem 3.3 Suppose that the hypotheses (H1), (H2), (H3) hold.

Then, for any function f of C∞p :

1. if the Milshtein scheme (8) is ergodic, it satisfies :

lim
N→∞

1
N

N∑
p=1

f(Xh
p(x)) =

∫
f(x)dµ(x) +O(h) , a.s.

2. any ergodic second-order scheme satisfies :

lim
N→∞

1
N

N∑
p=1

f(Xh
p(x)) =

∫
f(x)dµ(x) +O(h2) , a.s. (14)

We will need to establish a technical result about Ef(Xt(x)), which is the
key of the proof of the above Theorem. This result is interesting by itself :
it precisely describes the asymptotic behaviour of Ef(Xt(x))−

∫
f(x)dµ(x).

Notation

In the statement below and in all the sequel, the operators ∂, ∇ and D
applied to a function u(t, x) always refer to derivations with respect to spatial
coordinates.

We will often write u(t) instead of u(t, x).

Theorem 3.4 Suppose that the hypotheses (H1), (H2), (H3) hold, and let
f be a function of the space C∞p .

Let u(t, x) = Ef(Xt(x)).

Then, for any multi-index I, there exists an integer sI and strictly posi-
tive constants ΓI and γI such that the spatial derivative ∂Iu(t, x) satisfies :

|∂Iu(t, x)| ≤ ΓI(1 + |x|sI ) exp(−γIt) (15)
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Remark

As the proof of the previous Theorem will show it, the following result also
holds (but we will not use it in the sequel) :

∃s ∈ IN , ∃Γ > 0 , ∃γ > 0 , |u(t, x)−
∫
f(x)dµ(x)| ≤ Γ(1+|x|s) exp(−γt) , ∀t , ∀x

4 Numerical experiments

4.1 The discretized system

We have choosen a 2-dimensional system defined by :

bi(x1, x2) = −1
2
xi − 1

4
xj , j 6= i

and

σ(x1, x2) =

[
sin(x1 + x2) cos(x1 + x2)

sin(x1 + x2 + π
3 ) cos(x1 + x2 + π

3 )

]

The invariant law of (Xt), µ, is gaussian N (0, Id).

The function f is ‖x‖2 − 1.

4.2 Choice of N

As said before, the error of the method presented here is the sum of the
error due to the discretization, and the error due to the approximation of∫
f(x)dµh(x) by :

1
N

N∑
p=1

f(Xh
p)

A convenient choice for N depends on the wished accuracy on the value
of

∫
f(x)dµ(x). Unfortunately, it is a critical point. Actually, we are going

to see that, to get an estimation of a N , one should solve a P.D.E. whose
complexity is equivalent to that of the Fokker-Planck equation, and moreover
this P.D.E. involves the unknown

∫
f(x)dµ(x).
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More precisely, the method used in Florens-Zmirou [4] to prove a central-
limit theorem for

1√
t

∫ t

0
[f(Xs)−

∫
f(x)dµ(x)]ds

can easily be extended in the multidimensional case, so that, if

f̃ = f −
∫
f(x)dµ(x)

we have :
1√
t

∫ t

0
f̃(Xs)ds

t→+∞−→ N (0, V (f))

where, if v(x) is solution of the Poisson P.D.E. Lv = −f̃ :

V (f) = 2
∫
f̃(x)v(x)dµ(x)

We do not know how to cleverly proceed to approximate V (f) (even
roughly, it would be enough to have an idea about N).

Let us just present a naive approach.

The solution v(x) satisfies : v(x) =
∫ +∞
0 Ef̃(Xt(x))dt.

It may happen that one a priori knows where the measure µ is concen-
trated (for example, for reasons related to the underlying physical problem).
Then one may construct a piecewise constant approximation of the function
v on a bounded domain of IRd in the following manner : in each subdomain
of the discretized domain, one chooses one point x, then one chooses inte-
gers J and N as small as possible, and a time discretization step h as large
as possible, in order to simulate several independent paths of the process
(Xh

p(x)), (Xh,j
p (x)), and to approximate v(x) by

v(x) ' h

J

J∑
j=1

N∑
p=1

[f(Xh,j
p (x))− 1

N

N∑
p=1

f(Xh,1
p (x))]

Finally one uses one of the previous simulated paths to roughly approx-
imate V (f) by

V (f) ' 2
N

N∑
p=1

v(Xh
p(x))[f(Xh

p(x))− 1
N

N∑
p=1

f(Xh,1
p (x))]
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The above central-limit theorem then permits to fix the definitive value
of N , and a new single path of (Xh

p(x)) is simulated, corresponding to a
small value of h.

If the estimation of the constant V (f) appears to be impossible, a proce-
dure to stop the algorithm may be to wait for oscillations of 1

N

∑N
p=1 f(Xh

p(x))
with weak amplitudes around a value which is decided to be its limit.

4.3 Numerical results

We have tested the Milshtein scheme and the MCRK scheme.

First we have estimated the constant V (f), by the procedure described
above. The scheme was the MCRK scheme, the time discretization step was
h = 0.01, and the final time Nh = 100.0. The computed value has been
V (f) = 1.2.

Our objective being to get a precision of order 10−2, we have choosen
the final time of the algorithm Nh = 500.0 .

At the time Nh = 500.0 with h = 0.01, the error due to the MCRK
scheme is less than 0.005 , whereas the error due to the Milshtein scheme is
more than 0.18. To get an error equal to 0.005 with the Milshtein scheme,
we might choose h = 0.001.

Remark : if the discretization step h is choosen too large, the theoretical
precision of the method is alterated, but also it may appear that the dis-
cretization scheme becomes numerically unstable. From that point of view
also, the MCRK has a better behaviour than the Milshtein scheme (at least
in our example).

The Fortran programs have been generated by a system of automatic
generation of programs of simulation of solutions of Stochastic Differential
Systems (see Leblond & Talay [8] for a presentation).

5 Proof of Theorem (3.2)

The basic fact (which is false for the chain given in the example of Section
3.2) is the existence of an irreducibility measure, i.e a measure such that
any compact set of strictly positive measure can be reached in finite time
from any starting point x with a strictly positive probability.
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Namely this measure will be the measure of density 1K(·) w.r.t. the
Lebesgue measure, where K is the compact set of (H3).

Actually, we are going to show that K0, any open set included in K, can
be reached in finite time from any starting point x with a strictly positive
probability.

Indeed, first it is easy to deduce from (H3) and the boundedness of σ
that, for any starting point x, the chain reaches the compact set K in finite
time with a strictly positive probability. Let x̃ be the reached point in K.

Then, as the choosen law of the U j
p+1’s is equivalent to the Lebesgue

measure, under (H2), one can show that there exists h0 independent of x̃
and K0 such that, for any h < h0, (Xh

t ) reaches K0 from x̃ in finite time
with a strictly positive probability.

Moreover, let us denote by P h the transition probability of the considered
Markov chain.

One can check that for all small enough h, there exists ε positive , such
that for all x outside K :∫

P h(x, dy)|y|2 ≤ |x|2 − ε

Then a result of Tweedie [22] implies the ergodicity of the chain. 2

6 Proof of Theorem (3.4)

Preliminaries

1. First, it is well known that u(t, x) is a classical solution of the P.D.E. :

d

dt
u(t, x) = Lu(t, x)

u(0, x) = f(x) (16)

Differentiating the solution with respect to the initial condition, one
can show (cf Kunita [7], Section I-3 e.g.) that the function u(t, x)
satisfies :

∀n ∈ IN , ∃sn ∈ IN , ∀t > 0 , ∃Cn(t) > 0 : |Dnu(θ, x)| ≤ Cn(t)(1+|x|sn) , ∀θ ≤ t
(17)
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Therefore, Proposition (3.1) implies that the functions f andDnu(t, x)
(for any n) belong to L2(IRd, µ).

2. The functions u(t, x) and u(t, x)−
∫
f(x)dµ(x) have the same deriva-

tives, therefore in all that Section we will suppose that∫
f(x)dµ(x) = 0 (18)

3. For an integer s (depending on I) to be defined below, we define

πs(x) =
1

(1 + |x|2)s

Plan of the proof

The proof will be divided in 3 parts :

1. in Lemma (6.1), we will show that for any ball B, there exists strictly
positive constants C and λ such that

∀t > 0 , ∀x ∈ B , |u(t, x)| ≤ C exp(−λt)

2. then, in Lemma (6.2), we will show that there exists strictly positive
constants C and λ such that

∀t > 0 ,

∫
|u(t, x)|2πs(x)dx ≤ C exp(−λt)

3. we prove that the previous inequality also holds for the spatial deriva-
tives of u(t, x) (with other constants) and then we deduce (15).

6.1 First Lemma

In this Section, we will prove the

Lemma 6.1 Under the hypotheses of Theorem (3.4), for any ball B, there
exists strictly positive constants C and λ such that

∀t > 0 , ∀x ∈ B , |u(t, x)| ≤ C exp(−λt) (19)
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The proof is in 2 parts :

1. p(x) being the density of the measure µ, we show that there exists
strictly positive constants C and λ such that

∀t > 0 ,

∫
|u(t, x)|2p(x)dx ≤ C exp(−λt) (20)

2. then we deduce that for any multi-index J , there exists strictly positive
constants CJ and λJ such that :∫

|∂Ju(t, x)|2p(x)dx ≤ CJ exp(−λJ t) (21)

These results imply (19) : since p(x) is a strictly positive continuous
function on any ball B = B(O,R) :

‖∂Ju(t)‖2
L2(B) ≤ C

∫
|∂Ju(t, x)|2p(x)dx

and we conclude by applying the Sobolev imbedding Theorem.

6.1.1 Proof of (20)

Remark : a similar result is obtained in Bouc & Pardoux [1] (Corollary 1.10)
with another set of hypotheses, including the following, unsatisfying in our
context, since the density p is unknown :

∃C > 0 , ∃M > 0 , |x| ≥M =⇒ xi∂j(ai
jp)(x) ≤ −Cp(x)|x|

In the present context, let us choose a positive real number θ and let us
consider the sequence (Xtn) with tn = nθ ; it is an ergodic Markov chain;
moreover, (H3) implies :

∃α > 0 , ∃B = B(0, R) ⊃ K , sup
x∈IRd−B

E[(1+αθ)|Xtn+1 |2−|Xtn |2|Xtn = x] < 0

Then (cf e.g. Nummelin [14], Chapters 5,6) the chain is geometrically
recurrent and (cf Tweedie [23]) for any function φ of the space C∞p and
satisfying (18), there exists C > 0, λ > 0 such that :

∀n ,

∫
|Eφ(Xtn(x))|p(x)dx ≤ C exp(−λtn)

18



In particular, this inequality is true for φ = f (under (18)).

Using Proposition (3.1), as f is of growth at most polynomial at infinity,
we remark :

∃C0 > 0 , ∃N ∈ IN , ∃γ > 0 , |u(t, x)| ≤ C0(1 + |x|N exp(−γt))

Therefore :∫
|u(tn, x)|2p(x)dx ≤ C0C exp(−λtn)+C2

0exp(−γt)
∫

(1+|x|N exp(−γt))|x|Np(x)dx

so that we get :

∀n ,

∫
|u(tn, x)|2p(x)dx ≤ C1 exp(−λ1tn)

To conclude, we use the fact that the function
∫
|u(t, x)|2p(x)dx is de-

creasing ; actually, the first preliminary remark of that Section justifies the
following inequality :

1
2
d

dt

∫
|u(t, x)|2p(x)dx =

∫
u(t, x)Lu(t, x)p(x)dx

≤ −1
2

∫
ai

j(x)∂iu(t, x)∂ju(t, x)p(x)dx

≤ 0

6.1.2 Proof of (21)

We will prove this inequality by recurrence over the length l(J) of the multi-
index J .

First step : l(J) = 1 (Lions [9])

Let us begin by proving :

∃δ > 0 ,

∫ +∞

0
eδt(

∫
|∇u(t)|2dµ)dt < +∞ (22)

Using the usual convention on the summation of indices, one may write :

d

dt
|u(t)|2 − L(|u(t)|2) = −ai

j(∂iu(t))(∂ju(t))
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Multiplying the previous equality by eδt, integrating with respect to µ,
one gets :

eδt d

dt

∫
|u(t)|2dµ+ Ceδt

∫
|∇u(t)|2dµ ≤ 0 (23)

Now, let us choose an arbitrarily large time T and integrate from 0 to T
the previous inequality :

eδT
∫
|u(T )|2dµ+C

∫ T

0
eδt(

∫
|∇u(t)|2dµ)dt ≤

∫
|f |2dµ+δ

∫ T

0
eδ t(

∫
|u(t)|2dµ)dt

Therefore, it just remains to use (20) to get (22) (for δ < λ).

Now, let us remark one can choose positive constants C1 and C2 such
that :

d

dt
|∇u(t)|2 − L(|∇u(t)|2) = −ai

j(∂iku(t))(∂jku(t)) + (∂ka
i
j)(∂iju(t))(∂ku(t))

+ 2(∂kb
i)(∂iu(t))(∂ku(t))

≤ −C1|D2u(t)|2 + C2|∇u(t)|2

Now let us choose γ < δ and proceed as above ; we get :

eγT
∫
|∇u(T )|2dµ+C1

∫ T

0
eγt(

∫
|D2u(t)|2dµ)dt ≤

∫
|∇f |2dµ+(C2+γ)

∫ T

0
eγt(

∫
|∇u(t)|2dµ)dt

Thus we have shown :∫
|∇u(t, x)|2p(x)dx ≤ C exp(−γt) (24)

Second step : Recurrence

Now, let us suppose that for all k ≤ m, there exists strictly positive constants
Ck and γk such that :∫

|Dku(t, x)|2p(x)dx ≤ Ck exp(−γkt)

Let us show that a similar inequality holds for m+ 1.
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First :
|Dmu(t, x)|2 =

∑
J

l(J)=m

(∂Ju(t, x))2

Now, it appears that, for every multi-index J of length m + 1, there
exists a family FJ of multi-indices of length at most equal to m + 1, and a
family of bounded functions (φJ

KL , K, L ∈ FJ) such that

d

dt
DJu(t, x) = DJLu(t, x)

= bi∂J∪{i}u(t, x) +
1
2
ai

j∂J∪{ij}u(t, x) +

+
∑
K,L

l(K)+l(L)≤2m+1

φJ
KL∂Ku(t, x)∂Lu(t, x)

Therefore :

d

dt
|Dmu(t, x)|2 − L|Dmu(t, x)|2 = −ai

j(∂J∪{i}u(t, x))(∂J∪{j}u(t, x))

+
∑
K,L

l(K)+l(L)≤2m+1

φJ
KL∂Ku(t, x)∂Lu(t, x)

≤ −Cm
1 |Dm+1u(t, x)|2 + Cm

2

∑
k≤m

|Dku(t, x)|2

Now, we proceed as above : we choose a strictly positive constant δm+1

small enough, we multiply the previous inequality by eδm+1t, and then we
integrate with respect to µ, so that we obtain :∫ +∞

0
eδm+1t(

∫
|Dm+1u(t)|2dµ)dt < +∞

Then we write

d

dt
|Dm+1u(t, x)|2−L|Dm+1u(t, x)|2 ≤ −Cm+1

1 |Dm+2u(t, x)|2+Cm+1
2

∑
k≤m+1

|Dku(t, x)|2

we choose γm+1 < δm+1 and we proceed as at the end of the first step. 2
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6.2 Second Lemma

In this Section, we will prove the

Lemma 6.2 Under the hypotheses of Theorem (3.4), there exists strictly
positive constants C and λ such that

∀t > 0 ,

∫
|u(t, x)|2πs(x)dx ≤ C exp(−λt) (25)

First step

Let us recall the property (17) :

∀n ∈ IN , ∃sn ∈ IN , ∀t > 0 , ∃Cn(t) > 0 : |Dnu(θ, x)| ≤ Cn(t)(1+|x|sn) , ∀θ ≤ t

Thus, for any integer n ≥ 0, there exists an integer sn such that, for any
0 ≤ m ≤ n and any t ≥ 0 :

|Dmu(t, x)|πsn(x) ∈ L2(IRd) (26)

Second, we remark that for any multi-index J and any integer s, there
exists a smooth function ψJ,s(x) such that :

1. the derivative ∂Jπs(x) can be written

∂Jπs(x) = ψJ,s(x)πs(x)

2. ψJ,s(x) −→ 0 when |x| −→ +∞

Let MI be the integer defined by :

l(I) = [MI − d/2]

Then (26) implies that it is possible to choose an integer s0 such that

∀t > 0 , ∀s ≥ s0 , ∀m ≤MI , Dm(u(t)πs) ∈ L2(IRd) (27)
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Second step

Let s be an arbitrary integer larger than s0.

Our definition of the integer MI implies that |D(u(t)πs)| ∈ L2(IRd);
therefore the following holds (with a summation w.r.t. all the indices) :∫
u(t, x)Lu(t, x)πs(x)dx = −1

2

∫
(∂ib

i)|u(t)|2πsdx−
1
2

∫
bi|u(t)|2(∂iπs)dx

− 1
2

∫
(∂ia

i
j)(∂ju(t))u(t)πsdx−

1
2

∫
ai

j(∂iu(t))(∂ju(t))πsdx

− 1
2

∫
ai

j(∂ju(t))u(t)(∂iπs)dx

so that, by (H2) :∫
u(t, x)Lu(t, x)πs(x)dx ≤ −1

2

∫
(∂ib

i)|u(t)|2πsdx+
∫
s

b · x
1 + |x|2

|u(t)|2πsdx

+
1
4

∫
(∂ija

i
j)|u(t)|2πsdx+

1
4

∫
(∂ia

i
j)|u(t)|2ψjπsdx

− 1
2
α

∫
|Du(t)|2πsdx

+
1
4

∫
(∂ja

i
j)|u(t)|2ψiπsdx+

1
4

∫
ai

j |u(t)|2ψijπsdx

=
∫

(φ1(x) + φ2(x) + s
b · x

1 + |x|2
)|u(t)|2πsdx−

1
2
α

∫
|Du(t)|2πsdx

where

• φ1(x) is a bounded function independent of s

• φ2(x) is a function depending on s, but tending to 0 when |x| −→ +∞

Now we fix s ≥ s0 in order to get the following inequality, possible under
(H3) :

lim sup
|x|→+∞

(φ1(x) + φ2(x) + s
b · x

1 + |x|2
) < 0

For any ball B = B(0, R) :∫
(φ1(x) + φ2(x) + s

b · x
1 + |x|2

)|u(t)|2πsdx =
∫

B
(φ1(x) + φ2(x) + s

b · x
1 + |x|2

)|u(t)|2πsdx

+
∫
IRd−B

(φ1(x) + φ2(x) + s
b · x

1 + |x|2
)|u(t)|2πsdx
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Choosing R large enough (in terms of s), using (19), one may deduce
that there exists strictly positive constants such that :∫

(φ1(x)+φ2(x)+s
b · x

1 + |x|2
)|u(t)|2πsdx ≤ −C1

∫
|u(t)|2πsdx+C2 exp(−λt)

so that :

1
2
d

dt

∫
|u(t)|2πsdx ≤ −C1

∫
|u(t)|2πsdx+ C2 exp(−λt)

Thus we may deduce (25).

6.3 End of the proof of Theorem (3.4)

First step

Let us suppose that we have shown

∃CI > 0 , ∃λI > 0 : ∀m ≤MI , ∀t > 0 ,

∫
|Dmu(t, x)|2πs(x)dx ≤ CI exp(−λIt)

(28)

We already have remarked that for any multi-index J :

∂Jπs(x) = ψJ(x)πs(x) , ψJ(x) bounded (29)

Therefore we would get

∃CI , λI : ∀m ≤MI , ∀t > 0 ,

∫
|Dm(u(t, x)πs(x))|2dx ≤ CI exp(−λIt)

Then we could deduce (15) as a consequence of the previous inequality
and of the Sobolev imbedding Theorem.

Second step : proof of (28)

Again we use (29) to remark that a sufficient result would be : there exists
strictly positive constants CI and λI such that, for any multi-index J of
length l(J) ≤MI ∫

|∂Ju(t, x)|2πs(x)dx ≤ CJ exp(−λJ t)
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Then let us fix such a J , and begin with the case : l(J) = 1.

The proof is very similar to that of Section (6.1).

In Section (6.1.2), we used the fact that

L∗p(x) = 0

in order to get the inequality (22) and the next ones..

Here, we remark that there exists functions φ1(x) and φ2(x) such that

• φ1(x) is a bounded function independent of s

• φ2(x) is a function depending on s, but tending to 0 when |x| −→ +∞

• the following equality holds (since s satisfies (27)) :∫
L|u(t)|2πsdx =

∫
|u(t)|2L∗πsdx

=
∫

(φ1(x) + φ2(x) + 2s
b · x

1 + |x|2
)|u(t, x)|2πs(x)dx

As in the previous Section, after having possibly increased the value of
s, we can choose a ball B = B(0, R) such that :

∀x ∈ IRd −B , φ1(x) + φ2(x) + s
b · x

1 + |x|2
< 0

Using (19), we deduce that there exists positive constants C0 and λ0

satisfying : ∫
L|u(t)|2πsdx ≤ C0 exp(−λ0t)

Proceeding as in Section (6.1.2), we can show that the inequality (22)
remains true with πs(x)dx instead of dµ(x) and δ small enough, and then
show that (24) remains true with πs(x)dx instead of dµ(x) and γ small
enough.

Again, a recurrence permits to generalize to the derivatives of higher
order.
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7 Proof of Theorem (3.3)

7.1 Moments of the approximating process

The approximating process satisfies an analogous property to (13).

Proposition 7.1 For Milshtein scheme or any second-order scheme with
initial condition x, for all integer n :

∃Cn > 0 , ∃γn > 0 , ∃H > 0 , ∀h ≤ H , E|Xh
p(x)|n ≤ Cn(1+|x|n exp(−γnph)) , ∀p , ∀x

(30)

Proof

Using (H3) and (C3), it is easy to show the existence of strictly positive
constants C1 and C2 satisfying, for any h small enough :

E|Xh
p+1|2 ≤ (1− C1h)E|X

h
p |2 + C2h

so, iterating the previous inequality, one proves the Lemma for n = 2.

By recurrence, one shows the result for any integer n. 2

Therefore, the unique invariant probability measure µh of the approxi-
mating process has finite moments of any order.

Moreover, as f has an at most polynomial growth at infinity, the previous
Proposition implies that the sequence

1
N

N∑
p=1

f(Xh
p(x))

is equiintegrable.

Therefore one may deduce that for any deterministic initial condition x :∫
f(x)dµh(x) = lim

n−→+∞

1
N

N∑
p=1

f(Xh
p(x)) a.s.

= lim
n−→+∞

1
N

N∑
p=0

Ef(Xh
p(x)) (31)
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7.2 End of the proof of Theorem (3.3)

First, we define the symbol E= : we will write X E= Y instead of E(X) =
E(Y ).

We will just treat the case of an ergodic second-order scheme, the case
of Milshtein scheme leading to simpler computations.

Let us perform a Taylor expansion up to order 6 of the function u solution
of (16). As shown in Talay [21]:

u(jh,Xh
p+1(x))

E= u(jh,Xh
p(x))+Lu(jh,Xh

p(x))h+
1
2
L2u(jh,Xh

p(x))h2+rh
j,p+1h

3

with the remainder term rh
j,p+1 expressed as a sum of terms, each one being

of the form :

Constant× E
[
ψ(Xh

p(x))∂Ju(jh,X
h
p(x) + θ(Xh

p+1(x)−X
h
p(x)))

]
where :

• ψ(x) is a function equal to a product of functions among the set con-
stituted by the coordinates of b, σ and their derivatives

• 0 < θ < 1

Thus, using (H1), (15) and (30), one can check that the above remainder
term satisfies, as soon as h ≤ H (where H has been defined in the previous
Proposition) :

∃λ > 0 , ∃s ∈ IN ,
+∞∑
j=0

|rh
j,p+1| ≤

C0

1− e−λh
E(1+|Xh

p(x)|s+|Xh
p+1(x)|s) ≤

C

h
(1+|x|s)

Now we use the equation (16) in order to write :

u((j+1)h,Xh
p(x)) E= u(jh,Xh

p(x))+Lu(jh,Xh
p(x))h+

1
2
L2u(jh,Xh

p(x))h2+r̃h
j,p+1h

3

with a remainder term r̃h
j,p+1 which can be expressed in the same manner

as rh
j,p+1.
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Therefore, if we define Rh
j,p+1 by

Rh
j,p+1 = rh

j,p+1 − r̃h
j,p+1

Rh
j,p+1 satisfies (by (30)) :

+∞∑
j=0

|Rh
j,p+1| ≤

C1

h
(1 + |x|s) (32)

and moreover :

u(jh,Xh
p+1(x))

E= u((j + 1)h,Xh
p(x)) +Rh

j,p+1h
3 (33)

Remarking :

1
N

N∑
p=1

f(Xh
p(x)) =

1
N

N∑
p=1

u(0, Xh
p(x))

with successive uses of (33) one obtains :

1
N

N∑
p=1

f(Xh
p(x)) E=

1
N

N∑
p=1

u(ph, x) +
1
N

N∑
p=1

p−1∑
j=0

Rh
j,ph

3

But :

• (Xt) being ergodic and u(t, x) satisfying

u(t, x) = Ef(Xt(x))

we know :

lim
N→∞

1
N

N∑
p=1

u(ph, x) =
∫
f(x)dµ(x)

• the estimation (32) implies

1
N

N∑
p=0

p−1∑
j=0

Rh
j,ph

3 ≤ C1(1 + |x|s)h2

To have proved (14), now it just remains to use (31). 2
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8 Conclusion

We have built schemes which are of second-order for the ergodic criterion (1),
and tested them numerically.

There is no theoretical reason for which one cannot build schemes of
higher order, but such schemes would be very costful in computation time.
Besides, the error due to the necessarily reasonable number of integration
steps N would likely mask the gain in precision due to the scheme.

From a practical point of view, an important problem remains : the
choice of N , and a further research in that direction is necessary.
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