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SECOND ORDER FULLY DISCRETE ENERGY STABLE METHODS

ON STAGGERED GRIDS FOR HYDRODYNAMIC PHASE FIELD

MODELS OF BINARY VISCOUS FLUIDS∗

YUEZHENG GONG† , JIA ZHAO‡ , AND QI WANG§

Abstract. We present second order, fully discrete, energy stable methods on spatially staggered
grids for a hydrodynamic phase field model of binary viscous fluid mixtures in a confined geometry
subject to both physical and periodic boundary conditions. We apply the energy quadratization
strategy to develop a linear-implicit scheme. We then extend it to a decoupled, linear scheme by
introducing an intermediate velocity term so that the phase variable, velocity field, and pressure can
be solved sequentially. The two new, fully discrete linear schemes are then shown to be uncondition-
ally energy stable, and the linear systems resulting from the schemes are proved uniquely solvable.
Rates of convergence of the two linear schemes in both space and time are verified numerically. The
decoupled scheme tends to introduce excessive dissipation compared to the coupled one. The cou-
pled scheme is then used to simulate fluid drops of one fluid in the matrix of another fluid as well as
mixing dynamics of binary polymeric, viscous solutions. The numerical results in mixing dynamics
reveals the dramatic difference between the morphology in the simulations obtained using the two
different boundary conditions (physical vs. periodic), demonstrating the importance of using proper
boundary conditions in fluid dynamics simulations.

Key words. energy quadratization, fully discrete energy stable scheme, staggered grids, finite
difference methods
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1. Introduction. Multiphase fluid flows exist ubiquitously in nature and in
industrial processes. One of the useful models to describe hydrodynamics of multi-
phase fluid flow is the diffuse interface model, also known as the phase field model.
The phase field method resolves the material’s interface by capturing it implicitly
instead of tracking it explicitly. When the phase field method is applied to study
immiscible fluid mixtures, a smooth phase variable is introduced [5] whose spatially
varying transitional layer represents the interface. Due to its simplicity in the theo-
retical formulation and numerical implementation, the phase field method has been
widely used in fields where multiple material phases are involved. These include life
sciences (cell biology [28, 52, 53, 43], biofilms [51, 50, 54], cell adhesion and motil-
ity [32, 28, 27, 38, 30], cell membrane [40, 8, 9, 11]), materials science [6, 39], fluid
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dynamics [29], and image processing [3, 4].
To model an incompressible binary fluid mixture consisting of two fluids—say

fluid A and fluid B—using the phase field approach, one introduces a phase variable
φ to represent the volume fraction of fluid A such that the volume fraction of fluid B is
represented by 1−φ. A free energy F has to be developed to account for the material
property of the two fluids, which is given by a functional of the phase variable. Then
the phase transport equation, together with the hydrodynamic equations, has to be
derived in a thermodynamically consistent fashion to obey the second law of thermo-
dynamics [29, 37, 25, 19]. A hydrodynamic phase field model for an incompressible
binary fluid mixture has been derived by various authors, consisting of the following
equations [23, 26]:

(1.1)





ρ(∂tv + v · ∇v) = −∇p+ η∆v − φ∇µ,
∇ · v = 0,

∂tφ+∇ · (φv) =M∆µ,

where ρ is the mass density of the mixture (a constant), v is the mass-average velocity,
p is the hydrostatic pressure, M is the mobility coefficient (assuming it is a constant),
and µ = δF

δφ
is the chemical potential. The suitable boundary conditions for the

governing system of equations include periodic boundary conditions or the following
physical boundary conditions:

(1.2) v|∂Ω = 0, ∇φ · n|∂Ω = 0, ∇µ · n|∂Ω = 0.

Strictly speaking, this model is valid only for the binary fluid mixture in which the
two fluid components are of identical mass density! When the densities are different,
this is an approximation of the correct model, known as the quasi-incompressible
multiphase fluid model [29, 25, 1]. So, users should be aware of its applicability when
applying it.

Model (1.1) has been used to study incompressible binary fluid mixtures, in which
the free energy F [φ] =

∫
Ω
(γ1

2 |∇φ|2 + f(φ))dx is adopted, where Ω is the domain that
the fluid occupies, γ1 is a parameter measuring the strength of the conformational
entropy, and f(φ) is the bulk energy density. For immiscible binary fluids, one choice
of the bulk energy density is the double-well potential f(φ) = γ2φ

2(1− φ)2, where γ2
measures the strength of the repulsive potential. In the sharp-interface limit,

√
γ1γ2

is proportional to the surface tension, and
√

γ1

γ2
controls the interfacial thickness. For

miscible binary viscous polymeric blends, f(φ) can be the Flory–Huggins free energy

density f(φ) = γ2(
φ
N1

lnφ + (1−φ)
N2

ln(1 − φ) + χφ(1 − φ)), where N1 and N2 are the
polymerization index for the A and B phase, respectively, χ is the mixing parameter,
and γ2 measures the strength of the bulk potential.

The hydrodynamic phase field model given by (1.1) is thermodynamically con-
sistent with the second law of thermodynamics and respects an energy dissipation
property (see [14], for instance). Given the dissipative property of the governing sys-
tem of equations, one would like any numerical schemes developed for the system to
respect an analogous energy dissipation law at the discrete level. A numerical scheme
of this property is known as an energy stable scheme.

Recently, based on the original idea of Badia, Guillen-Gonzalez, and Gutierrez-
Santacreu [2] in the treatment of liquid crystal models and Guillen-Gonzalez and
Tierra [17], we, together with Xiaofeng Yang, proposed a new strategy and coined it
the (invariant) energy quadratization (EQ or IEQ) method for thermodynamic models
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[45, 44, 46, 48, 55, 47]. See [57] for a detailed review. We note that this is a general
technique that can be applied to nonequilibrium thermodynamic systems so long as an
energy dissipation law exists or, equivalently, the positive entropy production property
is demonstrated. The idea is to transform the free energy into a quadratic form by
introducing intermediate variables. The time evolution of the intermediate variables
are space-independent, i.e., they are ordinary differential equations in time. This
method allows one to develop linear energy stable schemes that respect the energy
dissipation law. In a sequence of recent papers, the idea of EQ has been applied to
a host of hydrodynamic models [56, 15, 21, 14]. Notice that the EQ method is for
developing semidiscrete schemes in time; thus, the spatial discretization is decoupled
from the EQ method, leaving a large degree of freedom to develop proper spatial
discretizations.

In this paper, we develop efficient numerical schemes for the hydrodynamic phase
field model (1.1) in a confined geometry subject to physical as well as periodic bound-
ary conditions. We combine the EQ strategy in time with a finite difference dis-
cretization in space on staggered grids to develop linear, energy stable schemes that
respect the energy dissipation law. Specifically, we propose a second order spatial
discretization to discretize the hydrodynamic phase field model (1.1) on staggered
grids in space, arriving at a system of time-dependent differential-algebraic equations
(DAEs). Then we bring on the EQ strategy to reformulate the model into an equiva-
lent one by introducing new (intermediate) variables. The reformulated model allows
us to design linear schemes to achieve second order accuracy in time. Afterward, a
decoupling strategy [35, 36, 58, 49] is brought in to obtain a linearly decoupled scheme
such that the velocity field, phase variable, and pressure can be solved sequentially.
The governing equation for each of the physical variables is an elliptic-type equation
on which fast and efficient solvers can be applied. The novelty of this paper is that we
present a systematic approach to develop fully discrete, second order, linear schemes
and show the unique solvability of the linear systems at each time step. Even though
there are several existing works on fully discrete schemes for the hydrodynamic phase
field model or its simplified versions [41, 7, 20, 22], all of them are either only first
order in time or nonlinear. In comparison, our linear schemes can be more efficient in
implementation and solution procedures. We remark that some second order (linear)
energy stable schemes have been developed for thermodynamic phase field equations
in recently years [12, 24, 34, 18, 10], which may potentially be applicable to hydro-
dynamic phase field models (although this hasn’t been attempted yet). The schemes
are presented in 2D in this paper for the sake of simplicity, but they can be readily
extended to 3D. In fact, some of the numerical results are given in 3D space near the
end of the article.

In the rest of the paper, we first define notation and give some useful lemmas in
section 2. We present the second order spatial discretization in section 3 and the fully
discrete schemes subsequently in section 4. Afterward, we show that the two linear
schemes are uniquely solvable in section 5. Then numerical convergence tests are
carried out in section 6 together with two numerical simulation results with respect
to two applications. Finally, we give the conclusion in the last section.

2. Notation and some useful lemmas. To simplify the presentation, we first
introduce some notation and useful lemmas. Following the notation in [41, 33, 42, 7],
we denote Ω = [0, Lx] × [0, Ly] as the computational domain, where Lx and Ly are
two positive numbers. We divide the domain into rectangular meshes with mesh size
hx = Lx/Nx, hy = Ly/Ny, where Nx and Ny are two positive integers. We define the
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following 1D sets for grid points:

Ex = {xi+ 1

2

|i = 0, 1, . . . , Nx}, Cx = {xi|i = 1, 2, . . . , Nx}, Cx = {xi|i = 0, 1, . . . , Nx + 1},
Ey = {yj+ 1

2

|j = 0, 1, . . . , Ny}, Cy = {yj |j = 1, 2, . . . , Ny}, Cy = {yj |j = 0, 1, . . . , Ny + 1},

where xl = (l − 1
2 )hx, yl = (l − 1

2 )hy, and l can take on either integer or half-integer
values. Ex is called a uniform partition of [0, Lx] of size Nx, and its elements are called
edge-centered points. The elements of Cx and Cx are called cell-centered points. The
two points belonging to Cx \ Cx are called ghost points. Analogously, the set Ey is
a uniform partition of [0, Ly] of size Ny, called edge-centered points, and Cy and Cy

contain the cell-centered points of the interval [0, Ly].
We define the following discrete function spaces:

Cx×y = {φ : Cx × Cy → R}, Cx×y = {φ : Cx × Cy → R}, Cx×y = {φ : Cx × Cy → R},
Cx×y = {φ : Cx × Cy → R}, Eew

x×y = {u : Ex × Cy → R}, Eew
x×y = {u : Ex × Cy → R},

Ens
x×y = {v : Cx × Ey → R}, Ens

x×y = {v : Cx × Ey → R}, Vx×y = {f : Ex × Ey → R}.

We denote the cell-centered, edge-centered, and vertex-centered discrete functions as
follows:

cell centered functions: φ, ψ, µ, p, q ∈ Cx×y ∪ Cx×y ∪ Cx×y ∪ Cx×y,

east west edge centered functions: u, r ∈ Eew
x×y ∪ Eew

x×y,

north south edge centered functions: v, w ∈ Ens
x×y ∪ Ens

x×y,

vertex centered functions: f, g ∈ Vx×y.

We define the discrete function spaces with homogeneous Dirichlet boundary condi-
tions as follows:

Eew0
x×y = {u ∈ Eew

x×y ∪ Eew
x×y

∣∣u 1

2
,j = uNx+

1

2
,j = 0, j = 1, 2, . . . , Ny},

Ens0
x×y = {v ∈ Ens

x×y ∪ Ens
x×y

∣∣vi, 1
2

= vi,Ny+
1

2

= 0, i = 1, 2, . . . , Nx},
V0
x×y = {f ∈ Vx×y

∣∣f 1

2
,j+ 1

2

= fNx+
1

2
,j+ 1

2

= fi+ 1

2
, 1
2

= fi+ 1

2
,Ny+

1

2

= 0,

i = 0, 1, . . . , Nx, j = 0, 1, . . . , Ny}.

We define the east-west-edge-to-center average and difference operator as ax, dx :
Eew
x×y ∪ Vx×y → Cx×y ∪ Ens

x×y in componentwise forms:

axui,j =
1

2
(ui+ 1

2
,j + ui− 1

2
,j), dxui,j =

1

hx
(ui+ 1

2
,j − ui− 1

2
,j), axu, dxu ∈ Cx×y,

axfi,j+ 1

2

=
1

2
(fi+ 1

2
,j+ 1

2

+ fi− 1

2
,j+ 1

2

), dxfi,j+ 1

2

=
1

hx
(fi+ 1

2
,j+ 1

2

− fi− 1

2
,j+ 1

2

),

axf, dxf ∈ Ens
x×y.

The north-south-edge-to-center average and difference operators are defined as ay, dy :
Ens
x×y ∪ Vx×y → Cx×y ∪ Eew

x×y in componentwise forms:

ayvi,j =
1

2
(vi,j+ 1

2

+ vi,j− 1

2

), dyvi,j =
1

hy
(vi,j+ 1

2

− vi,j− 1

2

), ayv, dyv ∈ Cx×y,

ayfi+ 1

2
,j =

1

2
(fi+ 1

2
,j+ 1

2

+ fi+ 1

2
,j− 1

2

), dyfi+ 1

2
,j =

1

hy
(fi+ 1

2
,j+ 1

2

− fi+ 1

2
,j− 1

2

),

ayf, dyf ∈ Eew
x×y.
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The center-to-east-west-edge average and difference operators are defined as Ax, Dx :
Cx×y ∪ Ens

x×y → Eew
x×y ∪ Vx×y in componentwise forms:

Axφi+ 1

2
,j =

1

2
(φi+1,j + φi,j), Dxφi+ 1

2
,j =

1

hx
(φi+1,j − φi,j), Axφ,Dxφ ∈ Eew

x×y,

Axvi+ 1

2
,j+ 1

2

=
1

2
(vi+1,j+ 1

2

+ vi,j+ 1

2

), Dxvi+ 1

2
,j+ 1

2

=
1

hx
(vi+1,j+ 1

2

− vi,j+ 1

2

),

Axv,Dxv ∈ Vx×y.

The center-to-north-south-edge average and difference operators are defined asAy, Dy :
Cx×y ∪ Eew

x×y → Ens
x×y ∪ Vx×y in componentwise forms:

Ayφi,j+ 1

2

=
1

2
(φi,j+1 + φi,j), Dyφi,j+ 1

2

=
1

hy
(φi,j+1 − φi,j), Ayφ,Dyφ ∈ Ens

x×y,

Ayui+ 1

2
,j+ 1

2

=
1

2
(ui+ 1

2
,j+1 + ui+ 1

2
,j), Dyui+ 1

2
,j+ 1

2

=
1

hy
(ui+ 1

2
,j+1 − ui+ 1

2
,j),

Ayu,Dyu ∈ Vx×y.

The discrete Laplacian operator ∆h : Eew
x×y ∪ Ens

x×y ∪ Cx×y → Eew
x×y ∪ Ens

x×y ∪ Cx×y is
defined as

∆hu = Dx(dxu)+dy(Dyu), ∆hv = dx(Dxv)+Dy(dyv), ∆hφ = dx(Dxφ)+dy(Dyφ).

We discretize the physical variables that satisfy Neumann boundary conditions
at the cell center and the ones that satisfy Dirichlet boundary conditions at the edge
center. So, the cell-centered functions φ, µ ∈ Cx×y satisfy homogeneous Neumann
boundary conditions if and only if

φ0,j = φ1,j , φNx,j = φNx+1,j , µ0,j = µ1,j , µNx,j = µNx+1,j ,

j = 1, 2, . . . , Ny,
(2.1)

φi,0 = φi,1, φi,Ny
= φi,Ny+1, µi,0 = µi,1, µi,Ny

= µi,Ny+1,

i = 0, 1, . . . , Nx + 1.
(2.2)

The velocity v = (u, v) (for u ∈ Eew
x×y, v ∈ Ens

x×y) satisfies the no-slip (Dirichlet)
boundary conditions v|Ω = 0 if and only if

u 1

2
,j = uNx+

1

2
,j = 0, j = 1, 2, . . . , Ny,(2.3)

Ayui+ 1

2
, 1
2

= Ayui+ 1

2
,Ny+

1

2

= 0, i = 0, 1, . . . , Nx,(2.4)

vi, 1
2

= vi,Ny+
1

2

= 0, i = 1, 2, . . . , Nx,(2.5)

Axv 1

2
,j+ 1

2

= AxvNx+
1

2
,j+ 1

2

= 0, j = 0, 1, . . . , Ny.(2.6)

It is easy to show that

(2.7) Dxφ,Dxµ, u ∈ Eew0
x×y, Dyφ,Dyµ, v ∈ Ens0

x×y, Ayu,Axv ∈ V0
x×y.

Based on the above definitions, we define the discrete 2D weighted inner products,

(φ, ψ)2 = hxhy

Nx∑

i=1

Ny∑

j=1

φi,jψi,j ,

[u, r]ew = (ax(ur), 1)2, [v, w]ns = (ay(vw), 1)2, 〈f, g〉vc =
(
ax

(
ay(fg)

)
, 1
)
2
,
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and the corresponding discrete norms,

‖φ‖2 = (φ, φ)
1

2

2 , ‖u‖ew = [u, u]
1

2

ew, ‖v‖ns = [v, v]
1

2

ns, ‖f‖vc = 〈f, f〉
1

2

vc.

For φ ∈ Cx×y, we define the following norm:

‖∇φ‖2 :=
√
‖Dxφ‖2ew + ‖Dyφ‖2ns.

For the edge-centered velocity v = (u, v), u ∈ Eew
x×y, v ∈ Ens

x×y, we define the norms

‖v‖2 :=
√

‖u‖2ew + ‖v‖2ns, ‖∇v‖2 :=
√

‖dxu‖22 + ‖Dyu‖2vc + ‖Dxv‖2vc + ‖dyv‖22.

Next, we introduce some useful lemmas.

Lemma 2.1. For φ ∈ Cx×y, u ∈ Eew0
x×y, v ∈ Ens0

x×y, there exist the following identi-

ties:

[Axφ, u]ew = (φ, axu)2, [Dxφ, u]ew + (φ, dxu)2 = 0,(2.8)

[Ayφ, v]ns = (φ, ayv)2, [Dyφ, v]ns + (φ, dyv)2 = 0.(2.9)

Lemma 2.2. For f ∈ V0
x×y, u ∈ Eew

x×y, v ∈ Ens
x×y, there exists the identities

(2.10) [ayf, u]ew = 〈f,Ayu〉vc, [axf, v]ns = 〈f,Axv〉vc.

Lemma 2.3. For f ∈ Vx×y, u ∈ Eew
x×y, v ∈ Ens

x×y, and Ayu,Axv ∈ V0
x×y, there

exist the identities

[dyf, u]ew + 〈f,Dyu〉vc = 0,(2.11)

[dxf, v]ns + 〈f,Dxv〉vc = 0.(2.12)

Throughout this paper, the results are proved for physical boundary conditions
(1.2), but they are equally valid for periodic boundary conditions, or combinations of
physical and periodic boundary conditions. We next discuss how to design efficient
energy stable numerical schemes on staggered grids for the hydrodynamic phase field
model subject to physical boundary conditions.

3. Second order spatial discretization.

3.1. Model reformulation and energy dissipation law. We first reformu-
late the governing system of equations to an equivalent form suitable for designing
energy stable schemes. By introducing a new variable q =

√
f(φ) where we assume

f(φ) > 0, system (1.1) can be written as follows [13, 14, 15]:

(3.1)





ρ
(
ut +

1
2

(
uux + (u2)x

)
+ 1

2

(
vuy + (uv)y

))
= −px + η∆u− φµx,

ρ
(
vt +

1
2

(
uvx + (uv)x

)
+ 1

2

(
vvy + (v2)y

))
= −py + η∆v − φµy,

ux + vy = 0,

φt + (φu)x + (φv)y =M∆µ,

µ = 2qg(φ)− γ1∆φ,

qt = g(φ)φt,
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where g(φ) = f ′(φ)

2
√

f(φ)
. For the double-well free energy, we have g(φ) =

√
γ2(1 − 2φ).

For the Flory–Huggins free energy, we modify f(φ) as follows:

(3.2) f(φ) = γ2

(
φ

N1
lnφ+

(1− φ)

N2
ln(1− φ) + χφ(1− φ) + C0

)
,

where C0 is taken as 1
N1

+ 1
N2
. It is readily shown that f(φ) > 0. Notice that the

additional constant C0 in the potential does not affect dynamics of the system. Then

(3.3) g(φ) =
γ2

2
√
f(φ)

(
lnφ

N1
− ln(1− φ)

N2
+

1

N1
− 1

N2
+ χ(1− 2φ)

)
.

Theorem 3.1. With boundary conditions (1.2), the solution of system (3.1) sat-
isfies the mass conservation law

(3.4)
d

dt
(φ, 1) = 0

and the energy dissipation law

(3.5)
d

dt
E + η‖∇v‖2 +M‖∇µ‖2 = 0,

where the energy of system (3.1) is defined as

(3.6) E =
ρ

2
‖v‖2 + γ1

2
‖∇φ‖2 + ‖q‖2.

3.2. Spatial discretization. Applying staggered-grid finite differences in space
to system (3.1), we obtain a semidiscrete scheme as follows:

{
ρ
( d
dt
u+

1

2

(
uDx(axu) +Ax(dxu

2)
)
+

1

2

(
ay(AxvDyu) + dy(AyuAxv)

))
(3.7a)

= −Dxp+ η∆hu−AxφDxµ
}∣∣∣

i+ 1

2
,j
, i = 1, . . . , Nx − 1, j = 1, . . . , Ny,

{
ρ
( d
dt
v +

1

2

(
ax(AyuDxv) + dx(AyuAxv)

)
+

1

2

(
vDy(ayv) +Ay(dyv

2)
))

(3.7b)

= −Dyp+ η∆hv −AyφDyµ
}∣∣∣

i,j+ 1

2

, i = 1, . . . , Nx, j = 1, . . . , Ny − 1,

{
dxu+ dyv = 0

}∣∣∣
i,j
, i = 1, . . . , Nx, j = 1, . . . , Ny,(3.7c)

{ d

dt
φ+ dx(Axφu) + dy(Ayφv) =M∆hµ

}∣∣∣
i,j
, i = 1, . . . , Nx, j = 1, . . . , Ny,(3.7d)

{
µ = 2qg(φ)− γ1∆hφ

}∣∣∣
i,j
, i = 1, . . . , Nx, j = 1, . . . , Ny,(3.7e)

{ d

dt
q = g(φ)

d

dt
φ
}∣∣∣

i,j
, i = 1, . . . , Nx, j = 1, . . . , Ny,(3.7f)

where u ∈ Eew
x×y, v ∈ Ens

x×y, φ, µ ∈ Cx×y satisfy boundary conditions (2.1)–(2.6), and
p, q ∈ Cx×y.

Theorem 3.2. The semidiscrete system given in (3.7) preserves the discrete mass

conservation law given by

(3.8)
d

dt
(φ, 1)2 = 0
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and the discrete energy dissipation law given by

(3.9)
d

dt
Eh + η‖∇v‖22 +M‖∇µ‖22 = 0,

where Eh is the discrete energy functional defined as

(3.10) Eh =
ρ

2
‖v‖22 +

γ1
2
‖∇φ‖22 + ‖q‖22.

Proof. Computing the discrete inner product of (3.7d) with constant function 1,
and using (2.7) and Lemma 2.1, we obtain (3.8).

Noticing that u ∈ Eew0
x×y and using Lemma 2.1, we have

(3.11) [uDx(axu) +Ax(dxu
2), u]ew = −(axu, dxu

2)2 + (dxu
2, axu)2 = 0.

Noticing Ayu,Axv ∈ V0
x×y and applying Lemmas 2.2 and 2.3, we have

(3.12) [ay(AxvDyu)+dy(AyuAxv), u]ew = 〈AxvDyu,Ayu〉vc−〈AyuAxv,Dyu〉vc = 0.

Similarly, we can deduce

[ax(AyuDxv) + dx(AyuAxv), v]ns = 0, [vDy(ayv) +Ay(dyv
2), v]ns = 0,(3.13)

[Dxp, u]ew + [Dyp, v]ns = −(p, dxu+ dyv)2 = 0,(3.14)

[AxφDxµ, u]ew + [AyφDyµ, v]ns = −
(
µ, dx(Axφu) + dy(Ayφv)

)
2
,(3.15)

[∆hu, u]ew + [∆hv, v]ns = −‖∇v‖22, (∆hφ, φ)2 = −‖∇φ‖22,(3.16)

(∆hµ, µ)2 = −‖∇µ‖22.

Computing the discrete inner product of (3.7a) and (3.7b) with u and v, respectively,
then adding the results and using (3.11)–(3.17), we have

(3.17) ρ([u, ut]ew + [v, vt]ns) = −η‖∇v‖22 +
(
µ, dx(Axφu) + dy(Ayφv)

)
2
.

Similarly, we take the discrete inner product of (3.7d) with µ and obtain

(3.18) (µ, φt)2 = −
(
µ, dx(Axφu) + dy(Ayφv)

)
2
−M‖∇µ‖22.

Adding (3.17) and (3.18) leads to

(3.19) ρ([u, ut]ew + [v, vt]ns) + (µ, φt)2 = −η‖∇v‖22 −M‖∇µ‖22.

By a straightforward calculation, we have

d

dt
Eh = ρ([u, ut]ew + [v, vt]ns) + γ1([Dxφ,Dxφt]ew + [Dyφ,Dyφt]ns) + (2q, qt)2

= ρ([u, ut]ew + [v, vt]ns)− γ1(∆hφ, φt)2 + (2qg(φ), φt)2

= ρ([u, ut]ew + [v, vt]ns) + (µ, φt)2 = −η‖∇v‖22 −M‖∇µ‖22,

which leads to (3.9).
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4. Fully discrete schemes and their unconditional stability.

4.1. Second order fully discrete linear scheme. Applying the linear-implicit
Crank–Nicolson method in time to system (3.7), we obtain a fully discrete numerical
scheme:

ρ
[
δ+t u

n +
1

2

(
un+

1

2Dx(axu
n+ 1

2 ) +Ax(dx(u
n+ 1

2un+
1

2 )) + ay(Axv
n+ 1

2Dyu
n+ 1

2 )(4.1a)

+ dy(Ayu
n+ 1

2Axv
n+ 1

2 )
)]

= −Dxp
n+ 1

2 + η∆hu
n+ 1

2 −Axφ
n+ 1

2Dxµ
n+ 1

2 ,

ρ
[
δ+t v

n +
1

2

(
ax(Ayu

n+ 1

2Dxv
n+ 1

2 ) + dx(Ayu
n+ 1

2Axv
n+ 1

2 ) + vn+
1

2Dy(ayv
n+ 1

2 )

(4.1b)

+Ay(dy(v
n+ 1

2 vn+
1

2 ))
)]

= −Dyp
n+ 1

2 + η∆hv
n+ 1

2 −Ayφ
n+ 1

2Dyµ
n+ 1

2 ,

dxu
n+ 1

2 + dyv
n+ 1

2 = 0,(4.1c)

δ+t φ
n + dx(Axφ

n+ 1

2un+
1

2 ) + dy(Ayφ
n+ 1

2 vn+
1

2 ) =M∆hµ
n+ 1

2 ,

(4.1d)

µn+ 1

2 = 2qn+
1

2 g(φ)
n+ 1

2 − γ1∆hφ
n+ 1

2 ,(4.1e)

δ+t q
n = g(φ)

n+ 1

2 δ+t φ
n,(4.1f)

where n ≥ 0, un+1 ∈ Eew
x×y, v

n+1 ∈ Ens
x×y, φ

n+1, µn+ 1

2 ∈ Cx×y satisfy boundary

conditions (2.1)–(2.6), pn+
1

2 , qn+1 ∈ Cx×y and δ+t u
n = (un+1 − un)/∆t, un+

1

2 =

(un+1+un)/2, un+
1

2 = (3un−un−1)/2, etc. We define u−1 ≡ u0, v−1 ≡ v0, φ−1 ≡ φ0.
The spatial indices of system (4.1) are identical to those of system (3.7) and are thus
omitted for simplicity. Note that we enforce the solvability condition

(4.2) (pn+
1

2 , 1)2 = 0

in the scheme to eliminate the indeterminacy in the pressure field.

Theorem 4.1. The linear scheme given in (4.1) preserves the discrete mass con-

servation law

(4.3) (φn+1, 1)2 = (φn, 1)2

and the discrete energy dissipation law

(4.4) δ+t E
n
h + η‖∇vn+ 1

2 ‖22 +M‖∇µn+ 1

2 ‖22 = 0,

where the discrete energy is defined as

(4.5) En
h =

ρ

2
‖vn‖22 +

γ1
2
‖∇φn‖22 + ‖qn‖22.

Proof. Assuming that u0, v0, φ0 satisfy discrete boundary conditions (2.1)–(2.6),

we deduce inductively from system (4.1) that both un+
1

2 , vn+
1

2 , φn+
1

2 , µn+ 1

2 and un+
1

2 ,

vn+
1

2 for ∀n ∈ N also satisfy the boundary conditions.
Analogous to the proof of Theorem 3.2, we take the discrete inner product of

(4.1d) with constant function 1 and obtain

(4.6) (δ+t φ
n, 1)2 = 0,
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which implies (4.3). Furthermore, we can also deduce from (4.1) that
(4.7)

ρ([un+
1

2 , δ+t u
n]ew+[vn+

1

2 , δ+t v
n]ns)+(µn+ 1

2 , δ+t φ
n)2 = −η‖∇vn+ 1

2 ‖22−M‖∇µn+ 1

2 ‖22.

Using (4.7) and the identity δ+t (u
n · vn) = δ+t u

n · vn+ 1

2 + un+
1

2 · δ+t vn, we obtain

δ+t E
n
h = ρ([un+

1

2 , δ+t u
n]ew + [vn+

1

2 , δ+t v
n]ns)

+ γ1([Dxφ
n+ 1

2 , Dxδ
+
t φ

n]ew + [Dyφ
n+ 1

2 , Dyδ
+
t φ

n]ns) + (2qn+
1

2 , δ+t q
n)2

= ρ([un+
1

2 , δ+t u
n]ew + [vn+

1

2 , δ+t v
n]ns)− γ1(∆hφ

n+ 1

2 , δ+t φ
n)2

+ (2qn+
1

2 g(φ)
n+ 1

2 , δ+t φ
n)2

= ρ([un+
1

2 , δ+t u
n]ew + [vn+

1

2 , δ+t v
n]ns) + (µn+ 1

2 , δ+t φ
n)2

= −η‖∇vn+ 1

2 ‖22 −M‖∇µn+ 1

2 ‖22.

This completes the proof.

Remark 4.1. If we replace all (·)n+
1

2

with (·)n+ 1

2 in (4.1), we obtain a second

order nonlinear energy stable scheme. If we replace all (·)n+
1

2

with (·)n in (4.1), we
obtain a two-level energy stable scheme, which is still linear but is of order 1 in time.

In the numerical experiments, we use the two-level scheme to compute the initial data

for the second level values of the three-level scheme given in (4.1). This does not affect
the overall accuracy of second order scheme (4.1).

4.2. Linear decoupled scheme. The linear scheme given above is fully cou-
pled. We next develop a decoupled linear scheme by introducing a “stabilizing term”
in the velocity and solving the momentum balance equation using the projection
method in two steps. We then show that the scheme is unconditionally energy stable
and uniquely solvable. This new decoupled, linear scheme differs from the one devel-
oped by Chen and Shen in [7] in that we treat the convective term more precisely to
warrant the energy stability.

The decoupled, fully discrete scheme is given as follows:
Step 1.

(4.8)





δ+t φ
n + dx(Axφ

nun∗ ) + dy(Ayφ
nvn∗ ) =M∆hµ

n+1,

µn+1 = 2qn+1g(φn)− γ1∆hφ
n+1,

δ+t q
n = g(φn)δ+t φ

n,

where

(4.9)

{
un∗ = un − ∆t

ρ
Axφ

nDxµ
n+1,

vn∗ = vn − ∆t
ρ
Ayφ

nDyµ
n+1,

and φn+1, µn+1 ∈ Cx×y satisfy discrete boundary conditions (2.1)–(2.2), qn+1 ∈ Cx×y.
Step 2.

(4.10)



ρ
∆t

(ũn+1 − un) + ρ
2

(
unDx(axũ

n+1) +Ax(dx(ũ
n+1un))

)

+ρ
2

(
ay(Axv

nDyũ
n+1) + dy(Ayũ

n+1Axv
n)
)
= −Dxp

n + η∆hũ
n+1 −Axφ

nDxµ
n+1,

ρ
∆t

(ṽn+1 − vn) + ρ
2

(
ax(Ayu

nDxṽ
n+1) + dx(Ayu

nAxṽ
n+1)

)

+ρ
2

(
vnDy(ay ṽ

n+1) +Ay(dy(ṽ
n+1vn))

)
= −Dyp

n + η∆hṽ
n+1 −Ayφ

nDyµ
n+1,
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where ũn+1 ∈ Eew
x×y, ṽ

n+1 ∈ Ens
x×y satisfy discrete boundary conditions (2.3)–(2.6).

Step 3.
(4.11)



{
ρ
∆t

(un+1 − ũn+1) +Dx(p
n+1 − pn) = 0

}∣∣∣
i+ 1

2
,j
, i = 0, . . . , Nx, j = 0, . . . , Ny + 1,

{
ρ
∆t

(vn+1 − ṽn+1) +Dy(p
n+1 − pn) = 0

}∣∣∣
i,j+ 1

2

, i = 0, . . . , Nx + 1, j = 0, . . . , Ny,
{
dxu

n+1 + dyv
n+1 = 0

}∣∣∣
i,j
, i = 1, . . . , Nx, j = 1, . . . , Ny,

(pn+1 − pn)0,j = (pn+1 − pn)1,j , (pn+1 − pn)Nx,j = (pn+1 − pn)Nx+1,j ,

j = 1, 2, . . . , Ny,

(pn+1 − pn)i,0 = (pn+1 − pn)i,1, (pn+1 − pn)i,Ny
= (pn+1 − pn)i,Ny+1,

i = 0, 1, . . . , Nx + 1,

where un+1 ∈ Eew
x×y, v

n+1 ∈ Ens
x×y, and p

n+1 ∈ Cx×y satisfies the solvability condition

(pn+1, 1)2 = 0. The spatial indices of system (4.8) and system (4.10) are identical to
those of system (3.7) and are thus omitted.

Remark 4.2. The last step leads to

(4.12) ∆h(p
n+1 − pn) =

ρ

∆t
(dxũ

n+1 + dy ṽ
n+1).

So we can first compute pn+1 and then

un+1 = ũn+1 − ∆t

ρ
Dx(p

n+1 − pn), vn+1 = ṽn+1 − ∆t

ρ
Dy(p

n+1 − pn).

Remark 4.3. In the scheme, computations of (φn+1, µn+1, qn+1), ũn+1, ṽn+1,
un+1, vn+1, and pn+1 are totally decoupled!

Theorem 4.2. The scheme given in (4.8)–(4.11) satisfies the discrete mass con-

servation law

(4.13) (φn+1, 1)2 = (φn, 1)2

and the discrete energy law

(4.14)
1

∆t
(En+1

h − En
h + Ẽn

h ) + η‖∇ṽn+1‖22 +M‖∇µn+1‖22 = 0,

where

En
h =

ρ

2
‖vn‖22 +

γ1
2
‖∇φn‖22 + ‖qn‖22 +

∆t2

2ρ
‖∇pn‖22,

Ẽn =
ρ

2
(‖ṽn+1 − vn

∗ ‖22 + ‖vn
∗ − vn‖22) +

γ1
2
‖∇(φn+1 − φn)‖22 + ‖qn+1 − qn‖22.

The decoupled scheme is therefore unconditionally energy stable.

Proof. According to the last two equations of (4.11), we have

Dx(p
n+1 − pn) 1

2
,j = Dx(p

n+1 − pn)Nx+
1

2
,j = 0, j = 0, . . . , Ny + 1,

Dy(p
n+1 − pn)i, 1

2

= Dy(p
n+1 − pn)i,Ny+

1

2

= 0, i = 0, . . . , Nx + 1,
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which lead to

un+1
1

2
,j

= ũn+1
1

2
,j
, un+1

Nx+
1

2
,j
= ũn+1

Nx+
1

2
,j
, j = 0, . . . , Ny + 1,(4.15)

vn+1
i, 1

2

= ṽn+1
i, 1

2

, vn+1
i,Ny+

1

2

= ṽn+1
i,Ny+

1

2

, i = 0, . . . , Nx + 1.(4.16)

Since ũn+1, ṽn+1 satisfy the boundary conditions (2.3)–(2.6), we obtain

ũn+1
1

2
,j

= ũn+1
Nx+

1

2
,j
= 0, j = 0, . . . , Ny + 1,(4.17)

ṽn+1
i, 1

2

= ṽn+1
i,Ny+

1

2

= 0, i = 0, . . . , Nx + 1,(4.18)

and

(4.19) ũn+1 ∈ Eew0
x×y, ṽn+1 ∈ Ens0

x×y, Ayũ
n+1, Axṽ

n+1 ∈ V0
x×y.

Combining (4.15), (4.16), (4.17), and (4.18) leads to

un+1
1

2
,j

= un+1
Nx+

1

2
,j
= 0, j = 0, . . . , Ny + 1,(4.20)

vn+1
i, 1

2

= vn+1
i,Ny+

1

2

= 0, i = 0, . . . , Nx + 1.(4.21)

Assume that u0, v0 satisfy the boundary conditions (4.20) and (4.21). Then un, vn ∀n ∈
N satisfy the boundary conditions (4.20) and (4.21), which imply

Ayu
n
1

2
,j+ 1

2

= Ayu
n
Nx+

1

2
,j+ 1

2

= 0, j = 0, . . . , Ny,(4.22)

Axv
n
i+ 1

2
, 1
2

= Axv
n
i+ 1

2
,Ny+

1

2

= 0, i = 0, . . . , Nx.(4.23)

In addition, we can deduce from (4.17) and (4.18) that

Dyũ
n+1
1

2
,j+ 1

2

= Dyũ
n+1
Nx+

1

2
,j+ 1

2

= 0, j = 0, . . . , Ny,(4.24)

Dxṽ
n+1
i+ 1

2
, 1
2

= Dxṽ
n+1
i+ 1

2
,Ny+

1

2

= 0, i = 0, . . . , Nx.(4.25)

Therefore, we have

(4.26) un+1 ∈ Eew0
x×y, vn+1 ∈ Ens0

x×y, Axv
nDyũ

n+1, Ayu
nDxṽ

n+1 ∈ V0
x×y.

Similarly, we obtain

(4.27) Dxφ
n+1, Dxµ

n+1, un∗ ∈ Eew0
x×y, Dyφ

n+1, Dyµ
n+1, vn∗ ∈ Ens0

x×y.

Note that conditions (4.19), (4.26), and (4.27) are important for using the correspond-
ing discrete summation-by-parts formulas proposed in Lemmas 2.1–2.3.

Due to condition (4.27), we compute the discrete inner product of the first line
of (4.8) with constant function 1 and obtain (4.13).

Taking the discrete inner product of the two equations in (4.10) with 2ũn+1 and
2ṽn+1, respectively, then adding the results and using (4.9), Lemmas 2.1–2.3, and the
equality 2a(a− b) = a2 − b2 + (a− b)2, we obtain

ρ

∆t

(
‖ṽn+1‖22 − ‖vn

∗ ‖22 + ‖ṽn+1 − vn
∗ ‖22

)
(4.28)

= −2
(
[ũn+1, Dxp

n]ew + [ṽn+1, Dyp
n]ns

)
− 2η‖∇ṽn+1‖22.
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To deal with the first term on the right-hand side in the above equality, taking the
discrete inner product of the first equation of (4.11) with 2∆t

ρ
Dxp

n and that of the

second equation of (4.11) with 2∆t
ρ
Dyp

n, respectively, then adding the results and

using (2.8), (2.9), and the equality dxu
n+1 + dyv

n+1 = 0, we obtain
(4.29)

2
(
[ũn+1, Dxp

n]ew + [ṽn+1, Dyp
n]ns

)
=

∆t

ρ

(
‖∇pn+1‖22 − ‖∇pn‖22 − ‖∇(pn+1 − pn)‖22

)
;

we also derive from (4.11) that

(4.30) ‖∇(pn+1 − pn)‖22 =
ρ2

∆t2
‖vn+1 − ṽn+1‖22;

we then take the discrete inner product of the first equation of (4.11) with 2un+1 and
that of the second equation of (4.11) with 2vn+1, respectively, and add the results:

(4.31) ‖vn+1 − ṽn+1‖22 = ‖ṽn+1‖22 − ‖vn+1‖22.

Combining the above four equalities, we have
(4.32)
ρ

∆t

(
‖vn+1‖22 − ‖vn

∗ ‖22 + ‖ṽn+1 − vn
∗ ‖22

)
+
∆t

ρ

(
‖∇pn+1‖22 − ‖∇pn‖22

)
= −2η‖∇ṽn+1‖22.

Taking the discrete inner product of the first equation of (4.9) with 2un∗ and of the
second equation of (4.9) with 2vn∗ , respectively, then adding the results, we obtain
(4.33)
ρ

∆t
(‖vn

∗ ‖22−‖vn‖22+‖vn
∗ −vn‖22) = −2

(
[Axφ

nun∗ , Dxµ
n+1]ew+[Ayφ

nvn∗ , Dyµ
n+1]ns

)
.

Adding (4.33) to (4.32), we have

ρ

∆t

(
‖vn+1‖22 − ‖vn‖22 + ‖ṽn+1 − vn

∗ ‖22 + ‖vn
∗ − vn‖22

)
+

∆t

ρ

(
‖∇pn+1‖22 − ‖∇pn‖22

)
(4.34)

=− 2η‖∇ṽn+1‖22 − 2
(
[Axφ

nun∗ , Dxµ
n+1]ew + [Ayφ

nvn∗ , Dyµ
n+1]ns

)
.

Taking the discrete inner product of the first equation of (4.8) with 2µn+1, we have
(4.35)
2

∆t
(φn+1−φn, µn+1)2 = 2

(
[Axφ

nun∗ , Dxµ
n+1]ew+[Ayφ

nvn∗ , Dyµ
n+1]ns

)
−2M‖∇µn+1‖22.

Taking the discrete inner product of the second equation of (4.8) with − 2
∆t

(φn+1−φn),
we obtain

(4.36)
− 2

∆t
(φn+1 − φn, µn+1)2 = − 4

∆t
(φn+1 − φn, qn+1g(φn))2

− γ1
∆t

(‖∇φn+1‖22 − ‖∇φn‖22 + ‖∇(φn+1 − φn)‖22).

Taking the discrete inner product of the third equation of (4.8) with 4qn+1, we have

(4.37)
2

∆t
(‖qn+1‖22 − ‖qn‖22 + ‖qn+1 − qn‖22) =

4

∆t
(φn+1 − φn, qn+1g(φn))2.

Adding (4.34), (4.35), (4.36), and (4.37) leads to (4.14).
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Remark 4.4. We deduce from (4.14) that the inclusion of the excessive energy

dissipation term Ẽn enhances the energy dissipation, making the scheme “more” dis-

sipative in order to achieve decoupling of the equations. It then follows that

En+1
h ≤ En

h ,

which implies that the fully discrete scheme (4.8)–(4.11) is unconditionally stable.

For the linear systems given by the linear schemes, their unique solvability is
an issue that must be addressed. Next, we show that the linear systems are indeed
solvable uniquely.

5. Unique solvability of the linear systems.

5.1. Unique solvability of the second order coupled scheme. For brevity,
we denote u := un+

1

2 , u := un+
1

2 , etc. Then the system (4.1) can be written as

ρ
( 2

∆t
(u− un) +

1

2

(
uDx(axu) +Ax(dx(uu))

)
+

1

2

(
ay(AxvDyu) + dy(AyuAxv)

))
(5.1a)

= −Dxp+ η∆hu−AxφDxµ,

ρ
( 2

∆t
(v − vn) +

1

2

(
ax(AyuDxv) + dx(AyuAxv)

)
+

1

2

(
vDy(ayv) +Ay(dy(vv))

))
(5.1b)

= −Dyp+ η∆hv −AyφDyµ,

dxu+ dyv = 0,(5.1c)

2

∆t
(φ− φn) + dx(Axφu) + dy(Ayφv) =M∆hµ,(5.1d)

µ = 2qg(φ)− γ1∆hφ,(5.1e)

q = g(φ)φ+ qn − g(φ)φn,(5.1f)

where u ∈ Eew
x×y, v ∈ Ens

x×y, φ, µ ∈ Cx×y satisfy boundary conditions (2.1)–(2.6), and
p, q ∈ Cx×y. Note that the number of equations in the linear system (5.1) is equal to
the number of unknowns. However, noticing u ∈ Eew0

x×y, v ∈ Ens0
x×y, it is readily proven

that (dxu+dyv, 1)2 = 0, which implies that the linear system is singular due to (5.1c).
To make it uniquely solvable, we replace one equation of (5.1c) with the solvability
condition (p, 1)2 = 0. Next, we have the following theorem.

Theorem 5.1. For any ρ, η, γ1,M,∆t > 0, linear system (5.1) with the solvability

condition (p, 1)2 = 0 is uniquely solvable. Therefore, the linear scheme (4.1) with (4.2)
is uniquely solvable.

Proof. We first consider the following homogeneous linear equation system:

ρ
( 2

∆t
u+

1

2

(
uDx(axu) +Ax(dx(uu))

)
+

1

2

(
ay(AxvDyu) + dy(AyuAxv)

))
(5.2a)

= −Dxp+ η∆hu−AxφDxµ,

ρ
( 2

∆t
v +

1

2

(
ax(AyuDxv) + dx(AyuAxv)

)
+

1

2

(
vDy(ayv) +Ay(dy(vv))

))
(5.2b)

= −Dyp+ η∆hv −AyφDyµ,{
dxu+ dyv = 0

}∣∣∣
i,j
, (i, j) 6= (Nx, Ny),(5.2c)
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2

∆t
φ+ dx(Axφu) + dy(Ayφv) =M∆hµ,(5.2d)

µ = 2qg(φ)− γ1∆hφ,(5.2e)

q = g(φ)φ,(5.2f)

(p, 1)2 = 0,(5.2g)

where u ∈ Eew
x×y, v ∈ Ens

x×y, φ, µ ∈ Cx×y satisfy boundary conditions (2.1)–(2.6), and
p, q ∈ Cx×y. To prove unique solvability of linear system (5.1) with (p, 1)2 = 0, we
only need to prove that the homogeneous linear equation system (5.2) admits only a
zero solution.

Note that u, v satisfy boundary conditions (2.3)–(2.6), and thus Ayu,Axv ∈ V0
x×y.

Combining (5.2c) and boundary conditions (2.3)–(2.6) leads to

(5.3)
{
dxu+ dyv = 0

}∣∣∣
Nx,Ny

.

Analogous to the proof of Theorem 3.2, taking the discrete inner product of (5.2a)
and (5.2b) with u and v, respectively, then adding the results, we obtain

(5.4)
2ρ

∆t
‖v‖22 = −η‖∇v‖22 + (µ, dx(Axφu) + dy(Ayφv))2.

Computing the discrete inner product of (5.2d) with µ, we obtain

(5.5)
2

∆t
(µ, φ)2 = −(µ, dx(Axφu) + dy(Ayφv))2 −M‖∇µ‖22.

Computing the discrete inner product of (5.2e) with − 2
∆t
φ and using (5.2f), we obtain

(5.6) − 2

∆t
(µ, φ)2 = − 4

∆t
‖q‖22 −

2γ1
∆t

‖∇φ‖22.

Adding (5.4), (5.5), and (5.6), we deduce

(5.7)
2ρ

∆t
‖v‖22 +

2γ1
∆t

‖∇φ‖22 +
4

∆t
‖q‖22 + η‖∇v‖22 +M‖∇µ‖22 = 0,

which implies that

(5.8) u = 0, v = 0, q = 0, Dxφ = 0, Dyφ = 0, Dxµ = 0, Dyµ = 0.

According to (5.2d), (5.2e), and (5.8), we obtain

(5.9) φ = 0, µ = 0.

Combining (5.2a), (5.2b), and (5.8), we have

Dxpi+ 1

2
,j = 0, i = 1, . . . , Nx − 1, j = 1, . . . , Ny,(5.10)

Dypi,j+ 1

2

= 0, i = 1, . . . , Nx, j = 1, . . . , Ny − 1,(5.11)

which imply

(5.12) pi,j = p1,1 ∀i = 1, . . . , Nx, j = 1, . . . , Ny.

Noticing the solvability condition (p, 1)2 = 0, we obtain

(5.13) p = 0.

This completes the proof.
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5.2. Unique solvability for the decoupled system. To prove the unique
solvability of the fully discrete scheme given in (4.8)–(4.11), we only need to prove
that the three linear systems (4.8), (4.10), and (4.11) are uniquely solvable.

Theorem 5.2. For ρ,M, γ1,∆t > 0, linear system (4.8) is uniquely solvable.

Proof. First, we note that the number of equations in linear system (4.8) is equal
to the number of unknowns. We then consider the following homogeneous linear
equations:

(5.14)





1
∆t
φ− ∆t

ρ
dx

(
(Axφ

n)2Dxµ
)
− ∆t

ρ
dy

(
(Ayφ

n)2Dyµ
)
=M∆hµ,

µ = 2qg(φn)− γ1∆hφ,

q = g(φn)φ,

where φ, µ ∈ Cx×y satisfy boundary conditions (2.1)–(2.2) and q ∈ Cx×y. To prove the
unique solvability of linear system (4.8), we only need to prove that the homogeneous
linear equations given in (5.14) have only a zero solution.

Due to the fact that φ, µ satisfy boundary conditions (2.1) and (2.2), we have

(5.15) Dxφ,Dxµ ∈ Eew0
x×y, Dyφ,Dyµ ∈ Ens0

x×y.

Computing the discrete inner product of the first equation of (5.14) with µ, we obtain

(5.16)
1

∆t
(φ, µ)2 +

∆t

ρ

(
‖Axφ

nDxµ‖2ew + ‖Ayφ
nDyµ‖2ns

)
+M‖∇µ‖22 = 0.

Computing the discrete inner product of the second equation of (5.14) with − 1
∆t
φ

and using the third equation of (5.14), we obtain

(5.17) − 1

∆t
(φ, µ)2 +

2

∆t
‖q‖22 +

γ1
∆t

‖∇φ‖22 = 0.

Adding the above two equations leads to

(5.18)
∆t

ρ

(
‖Axφ

nDxµ‖2ew + ‖Ayφ
nDyµ‖2ns

)
+M‖∇µ‖22 +

γ1
∆t

‖∇φ‖22 +
2

∆t
‖q‖22 = 0,

which implies

(5.19) Dxφ = 0, Dyφ = 0, Dxµ = 0, Dyµ = 0, q = 0.

Combining (5.14) and (5.19), we obtain

(5.20) φ = 0, µ = 0.

This completes the proof.

Theorem 5.3. For ρ, η,∆t > 0, linear system (4.10) is uniquely solvable.

Proof. For linear system (4.10), only ũn+1 and ṽn+1 are unknown after solving
system (4.8). We consider the following homogeneous linear equation system:
(5.21){

ρ
∆t
ũ+ ρ

2

(
unDx(axũ) +Ax(dx(ũu

n))
)
+ ρ

2

(
ay(Axv

nDyũ) + dy(AyũAxv
n)
)
= η∆hũ,

ρ
∆t
ṽ + ρ

2

(
ax(Ayu

nDxṽ) + dx(Ayu
nAxṽ)

)
+ ρ

2

(
vnDy(ay ṽ) +Ay(dy(ṽv

n))
)
= η∆hṽ,
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where ũ ∈ Eew
x×y and ṽ ∈ Ens

x×y satisfy discrete boundary conditions (2.3)–(2.6). To
prove unique solvability of linear system (4.10), we only need to prove that the ho-
mogeneous linear equation system (5.21) has only a zero solution.

Based on the proof of Theorem 4.2, we have

(5.22) ũ ∈ Eew0
x×y, ṽ ∈ Ens0

x×y, Ayũ, Axṽ, Axv
nDyũ, Ayu

nDxṽ ∈ V0
x×y.

Taking the discrete inner product of the two equations of (5.21) with ũ and ṽ, respec-
tively, then adding the results, we deduce

(5.23)
ρ

∆t
(‖ũ‖2ew + ‖ṽ‖2ns) + η(‖dxũ‖22 + ‖Dyũ‖2vc + ‖Dxṽ‖2vc + ‖dy ṽ‖22) = 0,

which implies

(5.24) ũ = 0, ṽ = 0.

This completes the proof.

Theorem 5.4. For ρ,∆t > 0, linear system (4.11) with the solvability condition

(pn+1, 1)2 = 0 is uniquely solvable.

Proof. Analogous to the proof of Theorem (5.3), we consider the following homo-
geneous linear equations:





{
ρ
∆t
u+Dxp = 0

}∣∣∣
i+ 1

2
,j
, i = 0, . . . , Nx, j = 0, . . . , Ny + 1,

{
ρ
∆t
v +Dyp = 0

}∣∣∣
i,j+ 1

2

, i = 0, . . . , Nx + 1, j = 0, . . . , Ny,
{
dxu+ dyv = 0

}∣∣∣
i,j
, i = 1, . . . , Nx, j = 1, . . . , Ny, and (i, j) 6= (Nx, Ny),

(p, 1)2 = 0,

p0,j = p1,j , pNx,j = pNx+1,j , j = 1, 2, . . . , Ny,

pi,0 = pi,1, pi,Ny
= pi,Ny+1, i = 0, 1, . . . , Nx + 1,

(5.25)

where u ∈ Eew
x×y, v ∈ Ens

x×y, and p ∈ Cx×y are the unknowns. Here we only need to
prove that the homogeneous linear equations given in (5.25) have only a zero solution.

Computing the discrete inner product of the first two equations of (5.25) with u
and v, respectively, then adding the results, we have

(5.26)
ρ

∆t
(‖u‖2ew + ‖v‖2ns) = 0,

which implies

(5.27) u = 0, v = 0.

Combining (5.25) and (5.27) leads to

(5.28) p = 0.

This completes the proof.

Corollary 5.1. For ρ, η,M, γ1,∆t > 0, the decoupled scheme given in (4.8)–
(4.11) with the solvability condition (pn+1, 1)2 = 0 is uniquely solvable.
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6. Numerical results. In this section, we present several numerical tests to ver-
ify our theoretical results. We implement the fully discrete scheme (4.1) and scheme
(4.8)–(4.11) in 2D and 3D space on a CPU/GPU hybrid architecture for high perfor-
mance computing. As we have alluded to earlier, one advantage of the new, linear
schemes is their simplicity to implement since at each time step only a linear system
needs to be solved. To solve the linear systems efficiently, we apply a novel pre-
conditioner [16] to the linear system resulting from the coupled linear scheme; for the
decoupled scheme, the preconditioner mentioned in [58] is applied.

6.1. Time accuracy test. Here, we conduct time-step refinement tests for the
fully discrete schemes given by (4.1) and (4.8)–(4.11) to demonstrate their accuracy
numerically. We choose Lx = Ly = L, L = 1 and the parameter values M = 10−4,
γ1 = 10−2, γ2 = 102, ρ = 1. We test the time accuracy first by fixing the spatial
resolution. We use the initial conditions

φ(x)|t=0 =
1

2

(
1 + tanh

0.3L−
√
(x− 0.5L)2 + (y − 0.5L)2

0.02

)
,(6.1)

mesh size hx = hy = 128, and time step ∆t = 10−2 × 1
2k−1 , k = 1, 2, 3, 4, . . . , and the

errors are calculated as the difference between the solution of the coarse time step
and that of the adjacent finer time step. The L2 errors are summarized in Figure 6.1,
where we observe approximately second order convergence in time for the coupled

(a)

(b)

Fig. 6.1. Mesh refinement test for time accuracy. (a) Convergence test for coupled scheme
(4.1), where the second order accuracy is achieved. (b) Convergence test for decoupled scheme
(4.8)–(4.11), where the first order accuracy is observed.

D
o

w
n
lo

ad
ed

 0
5
/2

9
/1

8
 t

o
 1

2
9
.1

2
3
.1

2
4
.1

0
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B546 YUEZHENG GONG, JIA ZHAO, AND QI WANG

scheme given by (4.1), and first order convergence in time for the decoupled scheme
given by (4.8)–(4.11).

6.2. Spatial accuracy test. For the spatial accuracy test, we follow the idea
in [31]. We choose N ×N meshes, where N = 32, 96, 160, 224, 288, i.e., odd multiples
of 32, such that there are overlapping numerical solutions at the positions of the
coarse meshes. We choose the time step as ∆t = 10−5 to prevent the errors in time
discretization from contaminating our results. We choose the same initial conditions
and parameter values as those given in the previous section. Then the errors in the
L2 norms are calculated as the difference between the solution on the coarse mesh
and that on the adjacent finer mesh at the positions of the coarser mesh. The order of
convergence are calculated following the formula in [31]. The results are summarized
in Tables 6.1 and 6.2, where we observe approximately second order convergence in
space for both coupled scheme (4.1) and decoupled scheme (4.8)–(4.11).

Table 6.1

Spatial convergence rate test for coupled scheme (4.1).

N L2 error of v Order L2 error of φ Order
32 1.7009e-1 7.0739e-1
96 3.4781e-2 1.12 6.6513e-2 1.78
160 5.6681e-3 2.61 1.8423e-2 1.88
224 2.4996e-3 1.79 7.6165e-3 1.99

Table 6.2

Spatial convergence rate test for decoupled scheme (4.8)–(4.11).

N L2 error of v Order L2 error of φ Order
32 1.1444e-1 8.9551e-1
96 1.9759e-2 1.11 6.3328e-2 2.03
160 5.5627e-3 1.82 1.7296e-2 1.92
224 2.4699e-3 1.70 7.1004e-3 1.98

6.3. Comparisons between the coupled and decoupled schemes. In this
section, we conduct a numerical test to compare the two linear schemes. In partic-
ular, the calculated total energies are plotted using two schemes with the same set
of parameter values and initial conditions. The numerical accuracy test results are
summarized in Figure 6.2. We believe the second order coupled scheme given by
(4.1) is more accurate than the decoupled scheme given by (4.8)–(4.11). However, the
decoupled scheme is easier to implement. Even though both schemes are uncondition-
ally energy stable, the decoupled scheme only has first order accuracy in time, and
a larger time step can introduce noticeable numerical errors, as seen with the energy
curve in Figure 6.2. We also observe that the decoupled scheme provides a larger
dissipation rate in magnitude (when using large time steps), which is agreeable with
our theoretical results (see Theorem 4.2 and the remark below it). This enhanced
dissipation may contaminate the numerical result in a long run with a large time-step
size for transient flow simulations.

In the following subsections, we will use the proposed spatial-temporal, second
order, coupled linear scheme to simulate two physical phenomena to demonstrate the
usefulness of the scheme.

6.4. Coarsening dynamics of two viscous polymeric solutions. In this
first example, we study the coarsening dynamics of two viscous polymeric solutions

D
o

w
n
lo

ad
ed

 0
5
/2

9
/1

8
 t

o
 1

2
9
.1

2
3
.1

2
4
.1

0
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ENERGY STABLE SCHEMES FOR PHASE FIELD MODELS B547

Fig. 6.2. Comparison of coupled linear scheme (4.1) and decoupled linear scheme (4.8)–(4.11).
Here, we use the same parameter values as those in the previous figure to compute the total energy
as a function of time. The total energies calculated using the decoupled scheme show a smaller value
than the one obtained using the coupled one. The deviation decreases as the step size is reduced.

subject to different boundary conditions to investigate how boundary conditions affect
the dynamics. We compare numerical results in two boundary conditions: (1) physical
conditions; (2) periodic conditions. Here we use Nx = Ny = 256, Lx = Ly = 2, and
∆t = 10−3. The initial condition is φ(x)|t=0 = 0.3+10−3rand(0, 1) and v(x)|t=0 = 0,
with rand(0, 1) random numbers between 0 and 1. The parameter values are η = 1,
γ1 = 102, γ2 = 10−2, M = 10−3, ρ = 1.

Using the same set of parameter values and initial conditions, interestingly we ob-
serve dramatically different dynamics in the computational domain. In the simulation
(see Figures 6.3 and 6.4), we observe that the simulation with the physical boundary
condition shows slower dynamics (i.e., energy decays more slowly) compared with
the simulation with the periodic boundary condition. In fact, the velocity fields are
totally different at any given time, which leads to totally different morphology in the
phase during coarsening. This simulation demonstrates the dominating effect in the
coarsening dynamics given by hydrodynamics and boundary conditions. The plot of
the total energy decay with respect to time confirms that the total energy decays
faster in the case with the periodic boundary condition than that with the physical
one. So, for a mixture in a confined geometry with a zero boundary velocity, hydro-
dynamics can actually retard material mixing in contrast to the case with a periodic
boundary condition. We believe this is the first time such a simulation evidence has
been presented in the literature.

We also conduct the simulation of coarsening dynamics in 3D space. We use
random initial condition φ(x)|t=0 = 0.3 + 10−3rand(0, 1) for φ and zero condition
for the velocity. We also use the same set of parameter values except η = 10−1 to
facilitate the coarsening dynamics. Figure 6.5 depicts the phase coarsening dynamics
in 3D space. The phenomena captured in 2D also are observed in 3D while the two
types of boundary conditions are contrasted.

6.5. Dynamics of a rising drop. In this numerical example, we present dy-
namics of a lighter drop rising in a heavier fluid matrix using the Boussinesq approxi-
mation; namely, we add an extra gravity force term −(φ(ρ1−ρ)+(1−φ)(ρ2−ρ))g to
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(a)

(b)

Fig. 6.3. 2D coarsening dynamics. (a) Simulations subject to the physical boundary condition,
where morphology of the phase variable φ is shown at t = 0, 50, 250, 750, respectively. (b) Simulations
subject to the periodic boundary condition, where the morphology of the phase variable φ is shown
at t = 0, 50, 250, 750, respectively. The drops are the regions in which φ = 1, and the background is
the region where φ = 0.

Fig. 6.4. A comparison of the total energy in the simulations depicted in Figure 6.3. The
energy dissipates faster in the case with the periodic boundary condition than that with the physical
boundary condition.

the momentum balance equation to approximate the upward force of buoyancy due to
the density difference, where ρ is the background density, ρ1, ρ2 are the actual densities
for phase 1 and phase 2, and g is the gravity acceleration. More details can be found in
[49, 26]. Here, we choose Lx = Lz = 1, Ly = 2 with mesh Nx = Nz = 128, Ny = 256,
and initial conditions
(6.2)

φ(x)|t=0 =
1

2

(
1 + tanh

x−R

0.02

)
, R =

√
(x− 0.5Lx)2 + (y − 0.25Ly)2 + (z − 0.5Lz)2,

v(x)|t=0 = 0.
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(a)

(b)

Fig. 6.5. Coarsening dynamics in 3D. (a) Coarsening dynamics with physical boundaries at t =
10, 20, 40, 100, respectively. (b) Coarsening dynamics with periodic boundaries at t = 10, 20, 40, 100,
respectively. Here, the red represents φ = 1 and blue represents φ = 0. (Color available online.)

Fig. 6.6. A lighter viscous fluid drop rising in a heavier viscous fluid matrix. This figure
illustrates the interface evolution at different times. The contour of φ = 0.5 (the interface of the
fluid drop) at times t = 0, 25, 75, 125 is shown in red. The blue color represents the background fluid
matrix. (Color available online.)

The parameters are chosen as ρ = ρ2 = 1, ρ1 = 0.9, g = 80, M = 10−3, η = 0.1,
γ1 = 10−2, γ2 = 102, and time step ∆t = 10−3. This mimics a lighter fluid drop
immersed in a heavier fluid matrix. The phase variable φ at different time slots, i.e.,
the evolution of the drop interface, is shown in Figure 6.6. As the initial drop profile
is symmetric around the y axis and the gravity force is along the y axis, the drop
should preserve axisymmetry, which is actually observed in our numerical simulation.
We also observe the drop shape compressed dramatically due to the balance of the
surface tension force and the buoyancy force.

To better analyze the dynamics, the velocity fields at several time slots are shown
in Figure 6.7, with the red circle (the contour of φ = 0.5) representing the drop
interface. We observe that a strong fluid flow is induced near the drop interface, and
vortices are formed near the bottom corners of the drop. Since we enforce the no-slip
boundary condition at the top y = Ly, the matrix fluid flows back downward from
the top thereafter.
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Fig. 6.7. 2D slices (x = 0.5Lx) for the simulation of a lighter fluid drop rising in a heavier
fluid matrix in Figure 6.6. The contour of φ = 0.5 is shown in red, representing the drop interface.
The black arrows represent the velocity director, with their lengths indicating the magnitude. The
2D slices at time t = 0, 25, 75, 125 are shown, where maximum magnitudes of the velocity field are
0, 1.929, 1.479, 0.9414, respectively. (Color available online.)

7. Concluding remarks. We have developed two fully discrete, uncondition-
ally energy stable schemes for the hydrodynamic phase field model of binary viscous
fluid flows, consisting of a second order fully discrete, coupled linear scheme and a
first order in time fully discrete, decoupled linear scheme. All the proposed schemes
are unconditionally energy stable, so that they allow a relative large time step theo-
retically while preserving the energy stability at the fully discrete level. In the linear
schemes, only linear systems need to be solved at any given time step, and their unique
solvability is established rigorously. These two linear schemes have been implemented
and tested numerically in 2D and 3D space. While solving the linear system at each
time step, preconditioners are applied to achieve faster convergence and better stabil-
ity properties. Both schemes have been verified numerically to achieve their intended
order of convergence in both space and time. The advantage of the decoupled scheme
is that in each time step, only an elliptic equation needs to be solved, and thus it is
easy to implement and may be efficient if handled properly. The drawback is that
it’s only first order accurate in time, which requires smaller time steps in order to
achieve the desired accuracy. On the other hand, the linear, coupled scheme gives
higher accuracy (second order) in time, where a larger linear system needs to be
solved at each time step. The numerical examples show that transient dynamics with
respect to physical and periodic boundary conditions are indeed different at any given
time, revealing the fundamental importance of applying proper boundary conditions
to specific applications.

Overall, these two linear schemes are accurate and efficient, and the idea presented
in this paper can be readily extended to study a broader class of multiphase hydro-
dynamic models for developing fully discrete, linear, unconditionally energy stable
schemes.
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