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Abstract: The de Sitter space is known as a Lorentz space with positive constant
curvature in the Minkowski space. A surface with a Riemannian metric is called a

spacelike surface. In this work we investigate properties of the second order geometry

of spacelike surfaces in de Sitter space S5
1 by using the action of GL(2,R)×SO(1, 2) on

the system of conics defined by the second fundamental form. The main results are the

classification of the second fundamental mapping and the description of the possible

configurations of the LMN -ellipse. This ellipse gives information on the lightlike
binormal directions and consequently about their associated asymptotic directions.
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1. Introduction

We investigate properties of the second fundamental form, with re-
spect to lightlike normals, of spacelike surfaces in de Sitter 5-space. In
the Euclidean case, Little in [12] describes elements of the local second
order geometry of surfaces, such as asymptotic directions and inflection
points, in terms of invariants of a classical object: the curvature el-
lipse. The classification of the second fundamental form also appears as
an useful device in the investigation of the singularities of the 5-web of
the asymptotic lines of surfaces in R5, given by Romero-Fuster, Ruas,
and Tari in [14]. For surfaces in Minkowski space R4

1, Izumiya, Pei,
and Romero-Fuster introduce the concept of curvature ellipse in [6] and
study geometric properties of spacelike surfaces in Minkowski 4-space
in terms of properties of this ellipse. In [5], they study properties of
the curvature ellipse in spacelike surfaces in Minkowski (n + 1)-space,
Rn+1

1 , n ≥ 2 (using isothermal coordinates), and by using this setting
they obtain geometric characterization for a spacelike surface M to be
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contained in hyperbolic n-space (de Sitter n-space or n-dimensional light-
cone), n = 3, 4. This characterization is given in terms of the umbilicity
of theses surfaces with respect to some normal field. Izumiya, Pei, and
Romero-Fuster study spacelike surfaces in hyperbolic 4-space (see [7]).

Bayard and Sánchez-Bringas in [2], study the complete invariants of
a quadratic map R2 −→ R2

1, under the actions of SO(2)+ × SO(1, 1)+,
where SO(2)+ and SO(1, 1)+ are the connected components of the iden-
tity of the Euclidean and Lorentzian groups of R2 and R2

1 respectively.
The invariants of these actions have been applied in the classification of
the configurations of curvature ellipses of spacelike surfaces in Minkowski
4-space.

Spacelike submanifolds in de Sitter space have been investigated from
the viewpoint of singularity theory in [1, 8, 9, 10, 11]. In this paper
we follow this approach to study properties of the second order geom-
etry in the case of spacelike surfaces in de Sitter space S5

1 . We focus
on the classification of the orbits of the GL(2,R) × SO(1, 2) action on
the system of conics defined by the second fundamental form. We define
an ellipse in affine space that we call LMN -ellipse, that gives informa-
tions on the lightlike binormal directions and consequently about their
associated asymptotic directions. The main results are the classification
of the second fundamental mapping and the description of the possible
configurations of the LMN -ellipse. The techniques depend on the choice
of an orthonormal basis (nT0 , nS1 , nS2 where nT0 is timelike and nS1 , nS2
are spacelike vectors) for the normal 3-space at each point and on the
existence of a 2-dimensional cone of lightlike normal vectors. These con-
ditions also hold for spacelike surfaces in R5

1, therefore the results of this
paper also hold in this case.

The paper is organized as follows. In Section 2, we give the basic
concepts on extrinsic geometry of spacelike submanifolds in de Sitter
n-space in Rn+1

1 . In Section 3, we introduce some invariants (which are
preserved by Lorentzian transformations) of the second order geometry
of the spacelike surface in de Sitter 5-space. In Sections 4 and 5, we ob-
tain the normal forms of the matrix α of the second fundamental form,
under the action of GL(2,R) × SO(1, 2), when the rank of α is 1 or 2,
respectively. We also study the number of lightlike binormal and their
associated asymptotic directions in each case. In Section 6, we obtain
normal forms of α on 4 parameters, when rankα = 3. In Section 7, we
obtain the equation of asymptotic directions at a non lightlike inflection
and non conic point. This is a fourth order equation, then at each non
conic and non lightlike inflection point there are at most 4 asymptotic
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directions associated to the lightlike binormals directions. In Section 8,
when rankα = 3 we study the number of lightlike binormal directions
and consequently the number of their associated asymptotic directions.
We give some examples of spacelike surfaces and lightlike binormals and
their associated asymptotic directions. Finally, in Appendix A we de-
fine trigonometric polynomials representing the equation of the binormal
directions and discuss their solutions.

2. Preliminaries

In this section we review basic notions of spacelike surfaces in de Sitter
space. Let Rn+1 = {x = (x0, . . . , xn) | xi ∈ R (i = 0, . . . , n)} be the
(n+ 1)-dimensional vector space. For any vectors x = (x0, . . . , xn) and
y = (y0, . . . , yn) in Rn+1, the pseudo scalar product of x and y is defined
by 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi. We call (Rn+1, 〈, 〉) a Minkowski (n+1)-

space and write Rn+1
1 instead of (Rn+1, 〈, 〉). A vector x ∈ Rn+1

1 \ {0}
is spacelike, timelike, or lightlike if 〈x,x〉 is positive, negative, or equal
to zero, respectively. The norm of the vector x is defined by ||x|| =√
|〈x,x〉|.
We define de Sitter n-space by Sn1 = {x ∈ Rn+1

1 | 〈x,x〉 = 1}. A
lightcone in Rn+1

1 is the set LC∗ = {x ∈ Rn+1
1 \ {0} | 〈x,x〉 = 0}. Let

U ⊂ R2 be an open subset and X : U −→ Rn+1
1 an embedding map. We

write M = X(U). We say that M is a spacelike surface if any tangent
vector v 6= 0 at each point on X(U) is always spacelike.

Let {e1, e2,n
T
0 ,n

S
1 , . . . ,n

S
n−2} be an orthonormal frame in the Min-

kowski space Rn+1
1 , where e1, e2 generate the tangent space on M at

each point and nT0 and nS1 , . . . ,n
S
n−2 are respectively a timelike normal

section and spacelike normal sections.
The first fundamental form on M is given by ds2 =

∑2
i,j=1 gij dui duj ,

where gij = 〈Xui
,Xuj

〉. For i, j = 1, 2 and k = 0, . . . , n − 2, we denote

hkij as

hkij(u) = 〈Xuiuj
(u),n

T (or S)
k (u)〉 = −〈Xui

(u),n
T (or S)
k,uj

(u)〉.

We call hkij the coefficients of the second fundamental form. The geom-
etry of the second fundamental form of spacelike surfaces in Minkowski
space has been investigated in [5].

We also denote by X : U −→ S5
1 a parametrization of spacelike surface

in de Sitter 5-space. For any point p ∈ X(U) = M , each tangent vector
v ∈ TpM\{0} is spacelike and orthogonal to the position vector p. In this
case, we consider the second fundamental form in the direction ϑ ∈ S1

as the projection of the normal curvature vector into NpM ⊂ TpS5
1 .
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Let nT0 ,n
S
1 ,n

S
2 : U −→ NM be a timelike normal section and spacelike

normal sections of M . Let S4
+ := {v = (1, v1, . . . , v5) ∈ R6

1 | 〈v,v〉 = 0}
be a sphere in the lightcone. We define a map e : U × S1 −→ LC∗5 as

e(u, θ) = nT0 (u) + cos θnS1 (u) + sin θnS2 (u).

The normalized lightlike direction ē : U×S1 −→ S4
+ is given by ē(u, θ) =

e(u, θ)/e0(u, θ), where e0(u, θ) is a first component of e(u, θ).
The coefficients of the second fundamental form of the embedding of

the surface into S5
1 with respect to the basis {nT0 ,nS1 ,nS2 } are given by

a0 = 〈Xu1u1 ,n
T
0 〉, a1 = 〈Xu1u2 ,n

T
0 〉, a2 = 〈Xu2u2 ,n

T
0 〉,

b0 = 〈Xu1u1
,nS1 〉, b1 = 〈Xu1u2

,nS1 〉, b2 = 〈Xu2u2
,nS1 〉,(1)

c0 = 〈Xu1u1
,nS2 〉, c1 = 〈Xu1u2

,nS2 〉, c2 = 〈Xu2u2
,nS2 〉.

The second fundamental form with respect to a lightlike normal e(u, θ),
II e(u,θ) : TpM −→ R, is given by

II e(u,θ)(du1, du2) =

2∑
i,j=1

〈Xuiuj
, e(u, θ)〉 dui duj .

Let II e(u,θ)(du1, du2) = L(u, θ) du2
1 + 2M(u, θ) du1 du2 + N(u, θ) du2

2,
then we have

(L,M,N)(u, θ)

= (a0 +b0 cos θ+c0 sin θ, a1 +b1 cos θ+c1 sin θ, a2 +b2 cos θ+c2 sin θ).

We call II e(u,θ) = ( L M
M N ) the matrix of the second fundamental form in

the direction e(u, θ). We remark that if we take the normalized lightlike
normal direction ē(u, θ), the corresponding second fundamental form is
expressed by II ē(u,θ). We will use this last one but still denote by II e(u,θ).

The discriminant of the binary differential equation (briefly, BDE)
II e(u,θ) = 0 is given by

∆(u, θ) = M(u, θ)2 − L(u, θ)N(u, θ).

The sign of the discriminant ∆ is invariant under change of parametriza-
tion of the surface. We say that a direction θ ∈ S1 is a lightlike binormal
at p = X(u) if ∆(u, θ) = 0, that is rank(II e(u,θ)) ≤ 1. In this case we
call a kernel direction of the second fundamental form II e(u,θ) by asymp-
totic direction associated to the lightlike binormal direction. Then for
each θ such that ∆(u, θ) = 0, the associated asymptotic directions are
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the solutions of II e(u,θ)(du1, du2) = 0, that is,

(du1 du2)

(
L M
M N

)(
du1

du2

)
= 0.

We also say that the point p = X(u) is a lightlike inflection point if
(L,M,N)(u, θ) = 0 for some θ ∈ S1, in this case any direction is asymp-
totic (rank(II e(u,θ)) = 0).

To explain the relations of the geometry of the asymptotic directions
on spacelike surface, let C = {(l,m, n) | m2 − ln = 0} be a cone and
E(u, θ)=A+cos θB+sin θC be the ellipse in the 3-space R3 ={(l,m, n)},
where A = (a0, a1, a2)t, B = (b0, b1, b2)t, and C = (c0, c1, c2)t. We call
this ellipse as LMN -ellipse. The center A of the ellipse varies with
the choice of normal frames. We say that the vector (l,m, n) is elliptic,
hyperbolic, or parabolic respectively if its discriminant m2−ln is negative,
positive, or equal to zero. Equivalently (l,m, n) is, respectively, inside,
outside, or on the cone C. We remark that the determinant of the second
fundamental form is LN−M2. Properties of lightlike binormal directions
and lightlike inflection points are related to the configuration of the cone
and the LMN -ellipse. We have the following characterizations.

(1) There is no lightlike binormal θ ∈ S1 if and only if E(u, θ) /∈ C,
∀ θ ∈ S1 (rank(II e(u,θ)) = 2, ∀ θ ∈ S1).

(2) θ ∈ S1 is a lightlike binormal direction if and only if E(u, θ) ∈ C
(rank(II e(u,θ)) ≤ 1).

(3) p is a lightlike inflection point if and only if the LMN -ellipse goes
through the origin (rank(II e(u,θ)) = 0).

We intend to classify the configurations of the LMN -ellipse in fur-
ther sections to investigate the geometry of the asymptotic directions,
associated to the lightlike binormals, on spacelike surfaces in de Sitter
5-space.

We can consider the one-parameter family of the height functions
on M , H(u, θ) = 〈X(u), e(u, θ)〉. If θ is a lightlike binormal direction
at the point p then the height function hθ, obtained when we fix the
parameter θ, has a singularity more degenerate than Morse at p. More-
over any direction in the kernel of the hessian of hθ at p is an associated
asymptotic direction (see [7]).

From now on, for short, we omit the word “lightlike” in the expressions
“lightlike binormal direction” and “lightlike inflection points”.
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3. Invariants associated to the second fundamental form

The aim of this section is to introduce some invariants of the second
order geometry of the spacelike surface in de Sitter 5-space. First we
define invariants of these surfaces, which are preserved by the Lorentzian
transformations, that is, by the following actions (1) and (2).

(1) Change of parametrization, ψ̃ ∈ Diff(U): X′(u) = X ◦ ψ̃(u).

(2) Change of the normal vector fields, Φ̃ : U −→ SO(1, 2):

(n′
T
0 ,n

′S
1 ,n

′S
2 )t = Φ̃(nT0 ,n

S
1 ,n

S
2 )t,

where SO(1, 2)={Φ | 〈Φx,Φy〉=〈x,y〉 for all x,y∈R3
1} is the Lorentzian

transformation group on Minkowski 3-space. As usual GL(2,R) will
denote the general linear group on R2. Let α and k be defined as

α(u) :=

a0 a1 a2

b0 b1 b2
c0 c1 c2

 , k(u) := −
∣∣∣∣a0 a1

a1 a2

∣∣∣∣+

∣∣∣∣b0 b1
b1 b2

∣∣∣∣+

∣∣∣∣c0 c1
c1 c2

∣∣∣∣ .
The families Φ̃ and ψ̃ of elements respectively in SO(1, 2) and GL(2,R)

are parametrized by u. That is, for any u ∈ U , Φ := Φ̃(u) ∈ SO(1, 2),

and ψ := ψ̃(u) ∈ GL(2,R). By computation, we have the following table

Actions α(u) k(u) ∆(u, θ)

(1) ψ∈GL(2,R) α′(u)=α(u)Ψ (detψ)2k(u) ∆′(u, θ)=(detψ)2∆(u, θ)

(2) Φ∈SO(1, 2) α′(u)=Φα(u) k(u)
∆′(u, θ)=∆(u, θ′(θ)), where

θ′(θ) is a diffeomorphism on S1

where

ψ =

(
ψ11 ψ12

ψ21 ψ22

)
and Ψ =

 ψ2
11 ψ11ψ12 ψ2

12

2ψ11ψ21 ψ11ψ22 + ψ12ψ21 2ψ12ψ22

ψ2
21 ψ21ψ22 ψ2

22

 .

It follows that det Ψ = (detψ)3. Let (L,M,N) = (a0 + b0 cos θ +
c0 sin θ, a1+b1 cos θ+c1 sin θ, a2+b2 cos θ+c2 sin θ), then we have another
expression of the action (1):(

L′ M ′

M ′ N ′

)
= Duψ

t

(
L M
M N

)
Duψ,

that we can also write by ψt ( L M
M N )ψ.
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The action (2) is generated by the following actions

Φ1,t =

cosh t sinh t 0
sinh t cosh t 0

0 0 1

 ,

Φ2,θ =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,

Φ3,± =

±11 0 0
0 ±21 0
0 0 1

 ,

where ±1 and ±2 are not necessarily to be the same signs.
For each u ∈ U , let I(u) be the first fundamental form of the spacelike

surface X(U), then k(u)/ det I(u) and rankα(u) are invariant under the
actions (1) and (2). The maximal and minimal values of ∆(u, θ)/ det I(u)
are also invariants.

The following proposition follows from the above discussion.

Proposition 3.1. The signs of k(u) and ∆(u, θ), and rankα(u) are
invariant under the actions (1) and (2).

We now fix a point u∈U and concentrate to classify the configurations
of LMN -ellipses. To do this we study the action of G = GL(2,R) ×
SO(1, 2) on the system of conics defined by α.

We may distinguish the configuration of the LMN -ellipse by the mul-
tiplicity of the solutions of the equation ∆(u, θ) = 0, 0 ≤ θ ≤ 2π. We
fix u ∈ U and let ∆(u, θ) 6≡ 0 and θ1, . . . , θk be distinct solutions of
∆(u, θ) = 0 with multiplicities m1, . . . ,mk, where mi is a number such
that

∆(u, θ)=
∂

∂θ
∆(u, θi)= · · · = ∂mi

∂θmi
∆(u, θi)=0 and

∂mi+1

∂θmi+1
∆(u, θi) 6=0.

In this case, we say that p is of ((m1 + 1) + · · · + (mk + 1))-type. We
say that α is of ((m1 + 1) + · · ·+ (mk + 1))-type if at this point we have
both, k binormal and k asymptotic directions, with same multiplicities
m1, . . . ,mk. In Section 8, we show that this always happens when the
rank of α is 3. If there is no solution we say that α is 0-type then there
is no asymptotic direction. We also say that a point p is of ]S1-type
if ∆(u, θ) ≡ 0. We call p an inflection point of M if the LMN -ellipse
goes through the origin for some θ, and in this case all directions are
asymptotic. If not we say that p = X(u) is non-inflection point. We
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say that α is of ]S1-type if all lightlike normal directions are binormals
and all tangent directions are asymptotic directions. We will see, in
Section 4, that if the ellipse degenerates into a segment (or a point)
outside the origin and on the cone then all the directions θ are binormals
(∆(u, θ) ≡ 0) but there is only one associated asymptotic direction.

Let X(u) be a spacelike surface in de Sitter 5-space and α the matrix
of coefficients of the second fundamental form at p = X(u) with respect
to the lightlike normal direction e(u, θ). Following [13], we say that a
point p ∈ X(U) is of type Mi, i = 1, 2, 3 if the rank of α is i. We now
introduce some denominations for vectors and planes which are in the
image of the second fundamental form in the cases rankα = 1 or 2.

(1) If rankα = 1, then there exists a vector x = (x0, x1, x2) such
that 〈x〉 = 〈A,B,C〉, where 〈v1, . . . ,vn〉 denotes the vector space
generated by the vectors vi, i = 1, . . . , n. Let D̄1 = x0x2−x2

1. The
sign of D̄1 is invariant under the action of G. Therefore we have
three cases D̄1 > 0 (M1-elliptic case), D̄1 < 0 (M1-hyperbolic
case), and D̄1 = 0 (M1-parabolic case). Respectively, the vector x
is elliptic, hyperbolic, or parabolic. Equivalently, the vector x is
inside, outside, or on the cone C.

(2) If rankα = 2, then there are two vectors x = (x0, x1, x2) and
y = (y0, y1, y2) such that 〈x,y〉 = 〈A,B,C〉. We write D̄2 by

D̄2 = det


x0 2x1 x2 0
y0 2y1 y2 0
0 x0 2x1 x2

0 y0 2y1 y2

 .

The sign of D̄2 is invariant under the action of G. Therefore we
have the cases (see [12, 4]): D̄2 > 0 (M2-elliptic case), D̄2 = 0
(M2-parabolic case), and D̄2 < 0 (M2-hyperbolic case). Equiv-
alently, the plane 〈x,y〉 is elliptic, parabolic, or hyperbolic. The
following geometric conditions hold: a plane by the origin is el-
liptic if and only if it intercepts the cone C only at the origin, it
is hyperbolic if and only if it is transversal to the cone, and it is
parabolic if and only if it is tangent to C (see [13]).

We assume that rankα ≥ 1. Changing coordinates if necessary, we
can assume that A = (a0, a1, a2) does not vanish.

Let (l,m, n) be a vector in the three space {(L,M,N)}. Let α =
(A,B,C)t be the second fundamental form at u ∈ U . We say that α
is A-elliptic or A-hyperbolic respectively if p is not an inflection point
and the vector A is always elliptic or always hyperbolic under the action
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of G. We also say that α is A-parabolic if p is not an inflection point and
α is neither A-elliptic nor A-hyperbolic. We define the open and closed
elliptic discs, called α-discs, by

Dα = {A + pB + qC | 0 ≤ p2 + q2 < 1}, and

Dα = {A + pB + qC | 0 ≤ p2 + q2 ≤ 1}.

These are elliptic discs of center A, in the plane generated by the vec-
tors B and C. They are regions bounded by the LMN -ellipse. There is
a possibility that Dα and Dα degenerate to a segment or a point. By
using these concepts we have the following lemmas that are important
to classify α.

Lemma 3.2. Let Dα be the open α-disc defined as above. For any
element W ∈ Dα, there exists a transformation Φ such that W is parallel
to A′, where α′ = (A′,B′,C′)t := Φα. Therefore:

(1) If W 6= 0 then W = rA′ for some r ∈ R∗.
(2) If W = 0 then A′ = 0.

Proof: Suppose that W = A+pB+qC. Then there exists (θ, t) ∈ S1×R
such that (cos θ, sin θ) = (p/

√
p2 + q2, q/

√
p2 + q2) and sinh t/ cosh t =√

p2 + q2. We may write Φ = Φ1,t ◦ Φ2,θ. Therefore,

A′ = cosh tA + sinh t(cos θB + sin θC) = cosh t(A + pB + qC).

This completes the proof.

Lemma 3.3 (Inertial property for the closed α-discs). Let α and α′ be
equivalent under the action of G and W ′ = A′ + p′B′ + q′ C ′ ∈ Dα′

the image of W = A + pB + qC ∈ Dα by this action. Then there
exists a homeomorphism Θ, where (p′, q′) = Θ(p, q), of the closed disc
D2 = {(p, q) | p2 + q2 ≤ 1} such that for any (p, q), W , and W ′ have
same sign and same rank. That is, sgn(detW ) = sgn(detW ′) ∈ {0,±1}
and rankW = rankW ′.

Proof: It is sufficient to check that for each action Φ1,t,Φ2,θ,Φ3,± ∈
SO(1, 2) and ψ ∈ Diffu(U), there exists Θ that satisfies the statement.
We omit the case of action Φ3,± ∈ SO(1, 2). Given ψ ∈ Diffu(U), we
may put Θ = idD2 , then we obtain W ′ = Duψ

tW Duψ with a regular
matrix Duψ. In this case, rank and index of W do not change.
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Next, given Φ1,t ∈ SO(1, 2), since cosh t− p sinh t is positive, we may
define a map Θt : {1} ×D2 −→ {1} ×D2 by

Θt(1, p, q) =
1

cosh t− p sinh t
(1, p, q)

 cosh t − sinh t 0
− sinh t cosh t 0

0 0 1

 .

Then Θt ◦ Θ−t = Θ−t ◦ Θt = id{1}×D2 , therefore Θt is a homeomor-
phism. We now put (1, p′, q′) = Θt(1, p, q), then we obtain W = (cosh t−
p sinh t)W ′. Therefore we have, detW ′ = (cosh t− p sinh t)2 detW and
rankW ′ = rankW .

Finally, given Φ2,θ ∈ SO(1, 2), we may put (p′, q′) = (p cos θ+ q sin θ,
−p sin θ + q cos θ), then

W ′ = (1, p′, q′)

A′

B′

C′

 = (1, p′, q′)

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

A
B
C



= (1, p, q)

A
B
C

 = W.

Therefore, the determinant and the rank of W , W ′ coincide respectively.
This completes the proof.

The proof of the next result is analogous to the proof of Lemma 3.3.

Lemma 3.4. If the rank of α is 2 then the type of the plane 〈A,B,C〉
is an invariant.

Using the last results we have the following proposition.

Proposition 3.5. Let Dα be an open α-disc defined as above, then we
have:

(1) α is A-hyperbolic (or A-elliptic) if and only if any element of Dα is
contained in the hyperbolic region (or elliptic region respectively).

(2) If rankα = 2 and α is M2-parabolic, then α is A-parabolic or u is
inflection point if and only if Dα includes some parabolic point.

(3) If rankα = 2 and 〈A,B,C〉 isM2-hyperbolic, then α is A-parabolic
or u is inflection point if and only if Dα includes some elliptic, par-
abolic, and hyperbolic points.

(4) If rankα = 2 and 〈A,B,C〉 is M2-elliptic, then α is A-parabolic
or u is inflection point if and only if Dα includes some parabolic
point p. If u is an inflection point, then p is at the boundary of the
disc and if α is A-parabolic, then p is in the open disc.
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(5) If rankα = 3, we have no inflection point. Therefore α is A-par-
abolic if and only if Dα includes some elliptic, parabolic, and hy-
perbolic points.

Proof: By applying the above lemmas, we have the results.

4. Rank one case

We consider the rank one case and obtain the normal forms of α.
Using these normal forms, in this case, it is easy to study the number
of binormals and asymptotic directions. It can occur finite number of
asymptotic directions with infinite number of binormals or vice-versa; no
asymptotic and no binormal directions; or infinite number of binormals
associated to an unique asymptotic direction.

Proposition 4.1. If rankα = 1, there are the following equivalence
classes.

(a) M1-elliptic: α is equivalent to some α1,e.

(b) M1-parabolic: α is equivalent to some α1,p.

(c) M1-hyperbolic: α is equivalent to some α1,h, where

(2) α1,e =

c 0 c
s 0 s
0 0 0

 , α1,p =

c 0 0
s 0 0
0 0 0

 , α1,h =

0 c 0
0 s 0
0 0 0

 ,

with (c, s) = (1, 0), (0, 1), (1, 1).

Proof: Suppose that rankα = 1, then by acting Φ1,t,Φ2,θ ∈ SO(2, 1),
we may assume that the last line C = 0. Let D be a (3× 1)-matrix and
γ ∈ S1 with A = cos γD and B = sin γD. Next, we consider respectively
three cases ||B|| < ||A||, ||B|| > ||A||, and ||B|| = ||A||. In case that
| cos γ| > | sin γ|, by acting Φ1,t with tanh t = − sin γ/ cos γ, we obtain
B = 0 and we may replace A = (cos γ cosh t + sin γ sinh t)D by D. In
case that | cos γ| < | sin γ|, acting Φ1,t with 1/(tanh t) = − sin γ/ cos γ,
then we have A = 0 and we can take B = D by the same reason. In case
that | cos γ| = | sin γ|, by replacing the sign of the matrix B, then we can
take A = B = D. By following these steps we obtain the normal form
of the casesM1-elliptic,M1-parabolic, andM1-hyperbolic, respectively
when detD > 0, detD = 0, or detD < 0.

Theorem 4.2. The number of asymptotic directions (AD) and type of
binormal directions (BD), for each normal form of Proposition 4.1, are
in Table 2.
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M1-type AD BD

(c, s) = (1, 0) 0 0-type

M1-elliptic or M1-hyperbolic (c, s) = (0, 1) inflection (2 + 2)-type

(c, s) = (1, 1) inflection 4-type

(c, s) = (1, 0) 1 ]S1-type

M1-parabolic (c, s) = (0, 1) inflection ]S1-type

(c, s) = (1, 1) inflection trans-]S1-type

Table 2. M1-case.

Proof: We only prove the M1-parabolic case, the other two cases follow
similarly.

In this case (L,M,N)(u, θ) = (c+ s cos θ, 0, 0) and ∆(u, θ) ≡ 0 (]S1-
type). (i) If (c, s) = (1, 0) then for any θ, II e(u,θ)(du1, du2) = du2

1 = 0

gives only one asymptotic direction (M1p non-inflection ]S1-type). (ii) If
(c, s) = (0, 1) then (L,M,N) = 0 if θ = π/2, 3π/2, that is α is
M1p inflection ]S1-type. (iii) If (c, s) = (1, 1) then (L,M,N) = 0 if
θ = π and α is also inflection type (M1p inflection trans-]S1-type). Let
W = A + pB + qC and p2 + q2 ≤ 1. We may distinguish (ii) from (iii)
by the topological type of α-disc {(p, q)/p2 + q2 ≤ 1} (see Figure 1).

inflection trans-♯S1-type inflection ♯S1-type

rankW = 1

rankW = 0

0

rankW = 0

0

Figure 1. Topological type of ellipse in M1-parabolic
inflection type.

Remark 4.3. The GL(2,R) × SO(1, 2) action does not always preserve
the form of the curvature ellipse. When rankα = 1, at a non inflection
point, we see that the degenerate ellipse is a radial segment, or a point,
in the same equivalence class.
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0 0 0

0 0

0 0

(a) elliptic
non-inflection
0-type

(b) elliptic
inflection
4-type

0

0

(d) parabolic
non-inflection
♯S1-type

(e) parabolic
inflection
trans-♯S1-type

(g) hyperbolic
non-inflection
0-type

(h) hyperbolic
inflection
4-type

0

0

0

(c) elliptic
inflection
(2 + 2)-type

(f) parabolic
inflection
♯S1-type

(i) hyperbolic
inflection
(2 + 2)-type

Figure 2. Classification of M1-case.

5. Rank two case

In this section, we classify α when rankα = 2. According to the type
of the plane generated by A, B, and C, and the type of α given in
Section 3, we have the following result.

Proposition 5.1. If rankα = 2, there are the following equivalence
classes.

(a) M2-hyperbolic and A-elliptic: α is equivalent to αhe.
(b) M2-hyperbolic and A-parabolic: α is equivalent to αhp.
(c) M2-hyperbolic and A-hyperbolic: α is equivalent to αhh.
(d) M2-parabolic: α is equivalent to αp.
(e) M2-elliptic: α is equivalent to αe.
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The normal forms for α are displayed below and must have rank 2.

(3)

αhe=

 1 0 1
b0 0 0
c0 0 c2

, αhp=

 1 0 0
b0 0 0
c0 0 1

, αhh=

 1 0 −1
b0 0 0
c0 0 c2

,

αp=

 1 1 0
b0 0 0
c0 c1 0

, αe=

0 1 0
0 b1 0
1 c1 c2

,
where c2 < 0 for αe.

For theM2-parabolic case, that is, the plane 〈A,B,C〉 parabolic, we
need the following lemma.

Lemma 5.2. Suppose that rankα = 2 and the plane 〈A,B,C〉 is para-

bolic. If A is parabolic or equal to 0, then α ∼G α′, α′ =

(
A′

B′

C′

)
, where

A′ is hyperbolic.

Proof: Let W ∈ Dα, W 6= A hyperbolic, then the result follows by
Lemma 3.2.

Proof of Proposition 5.1:

M2-hyperbolic case: In this case, the plane 〈A,B,C〉 is hyperbolic, then
there are two generators D, E such that 〈D,E〉 = 〈A,B,C〉 and we can
assume detD > 0. We can get the simultaneous diagonal normal forms
of D and E, that is, there is a regular matrix S ∈ SO(2) such that

StDS = ± ( 1 0
0 1 ) , and StES =

(
λ1 0
0 λ2

)
. Therefore, we obtain

α′ =

a′0 0 a′2
b′0 0 b′2
c′0 0 c′2

 ,

which can be reduced to (a), (b), and (c) if A is respectively elliptic,
parabolic (we assume a′0 6= 0, a′2 = 0) or hyperbolic.

M2-parabolic case: In this case the plane 〈A,B,C〉 is parabolic, then
there are hyperbolic and parabolic vectors D, E (i.e. detD < 0 and
detE = 0) such that 〈D,E〉 = 〈A,B,C〉. Set S ∈ GL(2) such that
E′ = StES = ± ( 1 0

0 0 ) and StDS = D′. In this case, for any γ, δ ∈ R,

det(γE′ + δD′) = (detS)2 det(γE + δD) ≤ 0,

and zero if and only if δ = 0. This means that the plane 〈D′,E′〉 is
also parabolic, then it contains only one parabolic direction, which is
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E′ = ( 1 0
0 0 ). Moreover, it follows that it must contain D′′ = ( 0 1

1 0 ). As
A, B, C are linear combinations of D′′, E′, we have

α′ =

a′0 a′1 0
b′0 b′1 0
c′0 c′1 0

 .

Taking Φ2,θ ◦α′, for apropriate θ, we can get b′1 = 0. By Lemma 5.2, we
may assume that A is hyperbolic, then it is not hard to show that α′ is
equivalent to αp as in (3).

The M2-elliptic case follows similarly.

To complete the classification, we can now apply Proposition 3.5.
Using the normal forms, it is easy to study the number of binormals and
asymptotic directions. Observe that if E(u, θ) is a segment and the line
passing through it does not contain the origin, then ∆(u, θ) ≡ 0 does
not hold. Therefore, in this case, we have a finite number of binormals.

Theorem 5.3. The number of asymptotic directions (AD) and the types
of lightlike binormal directions (BD), for each normal form of Proposi-
tion 5.1, are in Tables 3 to 6.

A-elliptic A-hyperbolic AD BD

(a) b0
2+c0

2<1 and |c2|<1 (d) b0
2+c0

2<1 and |c2|<1 0 0-type

(b) b0
2+c0

2 =1 and |c2|<1 (e) b0
2+c0

2 =1 and |c2|<1 or 1 2-type
b0

2+c0
2<1 and |c2|=1

(c) b0
2+c0

2 =1 and |c2|=1 (f) b0
2+c0

2 =1 and |c2|=1 2 (2+2)-type

Table 3. M2-hyperbolic.

A-parabolic AD BD

(g) b0
2 + c0

2 < 1 1 (1 + 1)-type

(h) b0
2 + c0

2 = 1 and b0 6= ±1 2 (2 + 1 + 1)-type

(i) b0
2 + c0

2 > 1 and b0 6= ±1 2 (1 + 1 + 1 + 1)-type

(j) b0 = ±1 and c0 6= 0 inflection (2 + 1 + 1)-type

(k) b0 = ±1 and c0 = 0 inflection (3 + 1)-type

Table 4. M2-hyperbolic (continued).
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A-hyperbolic: |c1| ≤ 1, A-parabolic: |c1| > 1 AD BD

(a) |c1| < 1 0 0-type

(b) |c1| = 1 and c0 6= c1 1 4-type

(d) |c1| = 1, c0 = c1 b0 6= 0 inflection 4-type

(c) |c1| > 1, (c1 − c0)2 6= b0
2(c1

2 − 1) 1 (2 + 2)-type

(e) |c1| > 1, (c1 − c0)2 = b0
2(c1

2 − 1) inflection (2 + 2)-type

Table 5. M2-parabolic.

A-hyperbolic A-parabolic AD BD

(a) |b1| < 1 (b) |b1| > 1 0 0-type

(c) |b1| = 1 inflection 2-type

Table 6. M2-elliptic.

Proof: The number of binormals is always finite then in the non-inflec-
tion case the asymptotic directions are of same type as the binormal
directions (these types are defined in Section 3).

We use the normal forms given in Proposition 5 and we obtain Tables 3
to 6 by straightforward calculations (see also Figures 3 to 10).

cone

plane containing
LMN -ellipse

(a) A-elliptic 0-type (b) A-elliptic 2-type (c) A-elliptic (2 + 2)-type

Figure 3. Classification for M2-hyperbolic A-elliptic case.

(d) A-hyperbolic 0-type (e) A-hyperbolic 2-type (f) A-hyperbolic (2 + 2)-type

Figure 4. Classification for M2-hyperbolic A-hyper-
bolic case.
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(g) A-parabolic (1 + 1)-type (h) A-parabolic (2 + 1 + 1)-type

(i) A-parabolic (1 + 1 + 1 + 1)-type

Figure 5. Classification for M2-hyperbolic A-para-
bolic case.

(j) inflection (2 + 1 + 1)-type (k) inflection (3 + 1)-type

Figure 6. Classification for M2-hyperbolic inflection case.

(a) A-hyperbolic 0-type (b) A-hyperbolic 4-type (c) A-parabolic (2 + 2)-type

cone

plane containing
LMN -ellipse

0
0

0 0000

Figure 7. Classification for M2-parabolic case.
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0
0

(d) inflection 4-type (e) inflection (2 + 2)-type

Figure 8. Classification for M2-parabolic inflection case.

0 0 0 0

(a) A-hyperbolic 0-type (b) A-parabolic 0-type (c) inflection 2-type

cone

plane containing
LMN -ellipse

Figure 9. Classification for M2-elliptic case.

6. Rank three case

As the group G = GL(2) × SO(1, 2) has dimension 7 and the space
of 3× 3 matrices α has dimension 9, the classification of G-orbits in this
space has at least 2 parameters, but our aim is to classify as follows. We
use similar arguments as in Sections 4 and 5, according to the A-elliptic,
A-hyperbolic, and A-parabolic type of α, to obtain pre-normal forms for
rank 3 matrices depending on 4 parameters.

Proposition 6.1. If rankα = 3 we have the following subcases.

(a) M3 and A-elliptic: α is equivalent to α1
3,e or to α3,e, where c1 6= 0

and |b2| ≤ 1.
(b) M3 and A-hyperbolic: α is equivalent to α3,h, where c2− b2c0 6= 0.
(c) M3 and A-parabolic: α is equivalent to α3,p, where b2 6= 0.

The normal forms for α are displayed below.

(4)

α1
3,e =

 1 0 1
1 0 b2
c0 c1 c2

 , α3,e =

 1 0 1
0 0 b2
c0 c1 c2

 ,

α3,h =

 0 1 0
1 0 b2
c0 c1 c2

 , α3,p =

 1 0 0
b0 0 b2
c0 1 c2

 .

In each case, the normal forms must have rank 3.



Normal Darboux Images of Curves on a Timelike Surface 467

Proof: First, we fix a point u0 ∈ U and find a regular matrix S such
that

ST
(
a0 a1

a1 a2

)
S=

(
±1 0
0 ±1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
, or

(
±1 0
0 0

)
.

Then we have

α′ =

a′0 0 a′2
b′0 b′1 b′2
c′0 c′1 c′2

 ,

where (a′0, a
′
2) = (±1,±1), (1,−1), (−1, 1), or (±1, 0). Applying Φ3,±

(see Section 3), we may change the sign of (a′0, 0, a
′
2) to reduce α to the

cases in which (a′0, a
′
2) = (1, 1), (1,−1), or (1, 0). If b′1 6= 0, taking Φ2,θ

with (cos θ, sin θ) = (c′1,−b′1)/
√
b′21 + c′21, we obtain

(5) α′′ =

 1 0 a′2
b′′0 0 b′′2
c′′0 c′′1 c′′2

 , where a′2 = ±1 or 0.

We shall denote α′ and α′′ by α to simplify the notation, when it is
necessary.

By Proposition 3.5, there are three types for α. We prove the M3

and A-elliptic case, the other cases follow similarly.
In this case, we have the following simplified form: 1 0 1

b0 0 b2
c0 c1 c2

 , where c1 6= 0 and b0 6= b2.

By assumption, cosh tA + sinh tB must be elliptic for all t ∈ R, then
|b0| ≤ 1 and |b2| ≤ 1. We get the following two cases: If |b0| = 1, then
we have α1

3,e as in (4) where c1 6= 0 and |b2| < 1 or b2 = −1. If |b0| < 1,
we can apply Φ1t and appropriated ψ to obtain α3,e as in (4) where
c1 6= 0 and |b2| ≤ 1.

On the other hand, the number of the asymptotic directions corre-
sponds to the number of the real solutions of ∆(u, θ) = 0, which will be
discussed in further sections.

In the rank three case, it is more difficult to study the number of
asymptotic directions, because we need to analyze the type of solutions
of a polynomial of degree at most 4. Then we split this analysis in the
next sections.
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7. Equation of the asymptotic directions

In this section we obtain the equation of the asymptotic directions
associated to the lightlike binormal directions on spacelike surface in de
Sitter 5-space in terms of the coefficients of the second fundamental form.
The discriminant ∆(u, θ) = M(u, θ)2 −L(u, θ)N(u, θ) can be written as

∆(u, θ) = d1(u) + d2(u) cos θ + d3(u) sin θ + d4(u) cos2 θ

+ d5(u) cos θ sin θ + d6(u) sin2 θ,

where d1 = a2
1−a0a2, d2 = 2a1b1−a0b2−a2b0, d3 = 2a1c1−a0c2−a2c0,

d4 = b21 − b0b2, d5 = 2b1c1 − b0c2 − b2c0, and d6 = c21 − c0c2. The
lightlike direction e(u, θ) (more precisely, ē(u, θ)) is a binormal if and
only if ∆(u, θ) = 0. This equation can be written as

(6) (1 cos θ sin θ)

 d1 d2/2 d3/2
d2/2 d4 d5/2
d3/2 d5/2 d6

 1
cos θ
sin θ

 = 0.

If there is some θ which satisfies the above equation (6), then we find
the asymptotic directions (cosϕ, sinϕ) associated to θ by solving the
following equations:

(cosϕ sinϕ)

(
L M
M N

)(
cosϕ
sinϕ

)
= 0,

where L(u, θ), M(u, θ), N(u, θ) are the coefficients of the second funda-
mental form with respect to the lightlike direction e(u, θ). This equation
can be written as

(7) ∇(u, ϕ, θ) :=(cos2 ϕ 2 sinϕ cosϕ sin2 ϕ)

a0 b0 c0
a1 b1 c1
a2 b2 c2

 1
cos θ
sin θ

=0.

We eliminate the parameter θ. By using a mathematical software (such
as Maxima, Mathematica, or Maple), we obtain the following completed
square trigonometric homogeneous polynomial:

(8) T 2(u, ϕ)=(k4(u) cos4 ϕ+k3(u) cos3 ϕ sinϕ+ · · ·+k0(u) sin4 ϕ)2 =0,
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with

k4(u) = |a∗2|2 − |b∗2|2 − |c∗2|2,
k3(u) = −2(|a∗1||a∗2| − |b∗1||b∗2| − |c∗1||c∗2|),
k2(u) = |a∗1|2 + 2|a∗0||a∗2| − |b∗1|2 − 2|b∗0||b∗2| − |c∗1|2 − 2|c∗0||c∗2|,
k1(u) = −2(|a∗0||a∗1| − |b∗0||b∗1| − |c∗0||c∗1|),
k0(u) = |a∗0|2 − |b∗0|2 − |c∗0|2,

where |a∗i |, |b∗i |, and |c∗i | are cofactor matrices of α and rankα ≥ 2. We
consider, without loss of generality that p is of type M3. This is not
restrictive as M2-points form a curve on a generic surface M . So the
equation obtained at M3-points is also valid at M2-points by passing
to the limit. Notice that when rankα = 1, T (u, ϕ) always vanishes.

With the previous calculations we prove the next result.

Theorem 7.1. There is at most four asymptotic directions passing
through any non inflection point and non conic point, on a generic space-
like surface in S5

1 . These directions are solutions of the implicit differ-
ential equation

k0 du
4
2 + k1 du1 du

3
2 + k2 du

2
1 du

2
2 + k3 du

3
1 du2 + k4 du

4
1 = 0,

where the coefficients ki, i = 0, 1, 2, 3, 4 depend on the coefficients of
the second fundamental form, and are given above. If T (u, ϕ) ≡ 0 at
p = X(u) ∈M , then p is an inflection point.

8. The types of asymptotic and binormal directions

We are interested in analyzing the number of lightlike binormal direc-
tions and their associated asymptotic directions. To do this it is easier
to analyze the LMN -ellipse, as we justify in Section 2. This ellipse is
described by using the coefficients of the second fundamental form, using
the normal forms of α(u) from Sections 4, 5, 6.

Remember that a direction θ ∈ S1 is a lightlike binormal at p = X(u)
if ∆(u, θ) = 0. In this case we call a kernel direction of II e(u,θ) by
asymptotic direction associated to the lightlike binormal. As before, we
say simply binormal directions and asymptotic directions. For the cases
where α has rank 1 or 2, we analyzed the binormals according to their
(m1 + m2 + m3 + m4)-type with m1 + · · · + m4 = 0, 2, 3, 4 or S1-type,
in Sections 4 and 5. We have also studied the number of the asymptotic
directions, in each case.

If rankα = 3, then T (u, ϕ) = 0 if and only if ϕ is an asymptotic
direction. According to the number of real solutions of a polynomial of
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degree at most 4, the asymptotic directions are of the following types:
(4), (3+1), (2+2), (2+1+1), (1+1+1+1), (2), (1+1), (0), or of a conic
type (i.e. the LMN -ellipse E(u, θ) is on the cone, and all lightlike normal
directions are binormals and all tangent directions are asymptotic). If
T (u, ϕ) ≡ 0, then p = X(u) is a conic point. It is not an inflection
point because E(u, θ) does not pass through the origin when the rank
is 3. We can distinguish the cases by the solution types of the equations
T (u, ϕ) = 0 or ∆(u, θ) = 0, because if rankα = 3, for each binormal θ,
there is only one asymptotic direction with same multiplicity.

We now use the results of Appendix A to relate the solutions of
∆(u, θ)=d1(u)+d2(u) cos θ+d3(u) sin θ +d4(u) cos2 θ +d5(u) sin θ cos θ+
d6(u) sin2 θ = 0 with the roots of the trigonometric polynomial F2(t).

Let cos θ = 1−t2
1+t2 and sin θ = 2t

1+t2 . Then ∆(u, θ(t)) = 1
(1+t2)2F2(t), with

t = tan( θ2 ), where F2(t) = At4+Bt3+Ct2+Dt+E with A = d1−d2+d4,
B = 2d3−2d5, C = 2d1−2d4 +4d6, D = 2d3 +2d5, and E = d1 +d2 +d4.

Lemma 8.1. The solutions of ∆(u, θ(t)) = 0 correspond to the roots of
the t-polynomial F2 adding possibly the solution θ = π. More precisely
if θ = π is a solution, its multiplicity is equal to 4− degF2(t).

Proof: Use Lemma A.2.

We have the following result.

Proposition 8.2. Consider α with rank 3.

(a) The finite number of binormal directions and their multiplicities
are given in Tables 7, 8, and 9.

(b) The number of asymptotic directions (and their multiplicities) is
the same number of binormal directions (and their multiplicities).
All the possibilities for the finite number of asymptotic directions
are described in Tables 7, 8, or 9.

(c) At a conic point all normal lightlike directions are binormals and
all tangent directions are asymptotics.

Proof: (a) To discuss the number of solutions of ∆(u, θ) = 0, as in
Lemma 8.1, we change coordinates and in these new coordinates we
obtain the associated t-polynomial F2(t), defined in Appendix A, where
∆(u, θ(t)) = 1

(1+t2)2F2(t), with t = tan( θ2 ).

Since the degree of the t-polynomial F2(t) is at most four, we have
the following classification.

For next tables, n means the multiplicity of binormal direction θ = π
as the solution of ∆(u, θ) = 0, ∗ means that we do not care about the
value and N/A means no applicable.
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(1) Suppose that degF2(t) ≤ 2, then θ = π is binormal direction
with multiplicity 4 − degF2(t) ≥ 2, the t-polynomial is written
by F2(t) = Ct2 + Dt + E. If degF2(t) = 2, the discriminant
is given by Dquadratic = −D2 + 4CE. Then the types of binor-
mal directions (BD), and the number of imaginary solutions (NI)
of F2(t) = 0 are given in the following table.

BD NI Dquadric (C,D,E) degF2(t)

2 2 + C 6= 0 2

2 + 1 + 1 0 − C 6= 0 2

2 + 2 0 0 C 6= 0 2

3 + 1 0 N/A C = 0, D 6= 0 1

4 0 N/A C = D = 0, E 6= 0 0

]S1 N/A N/A C = D = E = 0 i.e. F2 ≡ 0 N/A

Table 7. Types of F2(t) = Ct2 +Dt+ E = 0.

(2) Suppose that degF2(t) = 3, then we have a cubic equation F2(t) =
Bt3 +Ct2 +Dt+E = 0 with B 6= 0. We have the binormal direc-
tion θ = π with multiplicity 1. In this case we have two discrimi-
nants: Dcubic,1 = B2E2 + 4

27 (C3E + BD3) − 2
3BCDE −

1
27C

2D2

and Dcubic,2 = 3BD−C2, where Dcubic,2 is used to determine the
existence of triple solutions. Then the types of binormal direc-
tions (BD), and the number of imaginary solutions (NI) of F2(t) =
0 are given in the following table.

BD NI Dcubic,1 Dcubic,2

1 + 1 + 1 + 1 0 − ∗

1 + 1 2 + ∗

2 + 1 + 1 0 0 6= 0

3 + 1 0 0 0

Table 8. Table of types on F2(t) = Bt3 + Ct2 +Dt+
E = 0 (B 6= 0).

(3) Finally we consider the case of the quartic equation degF2(t) = 4,
A 6= 0. In this case θ = π is not a binormal direction. Dividing
by A and changing coordinate, we use the simplified form F̄2(x) =

x4 +6Hx2 +4Gx+(I−3H2), where I = E
A−

BD
4A2 + C2

12A2 , G = D
4A−
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BC
8A2 + B3

32A3 , and H = C
6A−

B2

16A2 . Then the discriminant of F̄2(x) =

0 is written by Dquartic = I3 − 27(HI − 4H3 −G2)2. To apply the
classification in [3], the types of binormal directions (BD), and the
number of imaginary solutions (NI) of F̄2(x) = 0 are given in the
following table. (See also Figure 10.)

No. BD NI Condition

(1) 4 0 I = G = H = 0

(2) 3 + 1 0 I = G2 + 4H3 = 0
except for G = H = 0

(3) 1 + 1 2 Dquartic < 0

(4) 1 + 1 + 1 + 1 0 I > 0, Dquartic > 0, H < −
√
I

2
√
3

(5) 0 4 (distinct) I > 0, Dquartic > 0, H > −
√
I

2
√
3

(6) 2 + 1 + 1 0 I > 0, Dquartic = 0, H < −
√
I

2
√
3

(7) 2 + 2 0 I > 0, Dquartic = 0, H = −
√

I

2
√
3

(8) 2 2 I > 0, Dquartic = 0, H > −
√
I

2
√
3

except for case (9)

(9) 0 4 (multiple) I > 0, (H,G) = (
√
I

2
√
3
, 0).

In this case we have
Dquartic = 0 automatically

Table 9. Table of types on F̄2(x) = x4 +6Hx2 +4Gx+
(I − 3H2) = 0.

Case: I < 0

G

H

(3)

Case: I = 0 Case: I > 0

G

H

(3) (3)

(2)

(1) G=H=0

G

H
(4)

(3)

(6) (3)

(5)

(8)

(9) H=
√

I
2
√

3

(7) H=−
√

I
2
√

3

Figure 10. Figures of types of F̄2(x) = 0. Lines and
points satisfy Dquartic = 0; colored regions, Dquartic>0,
and white regions, Dquartic<0.

This finishes the proof.
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As a consequence, given a pre-normal form of Section 6, with rank 3,
to study the associated number of asymptotic directions we can study the
equation of binormal directions by using the conditions given in Tables 7,
8, or 9.

Let

α(u) :=

a0 a1 a2

b0 b1 b2
c0 c1 c2

 ,

be any 3 × 3-matrix. Then, there exists a local embedding X : U ⊂
R2 −→ S5

1 ⊂ R6
1 such that α is the matrix of the second fundamental

form of X. In fact, we can take f(u1, u2) = a0u
2
1 + 2a1u1u2 + a2u

2
2 +

h.o.t., g(u1, u2) = b0u
2
1 + 2b1u1u2 + b2u

2
2 + h.o.t., and h(u1, u2) = c0u

2
1 +

2c1u1u2 +c2u
2
2 +h.o.t., where h.o.t. means higher order terms. Then the

Monge form of a spacelike surface in de Sitter 5-space is given by

X(u)=

(
f(u1, u2),

√
1+f2−g2−h2−u2

1−u2
2, u1, u2, g(u1, u2), h(u1, u2)

)
.

We give some examples below.

Example 8.3. (1) If f(u1, u2) = 1
2u

2
1, g(u1, u2) = 1

2u
2
2, h(u1, u2) =

u1u2 then A = (1, 0, 0), B = (0, 0, 1), C = (0, 1, 0) and the as-
ymptotic directions at u = (u1, u2) = (0, 0) are given by du4

2 −
du2

1 du
2
2 − du4

1 = 0 (Theorem 7.1), with two simple real solutions.
(2) If f(u1, u2) = 1

2 (u2
1 +u2

2), g(u1, u2) = 1
2 (u2

1−u2
2), h(u1, u2) = u1u2

then at u = (0, 0), A = (1, 0, 1), B = (1, 0,−1), C = (0, 1, 0) and
all directions are asymptotic, this is the conic case.

(3) If f(u1, u2) = − 1
2u

2
1, g(u1, u2) = 1

2u
2
1 − u1u2 + 1

4u
2
2, h(u1, u2) =

1
200u1u2 then A=(−1, 0, 0), B=(0,−1, 1/2), C=(0, 1/100, 0) and

the asymptotic directions are given by 1
10000 du

4
2 + 1

5000 du1 du
3
2 −

1
4 du

2
1 du

2
2 − du3

1 du2 − du4
1 = 0. To analyze the type of solu-

tions we obtain the equation of binormal directions ∆(u, θ(t)) =
1

(1+t2)2F2(t) where F2(t) = 1 + (1/25)t3 − t2. Since A = 0 and

Dcubic,1 = −2473/27 < 0 then we conclude that there are 4 distinct
binormal directions, consequently 4 distinct asymptotic directions
(Table 8).
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Appendix A. Solutions of trigonometric equation

Let

f(c, s) :=

m∑
j+k=0

αj,kc
jsk,

with c = cos(θ) and s = sin(θ) a trigonometric polynomial. We say that
f is a polynomial of order m ≥ 1 if the polynomial part of order m is
not zero by substituting c2 = 1− s2, that is f satisfies

f1 :=

[m
2 ]∑
j=0

αm−2j,2j× (−1)j 6= 0 or f2 :=

[m−1
2 ]∑
j=0

αm−1−2j,2j+1× (−1)j 6= 0,

where f1 is the coefficient of sm and f2 is the coefficient of csm−1 and
they are the only degree m terms after this substitution.

By substituting c = 1−t2
1+t2 and s = 2t

1+t2 (then t = tan(θ/2)) we get
1

(1+t2)mFm(t) and removing the denominator we get an associated t-poly-

nomial Fm(t) of f

Fm(t) :=

m∑
j+k=0

αj,k(1− t2)j(2t)k(1 + t2)m−j−k,

with order less or equal to 2m. We observe that (1+t2) is not a common
factor of Fm(t) if αj,k 6= 0 for some coefficients with j + k = m because
m− j − k = 0. In this case, Fm(t) = 0 does not have a solution ±i. We
now consider the relations between f(cos θ, sin θ) = 0 and Fm(t) = 0,
first of all, we prove the following lemma.

Lemma A.1. Let f̄(θ) := f(cos θ, sin θ) be a trigonometric polynomial
of order m and Fm be an associated t-polynomial of f . For any 1 ≤ n ≤
2m, the following conditions are equivalent.

(1) `2m = `2m−1 = · · · = `2m−(n−1) = 0 and `2m−n 6= 0, where `k are
the coefficients of Fm(t),

Fm(t) =

2m∑
k=0

`kt
k.

(2) The germ f̄ : (S1, π) −→ R is K-equivalent to xn at x = 0, that is

f̄(π) =
∂f̄

∂θ
(π) = · · · = ∂n−1f̄

∂θn−1
(π) = 0 and

∂nf̄

∂θn
(π) 6= 0.
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Proof: Let g(c, s) = f(−c, s) =
∑m
j,k=1 αj,k(−c)jsk. Since g(c, s) =

f(−c, s) is a trigonometric polynomial of order m, then its associate
t-polynomial is given by

G̃m(t) :=

m∑
j+k=0

αj,k(−1 + t2)j(2t)k(1 + t2)m−j−k.

By computation, t2m × G̃m(1/t) = Fm(t) and we have

G̃m(t) =

2m∑
k=0

`2m−kt
k.

Let Φ(θ) = tan(θ/2) then we have Gm(t) = (1 + t2)m(ḡ ◦ Φ−1)(t),
so that ḡ(θ) := g(cos θ, sin θ) at θ = 0 is locally K-equivalent to Gm(t)
at t = 0. This means that (2) is equivalent to the condition that Gm(t)
at t = 0 is K-equivalent to xn at x = 0. By the coefficients of Gm(t),
this condition is also equivalent to the condition (1). This completes the
proof.

Now we may conclude the relations between the trigonometric poly-
nomial and its t-polynomial.

Lemma A.2 (Property of the t-polynomial of trigonometric polyno-
mial). Let f(c, s) be a trigonometric polynomial of degree m. If
degFm(t) = 2m− n and Fm(t) = 0 has k-distinct solutions t1, . . . , tk ∈
R and `-distinct solutions tk+1, . . . , tk+` ∈ C \ R with the multiplicity
m1, . . . ,mk+` (where m1 + · · ·+mk+` = 2m− n) then we have:

(1) tj 6= ±i for all j = k + 1, . . . , k + `.
(2) f(cos θ, sin θ) = 0 has (k+1)-distinct solutions θ1, . . . , θk ∈ S1 and

π ∈ S1 with the multiplicities m1, . . . ,mk and n.
(3) f(c, s) = 0 has `-distinct complex solutions (c1, s1), . . . , (c`, s`) ∈

C2 \ R2 on c2 + s2 = 1 with the multiplicities mk+1, . . . ,mk+`.
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