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Intro Method Calculation Result

A small extended body moving through spacetime

Fundamental question

how does a body’s gravitational field affect its own motion?

Regime: asymptotically
small body

examine spacetime
(M, gµν) containing
body of mass m and
external lengthscales R

seek representation of
motion in limit
ǫ = m/R ≪ 1
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Gravitational self-force

treat body as source of perturbation of external background
spacetime (ME , gµν)

gµν = gµν + ǫh(1)µν + ǫ2h(2)µν + . . .

h
(n)
µν exerts self-force on body

self-force at linear order in ǫ first calculated in 1996 [Mino, Sasaki,
and Tanaka], now on firm basis [Gralla & Wald; Pound; Harte]
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Canonical example: extreme-mass-ratio inspiral

solar-mass neutron star or black hole orbits supermassive black hole

m = mass of smaller body, R ∼M = mass of large black hole

(ME , gµν) = Kerr spacetime of large black hole

Why second order?

inspiral occurs very slowly, on timescale 1/ǫ
⇒ need O(ǫ2) terms in acceleration to get trajectory correct at O(1)

also useful to complement PN and NR
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How to determine motion: buffer region

define buffer region by
m≪ r ≪ R

because m≪ r, can treat
mass as small perturbation
of external background

because r ≪ R, can use
information about small
body
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Matched asymptotic expansions: inner expansion

Zoom in on body

map ψ keeps size of body fixed, sends other distances to infinity
(e.g., using coords ∼ r/ǫ)

unperturbed body defines background spacetime gIµν in inner
expansion

buffer region at asymptotic infinity
⇒ can define multipole moments
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Matched asymptotic expansions: outer expansion

Send body to zero size around a worldline

map ϕ shrinks body to zero size, holding other distances fixed

build metric gµν + ǫh
(1)
µν + ǫ2h

(2)
µν + . . . in external universe (outside

buffer region) subject to matching condition: in coords centered on
γ, metric in buffer region must agree with inner expansion
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Metric in buffer region

Expansion for small r

presence of any compact body in inner region leads to

h(1)µν =
1

r
h(1,−1)
µν + h(1,0)µν + rh(1,1)µν +O(r2)

h(2)µν =
1

r2
h(2,−2)
µν +

1

r
h(2,−1)
µν + h(2,0)µν +O(r)

where r is distance from γ

most divergent terms are background spacetime in inner expansion:

gIµν = ηµν + 1
r
h
(1,−1)
µν + 1

r2
h
(2,−2)
µν +O(1/r3)

Relating worldline to body

define γ to be worldline of body
iff mass dipole terms vanish in
coords centered on γ
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Solving the EFE with an accelerated source

Expansion of EFE

allow γ to depend on ǫ and assume outer expansion of form

gµν(x, ǫ) = gµν(x) + hµν(x; γ)

= gµν(x) + ǫh(1)µν (x; γ ) + ǫ2h(2)µν (x; γ ) + . . .

need a method of systematically solving for each h
(n)
µν

⇒ impose Lorenz gauge on total perturbation: ∇µh̄
µν = 0

linearized Einstein tensor δGµν becomes a wave operator and EFE
becomes a weakly nonlinear wave equation:

�h̄µν [γ] + 2Rµ
ρ
ν
σh̄ρσ[γ] = 2δ2Gµν [h] + . . .

(no stress-energy tensor because equation written outside body)

can be split into wave equations for each subsequent h
(n)
µν [γ] and

exactly solved for arbitrary γ

∇µh̄
µν = 0 determines acceleration of γ
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General solution in buffer region

First order

field naturally splits in two: h
(1)
µν = h

S(1)
µν + h

R(1)
µν

h
S(1)
µν ∼ 1/r + . . . defined by mass monopole m

h
R(1)
µν ∼ r0 + . . . undetermined homogenous solution regular at r = 0

∇µh̄
µν = 0 ⇒ ṁ = 0 and aµ(0) = 0

Second order

field naturally splits in two: h
(2)
µν = h

S(2)
µν + h

R(2)
µν

h
S(2)
µν ∼ 1/r2 + 1/r + . . . defined by
1 mass correction δm
2 mass dipole Mµ (set to zero with appropriate choice of γ)
3 spin dipole Sµ

∇µh̄
µν = 0 ⇒ Ṡµ = 0, ˙δm = . . ., and aµ(1) = . . .
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Matching to an inner expansion

Inner expansion

could continue with same method to find aµ(2) from h
(3)
µν

instead, get more information from inner expansion

assume metric in inner expansion is Schwarzschild as tidally
perturbed by external universe

write tidally perturbed Schwarzschild metric in mass-centered
coordinates

Matching

expand inner metric in buffer region (i.e., for r ≫ m)

demand inner and outer expansions in buffer region are related by
unique gauge transformation xµ → xµ + ǫξµ + . . .

restrict gauge transformation to include no translations at r = 0 to
ensure worldline correctly associated with center of mass

Adam Pound Second-order gravitational self-force



Intro Method Calculation Result

Equation of motion

Self-force
matching procedure yields acceleration

aµ =
1

2
(gµν + uµuν)

(

gν
ρ
− hRν

ρ
) (

hRσλ;ρ − 2hRρσ;λ
)

uσuλ +O(ǫ3)

where aµ = aµ(0) + ǫaµ(1) + ǫ2aµ(2) + . . .

and hRµν = ǫh
R(1)
µν + ǫ2h

R(2)
µν + . . .

this is geodesic equation in metric gµν + hRµν

equation for more generic body will be the same, modified only by
body’s multipole moments
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Obtaining global solution

Puncture/effective-source scheme

define hPµν as small-r expansion of hSµν truncated at order r or higher

define hRµν = hµν − hPµν ≃ hRµν

The point...

hSµν found in buffer region suffices to determine both hRµν and global
solution outside body
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Summary

Determining the motion of a small body

define a worldline of an asymptotically small body, even a black hole,
by comparing metric in a buffer region around body in full spacetime
and in background spacetime

determine equation of motion from consistency of Einstein’s equation

Future work
find equation for spinning, non-spherical body

implement puncture scheme
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