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Second-Order Iterative Learning Control for Scaled Setpoints

Jeroen de Best, Lancheng Liu, René van de Molengraft, and Maarten Steinbuch

Abstract— Iterative learning control (ILC) is a control technique for
systems subject to repetitive setpoints or disturbances. However, in many

applications, the setpoint is not strictly repetitive, and the learning

process should start all over from the beginning if the setpoint changes.

In this brief, point-to-point movements with different magnitudes will
be considered, which are constructed by scaling a nominal setpoint.

Second-order ILC with an adaptive low-pass filter in the trial domain is

used to accurately track these scale varying setpoints under the influence

of disturbances that are either repetitive or experience the same scaling as
the setpoint. Experiments have been carried out to validate the proposed

method.

Index Terms—Iterative learning control (ILC), motion control.

I. INTRODUCTION

In many manufacturing processes, production steps are carried

out on repetitive structures. Examples of repetitive structures are

given in Fig. 1. In many of these production steps, the tool is to

be aligned with respect to a feature, perform its task, and move

toward the next feature. Most conventional control approaches use a

feedback controller for plant stabilization and disturbance rejection in

combination with a feedforward controller according to a predefined

structure (e.g., mass, damping, and coulomb friction) to increase

the performance. However, there are limitations using this approach.

For example, the closed-loop bandwidth can be limited by system

dynamics, whereas the fixed-structure feedforward may not be able

to capture the disturbances [1], [2]. For tracking a predefined setpoint

over and over again, a control technique called iterative learning

control (ILC) [1] can be applied. The ILC reduces the tracking error

along a trajectory that is traced repeatedly by the iterative refinement

of a feedforward signal. Good surveys of recent ILC research can be

found in [3]–[6].

One constraint within ILC is that the setpoint needs to be repetitive

every trial. In practice, however, the distance between consecutive

features may vary (e.g., due to temperature changes). Hence, the

setpoint to be tracked is not strictly repetitive but varies due to these

variations. Applying ILC for varying setpoints is one of the challenges

in current ILC research. Several methods have been developed to

use the knowledge from previous ILC trials to construct feedforward

signals for new, different setpoints.

In [7] and [8], time-frequency adaptive ILC is proposed, where

different setpoints are generated using a constant velocity phase

with variable length. More general trajectories are considered in [9]

in which a finite impulse response mapping strategy is proposed

based on converged learning forces obtained with learning control

at a specific acceleration set-point profile. In [10], basis tasks
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Fig. 1. Repetitive structures: OLED display and diodes on a wafer.

are learned from which a reference trajectory can be constructed.

Direct learning control (DLC) [11] and recursive DLC [12] are

developed to generate the control signal for a new setpoint using

prestored setpoints and control signals. The methods presented in

[9]–[12] need the converged feedforward signals learned from spe-

cific setpoints to construct the new control input for a different

setpoint. In this brief, we will present a second-order ILC (SOLIC)

algorithm in which scale varying setpoints are applied during the

learning process and for which the tracking error will be reduced

iteratively.

High-order ILC was studied in [13]–[20]. It is shown that high-

order ILC is useful to increase the convergence speed [13], [16],

[18], reject disturbances that satisfy an a priori relation from one

trial to the next [19] and has robustness in the presence of external

disturbances [18]. In this brief, SOILC will be used to iteratively

identify different classes of disturbances, which are used for updating

the feedforward signal.

This brief focuses on accurate tracking of setpoints, which are

constructed by scaling a nominal setpoint. ILC is used to update

the feedforward signal while during iterations scale varying setpoints

are applied. We analyze the convergence of the tracking error for

situations with and without disturbances. It is assumed that these

disturbances are repetitive every trial and/or experience the same

scaling as the setpoint. A SOILC strategy will be used to identify

these two types of disturbances and compensate for them during

iterations. The contributions of this brief are: 1) the design of a

SOILC strategy to accurately track scale varying setpoints in which

during the learning process these scale varying setpoints are applied

and 2) will be implemented on an industrial setup to show the

effectiveness.

The rest of this brief is organized as follows. In Section II, the

standard ILC method is extended by implementing scaling only,

leading to normalized ILC (NILC). SOILC will be derived in

Section IV. In Section V, results of experiments will be given, where

the different methods will be compared. Section VI will present the

conclusions.

II. STANDARD ILC AND NILC

In this section, we will briefly discuss the ILC working princi-

ple [21], [22]. To explain ILC, consider the block scheme given in

Fig. 2 with a controller K and a plant G, both assumed to be discrete

and linear time invariant. A schematic representation of the plant that

1063-6536 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. (N)ILC scheme. Dashed box: offline updating of the feedforward
signal.

Fig. 3. Schematic representation of the plant. A near-repetitive structure
is mounted on a stage driving by the force f . The goal is to position the
tool with respect to the features of the near-repetitive structure. The relative
position between the tool and the features y is measured via a camera.

is considered in this brief is given in Fig. 3. For now, we take the

gain Tk = 1. The time shift operator in Fig. 2 is denoted by z, i.e.,

z−1x(t) = x(t − 1), here t represents the sample number. The trial

shift operator is denoted by w, i.e., w−1xk (t) = xk−1(t), where k

represents the trial number [19], [20]. The repetitive setpoint is given

by r , whereas the output at trial k is denoted by yk . During trail k,

the feedforward signal fk is applied and the error ek is measured.

Offline, the error signal is filtered with the learning filter L and added

to the feedforward fk . This filter is chosen as an approximation of the

inverse of the process sensitivity Sp and can be designed, for instance,

using the zero-phase error tracking controller algorithm [23]. Next,

the robustness filter Q is applied, which results in the feedforward

fk+1 that is applied in the next trial k + 1. The offline updating is

mathematically written as

fk+1 = Q( fk + Lek). (1)

The tracking error e in trial k + 1 can be written as

ek+1 = Sr − Sp fk+1 (2)

where S = 1/(1 + G K ) is the sensitivity and Sp = G/(1 + G K )

is the process sensitivity. Substitution of the update law (1) into (2)

leads to

ek+1 = Sr − QSp( fk + Lek). (3)

Similar to (2), we use the fact that Sp fk = Sr − ek and substitute

this into (3) such that the error at trial k + 1 becomes a function of

the error in the previous trial k

ek+1 = Q(1 − L Sp)ek + (1 − Q)Sr. (4)

The above system is called an linear iterative system for which

convergence (under the assumption of infinite trajectory length) is

Fig. 4. Setpoint generation for different magnitudes. Gray line: nominal
setpoint. Dashed line: stretched setpoint. Black line: scaled setpoint.

obtained when [20]

‖Q(e jω)(1 − L(e jω)Sp(e jω))‖∞ < 1 ∀ω ∈ [−π, π] (5)

is satisfied.

As opposed to the repetitive setpoint considered in standard ILC,

point-to-point setpoints with varying travel distances will be consid-

ered here since small variations are present in the distance between

successive features. An example of a nominal setpoint is given in gray

in Fig. 4. In general, two ways of setpoint generation for different

magnitudes are: 1) include a constant velocity part [7] (dashed line

in Fig. 4) and 2) scale the acceleration profile [11], [12] (black line

in Fig. 4). In this brief, we handle setpoint variation using the second

type and scale a nominal setpoint r by a gain Tk , which results in

a setpoint rk that is used in the trial k, i.e., rk = Tkr . The value of

Tk is assumed to be bounded by Tk ∈ [T , T ], where T , T ∈ R
+

are related to the pitch variation present in the repetitive structure.

The scaling factor, Tk , can be determined a priori. The center of the

camera is initially located above the center of a feature, whereas the

next neighboring target feature is already in the field of view. From

this, the distance between the features can be determined and Tk can

be determined. We scale the setpoint such that the time to reach each

target is the same. Moreover, the switching times for the acceleration

in this case remain the same, such that we can exploit the use of

scaling.

As standard ILC can only cope with a repetitive setpoint, the error

will not converge if during iterations these scale varying setpoints rk

are applied. To handle scale varying setpoints, we proceed as follows.

Standard ILC can be extended by incorporating the gain Tk before and

after the ILC update block as depicted in Fig. 2, which will be referred

to as NILC in the remainder of this brief. The learning update uses the

normalized error e∗
k

= T −1
k

ek to construct a normalized feedforward

signal f ∗
k+1

as shown in the dashed area in Fig. 2, whereas the applied

feedforward signal is given by fk = Tk f ∗
k . The same analysis done

in (1)–(5) can be carried out to prove that the error is convergent.

However, in case disturbances are present in the system, NILC is

likely to fail due to the fact that disturbances will not scale in general.

III. EXISTENCE OF DISTURBANCES

The assumptions behind NILC are that the closed-loop system is

LTI and that the error scales with the same gain as the setpoint, which

in the presence of disturbances does not hold [24]. In this brief, three

types of disturbances will be considered.
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Fig. 5. Industrial application: an xy-wafer stage.

Fig. 6. Measured errors for different gains. Gray line: T1 = 0.9. Black line:
T2 = 0.95. Dotted-black line: T3 = 1. Bold: T4 = 1.05. Dashed-black line:
T5 = 1.1.

1) Disturbances that experience the same scaling as the setpoints,

i.e., dk = Tkd . Unmodeled viscous damping in a mechanical

motion system is an example of such a disturbance. Moreover,

the reference itself can be seen as one.

2) Disturbances that are repetitive every trial, i.e., dk+1 =

dk = · · · = d . These kind of disturbances are for example

caused by an amplifier offset, gravity forces, or dry friction.

3) Disturbances that are of a random nature such as sensor noise.

The existence of disturbances is investigated in practice using the

industrial application depicted in Fig. 5. The setup consists of an

xy-stage carrying a wafer with discrete semiconductors. The stage

is actuated by current controlled linear motors. For feedback, the

position of the semiconductors is measured via a camera mounted

above the stage at 1 kHz. A controller is tuned using classical

loopshaping techniques [25] such that the closed-loop system has

a bandwidth of 20 Hz (Section V).

Next, five experiments are conducted, in which each time the nominal

setpoint of Fig. 4 is scaled by a different gain Tk and applied to the

closed-loop control system while measuring the position error. The

gains Tk that are used in the experiments are T1 = 0.9, T2 = 0.95,

T3 = 1, T4 = 1.05, and T5 = 1.1. The corresponding errors are given

in Fig. 6. A first observation is that the five measured errors have a

similar shape, but each with different amplitude. From scaling, the

errors are expected to satisfy

ei

Ti
=

e j

T j
, i, j ∈ {1, . . . , 5}. (6)

Fig. 7. Differences between measured error e2 and its approximations. Gray
line: e2 − (T2/T1)e1. Black line: e2 − (T2/T3)e3. Dashed-black line: e2 −
(T2/T4)e4. Dotted-black line: e2 − (T2/T5)e5. Bold line: difference between
measured error e2 and approximation by combination of e1 and e3 given
in (9).

Fig. 8. Feedback control structure with a repetitive input disturbance d.

Using this, the error e2 for example can be estimated from e1 by

(T2/T1)e1. Similar estimates of e2 can be made from e3, e4, and e5.

The differences of the measured error e2 and these estimated errors

are given in Fig. 7. It can be seen that the differences are not exactly

zero, since disturbances of types 2 and 3 are present. Considering

these types of disturbances, a much more accurate estimate of e2 can

be computed by taking combinations of errors. This is explained

using Fig. 8 where, with fk = 0 and nk = 0, the errors are given by

ei = Ti g+ h, i ∈ {1, . . . , 5}, with g = Sr and h = −Spd . Note that

g originates from a type 1 disturbance, which is the reference r in

this case. The signal h originates from a type 2 disturbance, being

the repetitive disturbance d . From two measurements, for example,

e1 and e3, we can estimate g and h by

(

e1

e3

)

=

(

T1 1

T3 1

) (

g

h

)

→

(

g̃

h̃

)

=

(

T1 1

T3 1

)−1 (

e1

e3

)

(7)

which results in

g̃ =
e3 − e1

T3 − T1
, h̃ =

T3e1 − T1e3

T3 − T1
. (8)

Using this, e2 can now be estimated more accurately as

T2 g̃ + h̃ =
T3 − T2

T3 − T1
e1 +

T2 − T1

T3 − T1
e3. (9)

The difference of the measured error e2 and this estimate is also given

in Fig. 7 in bold. It can be seen that it is much more accurate than

the scaled errors. The accuracy of this estimate is <1 µm, whereas

others are as large as 10 µm. Similar results are obtained, when

this estimate is constructed with other combinations of errors. In the

remainder of this brief, this idea will be extended to ILC by learning

the signals g and h, which will lead to SOILC.

IV. SECOND-ORDER ITERATIVE LEARNING CONTROL

In this section, first the principle of SOILC will be explained.

Then, it will be analyzed under which conditions the proposed SOILC

approach is convergent and what the influence of sensor noise and

applying similar setpoints is. Finally, improvements will be presented

by adding an adaptive low-pass filter in the trial domain for SOILC.
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A. Principle of SOILC

Consider the control scheme in Fig. 8 at this moment without

sensor noise nk = 0, where the goal is to design a feedforward

signal fk+1 in such a way that the error ek+1 in trial k + 1 is zero.

Assume we have two trials k −1 and k, for which the errors of these

two trials can be written as

ek−1 = Tk−1g + h − Sp fk−1 (10)

ek = Tk g + h − Sp fk . (11)

After these two trials, the repetitive terms g and h can be estimated

similar to (8)

g̃ =
ek−1 − ek

Tk−1 − Tk
+

Sp( fk−1 − fk)

Tk−1 − Tk
(12)

h̃ =
Tk−1ek − Tkek−1

Tk−1 − Tk
+

Sp(Tk−1 fk − Tk fk−1)

Tk−1 − Tk
. (13)

Assume the feedforward signal for trial k + 1 is fk+1, then the error

for trial k + 1 can be estimated as

ek+1 = Tk+1 g̃ + h̃ − Sp fk+1

= (1−α)ek−1+αek +Sp((1−α) fk−1+α fk)−Sp fk+1 (14)

with α defined as

α =
Tk−1 − Tk+1

Tk−1 − Tk
, Tk−1 �= Tk . (15)

Since we want to design a feedforward signal fk+1 in such a way

that ek+1 = 0, from (14) we solve fk+1

fk+1 = (1−α) fk−1+α fk +
1

Sp
((1−α)ek−1+αek). (16)

As in standard ILC, the inverse of the process sensitivity Sp

is approximated by L and a robustness filter Q can be added

(Section II), leading to the second-order update law

fk+1 = Q((1−α) fk−1+α fk +L((1−α)ek−1+αek)). (17)

Update law (17) can be used for the situation, where types 1 and 2

disturbances are present in the system. However, at this point, three

questions remain to be answered. First, is the new linear iterative

system convergent? Second, what happens in case Tk = Tk−1? Third,

how does SOILC deal with type 3 disturbances?

B. Analysis of SOILC

In this section, the SOILC approach is analyzed with respect to

the three previous mentioned questions.

1) Convergence: From (10) and (11), we obtain

Sp fk−1 = Tk−1g + h − ek−1 (18)

Sp fk = Tk g + h − ek . (19)

In (14), substitute fk+1 by (17) and together with (18) and (19), we

obtain

ek+1 = Q(1 − L Sp)(αek + (1 − α)ek−1) + (1 − Q)(Tk+1g + h).

(20)

To analyze the convergence of error, the system is constructed as a

linear iterative system. From (20), it can be seen that ek+1 is related

to ek and ek−1. We define xk = (ekek−1)T and uk = Tk+1g + h

such that

xk+1 = Axk + Buk (21)

with

A =

(

a1 a2

1 0

)

, B =

(

1 − Q

0

)

(22)

Fig. 9. Computed α values based on ‖Q(e jω)(1 − L(e jω)Sp(e jω))‖∞ that
make the system convergent.

where a1 = Q(1−L Sp)α and a2 = Q(1−L Sp)(1−α). Convergence

of this linear iterative system is assessed in the frequency domain

using the work of [20]. Transforming the linear iterative system to

the frequency domain leads to

Xk+1(ω) = A(e jω)Xk(ω) + B(e jω)Uk(ω) (23)

where the signals xk and uk are transformed to the frequency domain

using

X (ω) =

∞
∑

l=0

x(l)e− jωl . (24)

Convergence is now obtained if

ρ = sup
ω∈[0,π]

ρ(A(e jω)) < 1 (25)

with ρ(A(e jω)) denoting the spectral radius of A(e jω) defined as

ρ(A(e jω)) = max
i={1,2}

|λi (A(e jω))|. (26)

The eigenvalues of the matrix A(e jω) are given by

λ1,2(e jω) =
a1(e jω) ±

√

a1(e jω)2 + 4a2(e jω)

2
. (27)

Therefore, convergence of the linear iterative system (21) is guaran-

teed if the condition
∥
∥
∥
∥
∥

a1(e jω) ±
√

a1(e jω)2 + 4a2(e jω)

2

∥
∥
∥
∥
∥
∞

< 1 ∀ω (28)

is satisfied. Since the phase of L(e jω)Sp(e jω) is zero for all

frequencies and Q(e jω) is a zero-phase low-pass filter, a1(e jω)

and a2(e jω) are real-valued, ∀ω. It will be shown that there is a

tradeoff between the designed Q and L filter and the maximum

allowable values of α, which guarantee convergence. In Fig. 9, the

gray area indicates the allowable values of α for different values

of ‖Q(e jω)(1 − L(e jω)Sp(e jω))‖∞. From this figure, we have the

following observations:

1) for convergence, ‖Q(e jω)(1 − L(e jω)Sp(e jω))‖∞ ≤ 1 is

necessary;

2) if ‖Q(e jω)(1 − L(e jω)Sp(e jω))‖∞ = 1, then 0 ≤ α ≤ 2;

however, from from the definition of α, it is possible that α is

negative depending on the values of the gains;

3) the smaller the value of ‖Q(e jω)(1 − L(e jω)Sp(e jω))‖∞, the

larger the range of possible values of α.
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Note that the presented convergence analysis is very strict, since it

is expected that the error in the next trial is always smaller than the

current error, irrespective of the applied gain with which the setpoint

is scaled. However, if the setpoint in the next trial is obtained by

scaling with a larger gain than the current setpoint, the error in the

next trial is also expected to be larger than the current error. As a

result, it is harder to always obtain a smaller error in the next trial

than the error in the current trial.

2) Perfect Pitch: If in the previous two trials, the gains Tk and

Tk−1 are the same, by definition, the value of α = ±∞. Hence,

if ‖Q(e jω)(1 − L(e jω)Sp(e jω))‖∞ > 0, then convergence can

not be guaranteed. This is caused by the fact that we can not

estimate g and h after two trials with the same setpoint. In fact, after

having designed the learning filter L and the low-pass filter Q, the

quantity ‖Q(e jω)(1 − L(e jω)Sp(e jω))‖∞ can be calculated. Using

this result in combination with Fig. 9, the allowable values of α can

be determined. Improvements regarding this issue will be discussed

Section IV-C.

3) Type 3 Disturbances: If Tk−1 is close to Tk , then type 3

disturbances highly affect the estimations of g and h. This is

explained as follows. By considering sensor noise nk in Fig. 8, the

errors ek−1 and ek can be written as

ek−1 = Tk−1g+h−Sp fk−1−Snk−1 (29)

ek = Tk g+h−Sp fk −Snk . (30)

Substitution of (29) and (30) into (12) and (13) leads to

g̃ = g − S
nk−1 − nk

Tk−1 − Tk
︸ ︷︷ ︸

estimation error

, h̃ = h − S
Tk−1nk − Tknk−1

Tk−1 − Tk
︸ ︷︷ ︸

estimation error

. (31)

Therefore, if Tk is close to Tk−1, there will be large estimation errors,

since the noise terms are amplified. In this brief, we will deal with this

sensor noise by iteratively estimating g and h such that these noise

terms will not be amplified. This is done by introducing an adaptive

low-pass filter in the trial domain on the estimates of g and h.

C. Improving SOILC

In this section, we will improve the principle of SOILC with

respect to: 1) sensor noise and 2) for cases in which Tk = Tk−1.

By introducing an adaptive low-pass filter in the trial domain, SOILC

is first made less sensitive to sensor noise. Incorporating sensor noise

nk in the previous analysis leads to the update law

fk+1 = Q((1−α) fk−1 +α fk +L((1−α)ek−1+αek

+S(1−α)nk−1+Sαnk)). (32)

If the previous two gains, Tk and Tk−1 are close to each other, the

absolute value of α can be large. Hence, the sensor noise is amplified

by a large gain and becomes part of the next feedforward signal fk+1,

which is not desired and may cause a large error.

In the trial domain, the random type 3 disturbances, such as sensor

noise, are changing from trial to trial, whereas the repetitive type 2

disturbances remain the same. Therefore, the sensor noise can be

seen as a high-frequency signal in the trial domain, whereas the

repetitive disturbances can be seen as a low-frequency signal in the

trial domain [26]. This implies that we can use a low-pass filter

in the trial domain to reject the sensor noise. We use SOILC with

an adaptive low-pass filter in the trial domain to smoothen out the

sensor noise. In this way, the estimations of g and h are obtained

iteratively and filtered and are then used in the generation of the new

feedforward signal fk+1. Define the terms g and h as the true values

and g̃k and h̃k to represent the corresponding estimations after trial k

g̃k =
ek−1 − ek

Tk−1 − Tk
+Sp

fk−1 − fk

Tk−1 − Tk
(33)

h̃k =
Tk−1ek −Tk ek−1

Tk−1 −Tk
+ Sp

Tk−1 fk −Tk fk−1

Tk−1−Tk
. (34)

The first-order adaptive low-pass filters in the trial domain are

chosen as

ĝk+1 = (1 − γk)ĝk + γk g̃k (35)

ĥk+1 = (1 − γk)ĥk + γk h̃k (36)

where ĝk+1 and ĥk+1 are the low-pass filtered outputs of the

estimations, which are going to be used in the update law. The value

of γk can be tuned to give a weighting on how much the current

estimates of g and h are used for the construction of the new

feedforward signal. For stability of these low-pass filters, it is required

that 0 ≤ γk ≤ 1. To prevent sensor noise amplification when

Tk ≈ Tk−1, we choose γk as γk = β |Tk−1 − Tk |, where now the

scalar β should satisfy 0 ≤ β ≤ 1/T − T . In such way, we cancel

out the denominator (Tk−1 − Tk) in (31), so only β S(nk−1 − nk)

and β S(Tk−1nk − Tk nk−1) are considered in the estimations of

g and h. A tradeoff is present in this case between convergence

speed and sensitivity to random disturbances, as is also discussed

in [27]. A larger value of β results in faster convergence but results

in a system that is more sensitive to noise and vice versa.

In case Tk−1 = Tk , the value of γk becomes zero. As a result,

the estimates ĝk+1 and ĥk+1 are not updated and equal the previous

ones ĝk and ĥk such that no learning is performed. For the cases

where Tk−1 = Tk and learning is to be performed in trial k + 1 with

Tk+1 = Tk , two options are considered.

1) In case Tk−1 = Tk , a standard ILC update could be applied for

trial k +1, which updates the feedforward signal and decreases

the next tracking error. The update law is in that case given

by fk+1 = Q( fk + Lek). A disadvantage, however, is that the

estimates ĝ and ĥ are not updated while standard ILC is applied.

Whenever future gain values differ from Tk such that SOILC

can be applied again, the error might increase significantly,

since old and possibly nonconverged values of ĝk+1 and ĥk+1

are used.

2) In order to keep learning and update ĝk+1 and ĥk+1 while

Tk+1 = Tk , we propose the following. Instead of using

information of the previous two trials k and k−1 to update ĝk+1

and ĥk+1 in SOILC, we use the information of the previous

trial k and trial k − p, where p ≥ 1 is the smallest number for

which Tk−p �= Tk to update ĝ and ĥ. Therefore, the update

can be written as

ĝk+1 = (1 − γk)ĝk + γk g̃k (37)

ĥk+1 = (1 − γk)ĥk + γk h̃k (38)

with now γk = |Tk−p − Tk | and

g̃k =
ek−p − ek

Tk−p − Tk
+ Sp

fk−p − fk

Tk−p − Tk
(39)

h̃k =
Tk−pek − Tkek−p

Tk−p − Tk
+ Sp

Tk−p fk − Tk fk−p

Tk−p − Tk
. (40)

As an example, consider the gains depicted in Fig. 10. The gains

are different for each iteration except for iteration five to eight, where

the gains are the same. Hence, for k = 6, 7, and 8 the value Tk−1 −

Tk = 0. Therefore for iteration k = 6, 7 and 8, the values of p in

(39) and (40) are 2, 3, and 4, respectively. For iteration k = 2, 3, 4,

5, 9, and 10, the value Tk−1 − Tk �= 0. Therefore, the value of p in
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Fig. 10. Example of possible gains. The gains in iterations five to eight are
the same, whereas others are different each trial.

(39) and (40) is taken as one, such that it results in its original form

of (33) and (34).

The error in trial k + 1 can now be estimated as

ek+1 = Tk+1 ĝk+1 + ĥk+1 − Sp fk+1. (41)

Since the goal is to design a feedforward signal fk+1 such that

ek+1 = 0, we derive the new update law

fk+1 = L(Tk+1 ĝk+1 + ĥk+1). (42)

By successive substitution and with the definition of γk , we can write

ĝk+1 as

ĝk+1 = (1 − β |Tk−1 − Tk |)ĝk + β sgn(Tk−1 − Tk)

×(ek−1 − ek + Tk−1 ĝk−1 + ĥk−1 − Tk ĝk − ĥk).

Similarly

ĥk+1 = (1−β |Tk−1 −Tk |)ĥk +β sgn(Tk−1−Tk )(Tk−1ek

−Tkek−1+Tk−1(Tk ĝk +ĥk)−Tk (Tk−1 ĝk−1+ĥk−1)).

To filter out the high-frequency components in the measured error, we

still use a zero-phase low-pass filter Q as the robustness filter after

the updated estimations ĝk+1 and ĥk+1. Therefore, the first-order

low-pass filters in the trial domain (35) and (36) now also include

the low-pass filtering in frequency domain, i.e., the new filters now

are

ĝk+1 = Q((1 − γk)ĝk + γk g̃k) (43)

ĥk+1 = Q((1 − γk)ĥk + γk h̃k). (44)

V. RESULTS

In this section, the performance of standard ILC, NILC, SOILC,

and SOILC with an adaptive low-pass filter in the trial domain for

scale varying setpoints will be compared. The proposed methods are

validated on a xy-wafer stage, where the task is to move from one

feature to the next (Fig. 5). The frequency response function (FRF)

from the input of the motor to the position output is given in Fig. 11.

The plant is modeled by a mass-damper system with delay. The

obtained model given by

G =1×10−4 ·
1×10−3

z − 1
·

1.34z2+5.14z+1.23

z2(z − 0.85)
(45)

is also shown in Fig. 11 by its FRF and shows a good match

until ∼60 Hz. As a consequence, a mismatch between the measured

process sensitivity and its model is expected after 60 Hz. Therefore,

Fig. 11. Measurement FRF and the corresponding fit of the plant: measure-
ment data (gray line), fitted model (dashed black line).

Fig. 12. Gains applied during iterations on the xy-wafer stage.

the Q filter gets a cutoff frequency of 50 Hz. A controller K is

tuned which consists of a lead filter with a zero at 6 Hz and a pole

at 100 Hz and a second-order low-pass filter with a cutoff frequency

of 250 Hz and a damping of 0.6. Finally, a notch is added at 80 Hz.

The discrete controller is given by

K = 1 × 104 ·
3.3z5−2.3z4 −7.8z3+11z2−3.5z−0.82

z5−2.4z4 +2.4z3−1.2z2+0.38z−0.070
. (46)

The number of iterations that will be performed is 30. For the

sake of comparison, the arbitrary gains are chosen the same for the

four methods. The bounds are given by T = 0.75 and T = 1.25.

Fig. 12 shows the applied gains. The proposed methods are applied

on the xy-wafer stage with the value of β chosen as 1 in this case,

such that 0 ≤ β ≤ 1/T − T = 2 is satisfied. The maximum errors

for each iteration are given in Fig. 13. Since standard ILC does not

incorporate the scaling of the setpoint, it is expected that the final

error oscillates depending on the applied gains, which also shows in

Fig. 13. NILC does incorporate the scaling of the setpoint, however,

it is based on the absence of type 2 disturbances. Dry friction is one

of the major disturbances present in the experimental setup. It can

be seen that if two successive gains are quite different the error

of NILC increases, which is caused by the inappropriate scaling of

the error. To a priori, determine the performance for standard ILC

versus NILC for the case given in Fig. 8 consider the standard ILC

case where: 1) a fixed disturbance d is present and 2) a setpoint r

is applied with (for now) a fixed gain, i.e., T1. The error of each

iteration is given by ek = T1Sr − Spd − Sp fk . After convergence
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Fig. 13. Maximum absolute error in meters. Dashed-gray line: standard
ILC. Dashed-black line: NILC. Gray line: SOILC. Bold line: SOILC with an
adaptive low-pass filter in the trial domain.

(k → ∞), the error has approached zero and the feedforward signal

is given by f∞ = S−1
p T1Sr − d . If now a differt gain, say T2,

would be applied to the setpoint then for standard ILC together

with the converged feedforward signal f∞, the error would be e =

T2Sr−Spd−Sp f∞ = T2Sr−Spd−Sp(S−1
p T1Sr−d) = S(T2−T1)r .

On the other hand if NILC would have been applied, then the error

would be e = T2Sr − Spd − Sp(T2/T1) f∞ = T2 Sr − Spd −

Sp(T2/T1)(S−1
p T1Sr−d) = Sp((T2/T1)−1)d = S(T2−T1)(G/T1)d .

In both cases, non zero errors appear. Which one is the least directly

depends on the plant G and (the frequency content of) r and d , where

the latter one requires additional system knowledge in order to a

priori compare the performance between standard ILC and NILC.

If the frequency content of (G/T1)d is smaller than the frequency

content of r , then NILC is more favorable than standard ILC and

vice versa.

SOILC without low-pass filters in the trial domain suffers from the

fact that α will become large if Tk−1 − Tk is small, resulting in an

increase of the errors due to sensor noise amplification. This is the

case for iteration 16, where the feedforward update (17) is dependent

on iterations 14 and 15, which are close to each other (Fig. 12). The

same reasoning holds for iteration 23. The most satisfactory results

are obtained using SOILC with an adaptive low-pass filter in the trial

domain. After 11 iterations, the error is converged to maximum errors

of <5 µm. Overall, we see that SOILC has a slower convergence rate

in the first iterations. Note, that in this brief, the initial conditions

of the feedforward signals f , see Fig. 8, are taken as zero for all

experiments. At the first iteration the estimators ĝ and ĥ for SOILC

are zero as well. As opposed to standard ILC and NILC, the SOILC

uses a second-order iteration scheme. Therefore, the signals ĝ and ĥ,

on which the feedforward depends, can only be estimated after two

iterations. So, in fact the first applied feedforward making use of

the identified signals ĝ and ĥ is at the third iteration. This already

explains the difference in convergence at the beginning of the iteration

process.

For industrial applicability, a better initial condition could be

estimated to have a faster convergence. First, the iteration process

could be started with a classical tuned feedforward signal f , where

typically mass, damping, and dry friction are included [2]. Second,

regarding the signal g, we recognize that the setpoint contribution

is captured within the signal. So in fact, a better initial estimate for

g is advised as Sr , with S being the sensitivity and r the setpoint

(Fig. 8). Similarly, for the signal h a better initial estimate for h is

advised as −Spd , with Sp being the process sensitivity and d the

disturbance (Fig. 8). However, the signal d is to be known in that

case, which requires system knowledge, i.e., the specific nature of

Fig. 14. Maximum absolute error in meters. Bold: SOILC with an adaptive
low-pass filter in the trial domain with β = 0.5. The gains of iteration 11
through 20 (the hatched area) are the same but learning is still present.

what is captured within the signal d should be known. The proposed

solution in case Tk−1 = Tk in SOILC with adaptive low-pass filtering

in the trial domain is investigated next. During the iterations, the

applied gains in this case are the same as in Fig. 12, except that

the gains of iterations 11 through 20 are kept the same in this case

and equal to the gain of iteration 11. Furthermore, the value of β is

taken as 0.5, such that learning is slower. If β = 1, we saw in the

previous results that the error and therefore also the estimates ĝ and

ĥ already converged within 11 iterations. The effect that we want

to visualize here is that learning is still present even when the gain

values of two successive iterations are the same. The results are given

in Fig. 14. The gray hatched area indicates that the gains are the same

for these iterations. A first observation is that the error converges

slower. This was expected due to the lower value of β. Second, the

error converges even when the gains of iterations 11 through 20 are

the same. Furthermore, after iteration 20, when the gains deviate

again, learning is still present as can be seen by the further reduction

of the error. This result shows that the proposed solution in the case

where two successive gains are the same is effective.

VI. CONCLUSION

Three methods, NILC, SOILC, and SOILC with an adaptive low-

pass filter in the trial domain have been investigated to handle scale

varying setpoints in ILC. Experiments are carried out to validate

these methods. NILC achieves a good performance when there is

no disturbance at all. SOILC is sensitive to nonrepetitive noise when

the previous applied setpoints are almost the same. SOILC with an

adaptive low-pass filter in the trial domain can handle the situation

when both repetitive disturbances and nonrepetitive noise exist and

achieves a good performance. After convergence, the error is reduced

to <5 µm. The investigated methods consider disturbances that

experience the same scaling as the setpoint, and trial-independent

repetitive disturbances. Another class of disturbances are position-

dependent disturbances, e.g., cogging. This kind of disturbances

cannot be handled in this brief, since scaling cannot be applied. This

will, therefore, be subject for future research.
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