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Abstract

We discuss the differences between first-order set theory and second-
order logic as a foundation for mathematics. We analyse these lan-
guages in terms of two levels of formalization. The analysis shows
that if second-order logic is understood in its full semantics capable
of characterizing categorically central mathematical concepts, it re-
lies entirely on informal reasoning. On the other hand, if it is given
a weak semantics, it loses its power in expressing concepts categori-
cally. First-order set theory and second-order logic are not radically
different: the latter is a major fragment of the former.

1 Introduction

Second-order logic differs from the usual first-order predicate calculus in that
it has variables and quantifiers not only for individuals but also for subsets
of the universe (sometimes variables for n-ary relations as well, but this is
not important in this context). The deductive calculus DED2 of second-
order logic is based on rules and axioms ([Hen50]) which guarantee that the

∗I am grateful to Juliette Kennedy for many helpful discussions while developing the
ideas of this paper.
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quantifiers range at least over definable subsets. As to the semantics, there
are two versions of models: Suppose A is an ordinary first-order structure and
S is a set of subsets of the domain A of A. The idea is that the set-variables
range over S:

〈A,S〉 |= ∃Xφ(X) ⇐⇒ (∃S ∈ S)(〈A,S〉 |= φ(S)).

We call 〈A,S〉 a Henkin model, if 〈A,S〉 satisfies the axioms of DED2 and
truth in 〈A,S〉 is preserved by the rules of DED2. We call this semantics
of second-order logic the Henkin semantics and second-order logic with the
Henkin semantics the Henkin second-order logic. There is a special class of
Henkin models, namely those 〈A,S〉 where S is the set of all subsets of A.
We call these full models. We call this semantics of second-order logic the full
semantics and second-order logic with the full semantics the full second-order
logic.1.

The following facts are the main features of second-order logic:

• The Completeness Theorem: A sentence is provable in DED2 if and
only if it holds in all Henkin models ([Hen50]).

• The Löwenheim-Skolem Theorem: A sentence with an infinite Henkin
model has a countable Henkin model.

• The Compactness Theorem: A set of sentences, every finite subset of
which has a Henkin model, has itself a Henkin model.

• The Incompleteness Theorem: Neither DED2 nor any other effectively
given deductive calculus is complete for full models, that is, there are
always sentences which are true in all full models but which are un-
provable.

• Failure of the Compactness Theorem for full models.

• Failure of the Löwenheim-Skolem Theorem for full models.

• There is a finite second-order axiom system Z2 such that the semiring
N of natural numbers is the only full model (up to isomorphism) of Z2.

1Also other kinds of models have been studied. In weak second-order logic (see e.g.
[Mos61]) one considers only models 〈A,S〉 where S is the set of all finite subsets of A. One
can also limit S to the set of all countable subsets of A. Finally, one may limit S to the
set of all first-order definable subsets of A ([Lin73]).
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• There is a finite second-order axiom system RCF2 such that the field
R of real numbers is the only (up to isomorphism) full model of RCF2.

As the above facts demonstrate, it is highly critical what kind of seman-
tics one uses for second-order logic. One semantics gives beautiful categoric-
ity2 results. Another semantics gives beautiful model-theoretic methods.
Mathematical logic has results such as Gödel’s Incompleteness Theorem that
analyse the reasons why there seems to be a dichotomy: either categoric-
ity or axiomatization. I will argue in this paper that if second-order logic
is used in formalizing or axiomatizing mathematics, the choice of seman-
tics is irrelevant: it cannot meaningfully be asked whether one should use
Henkin semantics or full semantics. This question arises only if we formal-
ize second-order logic after we have formalized basic mathematical concepts
needed for semantics. A choice between the Henkin second-order logic and
the full second-order logic as a primary formalization of mathematics cannot
be made; they both come out the same.

If one wants to use the full second-order logic for formalizing mathemati-
cal proofs, the best formalization of it so far is the Henkin second-order logic.
In other words, I claim, that if two people started using second-order logic for
formalizing mathematical proofs, person F with the full second-order logic
and personH with the Henkin second-order logic, we would not be able to see
any difference. There would be the secondary difference, that if mathemati-
cians were unable to decide whether some statement (like the Continuum
Hypothesis) is true or false, person H could formalize the deductive calculus
DED2, and show that the statement is independent of DED2. This would
be a clear message that something new is needed for deciding the statement.
Person F is a priori not in such a position and would be unable to tell why
the statement eludes proof or disproof.

The situation is similar to that regarding the cumulative hierarchy and
Zermelo-Fraenkel set theory. We can informally define the sets

R0 = ∅
Rα+1 = the set of all subsets of Rα

Rν =
⋃

α<ν Rα for ν limit,

and regard their union V as the standard model of set theory. We can do the
same more formally inside ZFC set theory and prove in ZFC that indeed every

2An axiom system is said to be categorical if it has only one model up to isomorphism.
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set is in (what ZFC thinks is ) V . We cannot meaningfully ask whether the V
as defined in ZFC is the real V . But if we reformalize ZFC inside ZFC, then
we can note that the reformalized ZFC, call it ZFC, has countable models
and hence cannot be categorical. We have the following match:

ZFC

V
=

Henkin models

Full models
.

As with second-order logic, we cannot really choose whether we axiomatize
mathematics using V or ZFC. The result is the same in both cases, as ZFC
is the best attempt so far to use V as an axiomatization of mathematics.
If we think of the truth or falsity of the Continuum Hypothesis (CH) in V ,
Cohen’s proof of the independence of CH from ZFC, with all the information
about models of set theory that came with the proof, is a huge step toward
understanding why CH has not yet been settled in V . Likewise, the study of
Henkin models of second-order artihmetic (see e.g. [Sim99]) isolate reasons
why some results of number theory or analysis are hard to prove.

2 Preliminary example

Mathematicians argue exactly but informally. This has worked well for cen-
turies. However, if we want to understand the way mathematicians argue, it
is necessary to formalize basic concepts such as the concepts of language and
criteria of truth.

We study two metatheories of mathematics: first-order set theory and
second-order logic. It is often said (e.g. [Sha91]), that second-order logic is
better than first-order set theory because it can in its full semantics axiom-
atize categorically N and R, while first-order axiomatization of set theory
admits non-standard, e.g. countable models. We show below that this dif-
ference is illusory. If second-order logic is construed as our primitive logic,
one cannot say whether it has full semantics or Henkin semantics, nor can
we meaningfully say whether it axiomatizes categorically N and R. So there
is no difference between the two logics: first-order set theory is merely the
result of extending second-order logic to transfinitely high types. Such an
extension is known to be conservative3[Hin55, Mon65a].

3More exactly, higher order logic can be reduced to second-order logic. To decide how
high order logic can be reduced depends only on how long well-ordered order-types are
definable in second-order logic.
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In both first-order set theory and second-order logic we think that there is
a universe (or many universes) of mathematical objects where the sentences of
our logic have a meaning. This meaning cannot be defined mathematically.
Any attempt to do so ends up in a vicious circle. We cannot even ask
meaningfully whether the universe is unique or a multitude of many universes.
We simply do not have a language for talking about the universe or the
universes as objects that could be identical to each other.

As a concrete example of a mathematical proof and its formalization, let
us consider the following:

Bolzano’s Theorem: Every continuous function on [0, 1], which
has a negative value at 0 and a positive value at 1, has the value
0 at some point on (0, 1).

Proof: Let the function be f . Consider the set

X = {x ∈ (0, 1) : f(x) < 0}.

This set is bounded from above by 1 and hence has a supremum.
Call the supremum a. If f(a) < 0, then by continuity there is a
neighborhood of a on (0, 1) in which f(x) < 0. Hence a could not
be the supremum of X. If f(a) > 0, then there is a neighborhood
in which f(x) > 0, so again X could not be the supremum. Hence
f(a) = 0. 2

A formalization of this in first-order set theory is based on the Com-
pleteness Property

∀u ⊆ R((u 6= ∅ ∧ ∃z∀x(x ∈ u→ x ≤ z))

→ ∃z(∀x(x ∈ u→ x ≤ z) ∧
∀z′(∀x(x ∈ u→ x ≤ z′)) → z ≤ z′) (1)

of the set-theoretic construction of the reals (e.g. as Cauchy-sequences or
Dedekind cuts) and on an instance of the Separation Schema

∃z∀x(x ∈ z ↔ (φ(x) ∧ x ∈ R)),

where φ(x) is chosen to be the formula f(x) < 0 ∧ 0 < x < 1.
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A formalization of the same proof in second-order logic would use the
following Continuity Axiom of the axiomatization of the structure of reals
in second-order logic:

∀X((∃xX(x) ∧ ∃z∀x(X(x) → x ≤ z))

→ ∃z(∀x(X(x) → x ≤ z) ∧
∀z′(∀x(X(x) → x ≤ z′)) → z ≤ z′) (2)

We instantiate the second-order universal quantifier ∀X by substituting the
set {x ∈ (0, 1) : f(x) < 0} into X. We do not need the full semantics as the
set {x ∈ (0, 1) : f(x) < 0} is definable by φ(x). Thus we can prove Bolzano’s
Theorem in Henkin’s complete axiom system ([Hen50]) for second-order logic.

There is not much difference between the two formalizations of the infor-
mal proof of Bolzano’s Theorem. The second-order logic proof is like a pared
down version of the more lavish set-theoretic proof. All we need is axioms
about definable sets of reals, so there is no need to postulate all of set theory.

3 Informal reasoning, formalization

Informal mathematical reasoning, appealing to intuition, is the only process,
if any such exists, which puts us in contact with mathematical truth. In the
late 19th century mathematics had reached such elaboration that mere intu-
ition was not a sufficient guiding principle any more. Properties of point-sets
and continuous functions such as space-filling curves, nowhere differentiable
continuous functions, paradoxical decompositions of the sphere and so forth,
seemed to defy intuition. It was suggested that the human mind may not
be adequate to dealing with the subtleties of infinite sets and mathemati-
cal reasoning should therefore be limited to the area of finite sets and finite
operations. Since infinite sets however abound in mathematics, everything
beyond finite was to be formalized and axiomatized into a game on finite
strings of symbols.

One of the developments that exposed conceptual confusions in the early
20th century was the appearance of paradoxes4. These examples center

4Richard’s paradox: “The smallest natural number not definable by nine words is
definable by nine words.” Russell’s paradox: “The set of sets which are not elements
of themselves is not an element of itself, hence is an element of itself” Burali Forti
paradox: “The set of all well-ordered sets can be well-ordered under order-preserving
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around the concepts of definability and large sets, and fail to touch upon
topics in classical mathematics, such as analysis, algebra and number theory.
For the foundations of mathematics and attempts to formalize mathematics
they presented a challenge. Formalization does not per se remove paradoxes,
rather the contrary. It is quite possible that a formalization of a part of math-
ematics involves a formalization of a paradox. However, formal methods are
now known for the avoidance of particular paradoxes. To avoid Richard’s
paradox one limits the induction axioms to sets definable in a certain formal
language. The paradox then turns into a proof that the set of definable num-
bers is not itself definable. For the other paradoxes above, one distinguishes
between a set and a class, and the paradoxes then simply demonstrate that
certain classes are not sets.

Another reason for formalization is the need to understand basic princi-
ples, which, though probably consistent, seem to elude clarity. The axiom of
choice is a good example. Projective determinacy is a more recent example.
At the lower end of complexity we have Π1

2-comprehension. I will argue be-
low that first-order logic serves us better in this kind of formalization than
second-order logic.

A general reason for formalization, related to understanding basic princi-
ples, is the need to develop meaning theory for mathematics. The idea that
mathematics has no meaning at all contradicts the basic experience of doing
mathematics. It can be argued that the experience of meaning is an illusion,
which cannot be subjected to exact study. If this were the case, it is con-
ceivable that an attempt to study the meaning would manifest this, ending
in impossibility or incredibility.

But alas, we cannot formalize the real content of informal reasoning. This
is a fundamental fact. Wittgenstein ends his Tractatus with the words

“My propositions serve as elucidations in the following way: any-
one who understands me eventually recognizes them as nonsensi-
cal, when he has used them–as steps–to climb up beyond them.”

Formalization always involves a leap of faith - “ladders” - to cross a gaping
crevice between what is intended and what is achieved. Tarski and Gödel
proved exact results to the same effect. In particular we cannot hope to find
conclusive security against paradoxes via formalization.

embeddings. Hence it is isomorphic to an initial segment of itself and therefore not well-
ordered” Cantor’s paradox : “The powerset P of the set A of all sets has cardinality
greater than A, although P is a subset of A.”

7



A lot of effort is put into reducing consistency statements of formal sys-
tems to a more transparent form, e.g. transfinite induction, where intuition
could be more reliable. This will always leave open the question whether a
lack of balance in this reduction is a sign of lack of consistency or a sign of
inherent limitation of intuition.

Informal reasoning will remain the guiding line in mathematics; formal
methods involve always a speculative element to be convincing, as we cannot
fix the meaning of our formal expressions. This is paradoxical. Surely infor-
mal reasoning about infinite objects feels more like speculation than formal
reasoning, where everything is spelled out in axioms. But in the latter case
we can only speculate whether our formalization captures what we intend.
I argue below that this is true whether we use first-order or second-order
formalization.

4 Urlogic

Formalization of mathematics involves defining a formal language with some
intended meaning. Let us call this language urlogic5. The idea is that
urlogic is the most primitive formal language we use to study the process of
doing mathematics.

Urlogic is the aspect of mathematicians’ activity that consists of just
writing down finite strings of symbols - sentences - according to some fixed
rules. Those sentences are sentences of urlogic. Whether a string of symbols
is a sentence of urlogic should be totally unproblematic.

Intuitively these sentences have a meaning in the universe (or universes)
of mathematical objects. Some sentences are said to be true by virtue of ex-
pressing a true proposition in this universe. The whole point of mathematics
is the truth of its sentences, not their form. It is also the truth which is
problematic and calls for formalization. We discuss formalization of truth in
Section 5.

If one asks a mathematician why he or she calls a sentence φ on the
blackboard “true” the answer is not that φ is true because its meaning is a
true proposition of the universe of mathematical objects. The answer would
be that φ is true because it can be proved from first principles. These first

5The word “metatheory” is often used for a similar notion. When we introduce the
concept of “object language” in Section 5, we could call urlogic a metatheory of the object
language.
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principles are called “first” because they are considered self-evident (and their
further elucidation is left to logicians). Examples of such first principles are
(1) and (2) above. Further examples are the Archimedian Axiom for the
reals6, and the Induction Axiom for natural numbers7.

How difficult should it be to tell if some principle is a first principle or
not? In order to really be on the most primitive level, it should be a non-
mathematical question whether a statement has actually been listed as a
first principle or not. That we may disagree as to what should be listed there
or not is another matter. Thus we call some statements of urlogic axioms
and regard them as first principles that are accepted true by agreement. No
mathematics should be involved in checking that a string is indeed in the list
of axioms, it is merely a question of comparing finite strings of symbols to a
list of such strings.

When a mathematician is asked to tell why a sentence is true, he or she
appeals to what follows from the first principles, the axioms. What does he
or she mean by “follow”? At its simplest, this means appealing to such basic
rules of logic as

From φ and φ→ ψ follows ψ. (3)

From ∀xφ(x) follows φ(t) for each term t. (4)

As the example of the proof of Bolzano’s Theorem showed, it is important
to discuss what is meant by “term” here. In urlogic we are dealing with
finite strings of symbols. If we want to derive the string φ(t) from the string
∀xφ(x) by substitution of t into x, t must be a string as well. We cannot in
this context substitute a set t into x. That would not make sense, because
the result would not be a finite string. Thus t has to be a finite string itself,
a variable, a constant or a complex term arising from function symbols or
other operations such as Hilbert’s ε-operation or Church’s λ-notation.

There may be other rules of derivation than (3) and (4), for example the
ω-rule:

From φ(n) for all n = 0, 1, 2, . . . follows ∀x(N(x) → φ(x)), (5)

where n is a term denoting the natural number n and N is the name for
the set of natural numbers. The problem with this rule as a rule of urlogic

6Every real number is less than 1 or 1+1 or 1+1+1 or ....
7Every set of natural numbers, which contains 0, and which contains the successor of

each of its elements, contains all natural numbers.
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is that derivations become infinite. When the ω-rule is used repeatedly, a
whole infinite tree of sentences emerges. We cannot say that this is the most
primitive level of analyzing the process of doing mathematics. The concept
of derivation as an infinite tree calls for an analysis too. It is only when
derivations are finite that we can say that we are at the root of things, where
we cannot conceive of a more primitive concept of derivation8.

In summary, urlogic has the following characteristics:

• Sentences of urlogic are finite strings of symbols. That a string of
symbols is a sentence of urlogic, is a non-mathematical judgement.

• Some sentences are accepted as axioms. That a sentence is an axiom,
is a non-mathematical judgement.

• Derivations are made from axioms. The derivations obey certain rules
of proof. That a derivation obeys the rules of proof, is a non-mathematical
judgement.

• Derived sentences can be asserted as facts.

In classical mathematics the law of excluded middle

φ ∨ ¬φ

is asserted as a fact, but it is not the case, and it does not follow from this,
that given any sentence φ, either φ or ¬φ can be asserted as a fact. It may
be that neither has been derived yet, and it may be that neither can be
derived because of some weakness in the axioms. By Gödel’s Incompleteness
Theorem it seems unavoidable that there always are such sentences φ.

If we take first-order set theory as the urlogic, the sentences of urlogic are
sentences of first-order predicate logic with identity, with the binary predicate
symbol ∈ as the only non-logical symbol. The axioms are the usual rules of
first-order logic augmented with the Zermelo-Fraenkel axioms ZFC of set
theory. On the informal level we interpret the sentences of this urlogic as
propositions about mathematical objects construed as sets. As mathematical
objects are not a priori sets, a certain reinterpretation is called for in our
mind. This however is in harmony with the general ideology in mathematics

8In fact, a more primitive notion would be a “surveyable” proof, a proof we can under-
stand as opposed to a random sequence of sentences which happens to obey the rules of
proof.
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that only the mutual relationships of mathematical objects really matter, not
what the objects are made of.

In the case of second-order logic the sentences of urlogic are the sentences
of second-order predicate logic. Depending on the context, the non-logical
vocabulary may consist of symbols for the arithmetic of natural numbers,
arithmetic of real numbers, and so forth. Montague [Mon65b] gives second-
order Peano axioms Z2 for number theory, and second-order axioms RCF2 for
real closed fields. For full second-order logic there is a notion of “semantical”
derivation:

We can derive ψ from φ if every model of φ is a model of ψ. (6)

However, we cannot accept this rule in urlogic, since scanning through all
models of φ is a highly mathematical act. So we have to settle with the rules
DED2, such as those presented in [Hen50], most notably

From ∀Xφ(X) follows φ({x : ψ(x, y1, . . . yn)}) (7)

for each formula ψ(x, y1, . . . , yn), plus perhaps some new ones that we do
not know yet. There are technical results, e.g. in [Hen50], to the effect that
second-order logic with rules like (7) admit non-standard models where the
second-order variables do not range over all subsets of the domain. These
are not relevant here, however, as we have not formalized the semantics of
second-order logic. So on the level of urlogic it does not make sense to ask if
the models of our sentences are standard or non-standard. The only “model”
we have is the world of mathematical objects, and we have no langauge for
making a statement to the effect that the universe is non-standard. It is
more natural to think that it is standard. So in this sense second-order
logic as the urlogic has the full semantics. On the other hand, the rules of
proof of second-order logic as the urlogic give it the appearance of Henkin
second-order logic or first-order set theory. The truth is, if we only consider
urlogic, we cannot tell first-order logic and second-order logic, weak and full
semantics, really apart. We cannot subject urlogic to mathematical scrutiny,
which would reveal its first-order or second-order nature.

5 Object language

We extracted urlogic as a formalization of the act of doing mathematics. The
semantics of urlogic is totally informal. However, semantics can be studied
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very well with formal methods. We can define in urlogic a mathematical con-
cept of a language and study it using all the mathematical methods available
in urlogic. In this case we call the language thus studied the object lan-
guage.

Let us assume our urlogic is capable of talking about sets. For simplicity
we call it ZFC, although a much weaker urlogic would suffice for the discus-
sion. This urlogic could also be some version of second-order logic, for we
argued above that on the level of urlogic there is no essential difference. Some
sets code formulas of our intended object language, whatever it happens to
be, for example second-order logic or first-order logic. Thus the strings of
our urlogic do not only “talk” about sets but also about objects that are
finite strings in the sense of the system and denote, again in the sense of
the system, first-order or second-order statements. Likewise, some sets code
structures. In particular, there are the sets N and R that code the structures
that result in set theory when one constructs the set of natural numbers and
the set of real numbers in some canonical way. Finally, some sets code the
truth-definition of the object language, that is, the relation

{〈A, φ〉 : A satisfies the sentence φ of the object language}.

Suppose the object theory is the first-order theory RCF of real closed
fields. We can argue in the urlogic ZFC that the structure R satisfies a given
statement φ of the language of real closed fields. Our argument is totally
finitist, but we believe that we prove something about infinite objects like
the set of reals, using some finite information about them. Does this mean
we could actually dispense with the infinite objects? Does this suggest that
infinity is but a blurred vision in our head? This is one of the fundamental
questions of the philosophy of mathematics and we have not answered it here
one way or another.

Suppose the object theory is the second-order theory RCF2 of real closed
fields. We can argue in the urlogic ZFC that the structure R is the only
model of RCF2. The advantage of RCF over RCF2 is that it can also be
used as a tool for proving the decidability of the first-order theory of the
arithmetic of the reals [Tar48].

We can also argue in the urlogic ZFC that the object language satisfies
the Gödel Completeness Theorem, i.e. if a sentence φ of the object language
is true in every model of another sentence ψ of the object language, then
there is (a set that codes) a finite object language proof of φ from ψ. This
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is the case if the object language is first-order logic, but not the case if it is
second-order logic.

Suppose we have an urlogic proof that in the object language there is a
proof of φ from ψ obtained perhaps using the Gödel Completeness Theorem.
Can we get out of this a proof of φ from ψ in the urlogic? In several ways
this question is meaningless. However, we may think of ZFC itself as the
object language and φ and ψ as sentences of urlogic. It is then possible to
write definitions of sets that code these sentences. Suppose this is done and
then we get a proof of φ from ψ in the object language using the Gödel
Completeness Theorem. This still does not give us a proof of φ from ψ in
urlogic, but we have a strong reason to believe that such a proof can be
written. This is because the concept of a finite proof is so strongly absolute
(see Section 6 below). But it still depends on the concept of finiteness, and
a further elaboration, using a third level of formalization, or alternatively an
informal model-theoretic argument, shows that a set-theoretical object can
be a finite proof in the sense of the object theory but infinite in the sense of
urlogic.

On the other hand, suppose we prove in the urlogic that there is a model
of φ in which ψ is false. Now there cannot be a proof of ψ from φ in the
urlogic, since such a proof would be formalizable in the object language.
Thus studying models of sentences of a first-order object language can give
important information about proofs in the urlogic. If the object language is
second-order, this possibility does not exist.

We can try to understand the urlogic by letting the object language be a
picture of the urlogic. Some mathematical properties of this object language
give us information about the urlogic. To understand which properties reflect
between urlogic and object language, we need to formalize the situation and
study it using methods of urlogic. So we not only have an object language,
but also a formalization of a language in the object language.

Let us consider an example. If the urlogic is ZFC, we can define in ZFC
the axiom system ZFC (as a mathematical object) and study its models. In
these models of set theory there are also axiomatizations of set theory and
their models. The picture is clearer if we consider only transitive models. In
a transitive model there can be elements which are transitive models of set
theory. We know that it is exactly the ZFC-absolute i.e. ∆ZFC

1 -properties
of sets which reflect between transitive (in fact, end-extensions of) models
of ZFC. If we consider all models, not just the transitive ones, then exactly
properties that are existential relative to ZFC reflect from submodels to
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supermodels. For example, a set may be infinite in M |= ZFC but finite in
a submodel N |= ZFC of M. Likewise, a set may be countable in M but
uncountable in N. This example shows that we should be careful in reflecting
our non-absolute observations about the object theory to urlogic.

It is true that full second-order logic as an object theory has categorical
axiomatizations for important mathematical structures. However, these facts
are highly non-absolute so we cannot use these facts to motivate the claim
that our urlogic has full second-order strength. There are some grounds for
such a leap only when we talk about very absolute properties, like “there is
a proof of ...”. So it is rather the features of the Henkin second-order logic
that can be said to be characteristic of the urlogic.

6 The absoluteness of first-order logic

An important feature of first-order logic is that it is absolute in a strong sense.
Absoluteness has a technical meaning in set theory, which first-order logic
fulfills in several ways (see [Bar72] and [V85]). For example, the property
ZFC ` φ is an r.e. property of a first-order sentence φ. Therefore, if ZFC ` φ
is true, its formalized version holds inside any model of first-order Peano
arithmetic, and the formalized version is provable in Peano arithmetic. On
the other hand, if the formalized version of ZFC ` φ is provable in Peano
arithmetic, then ZFC ` φ. Thus the absoluteness of first-order logic permits
us to reduce questions about ZFC set theory to questions about first-order
number theory.

A consequence of the absoluteness of first-order logic is the Löwenheim-
Skolem Theorem: If a first-order sentence has for each finite number n a
model (perhaps infinite) with at least n elements, then the sentence has
models in all infinite cardinalities. It is remarkable that by Lindström’s
Theorem [Lin69], first-order logic is the only logic with this property. This
extreme flexibility of first-order logic with respect to the cardinality of the
universe is often held against first-order logic. This flexibility does indeed
mean, that first-order logic cannot really say of the reals, for example, that
they are uncountably many, without saying it in set theory. Likewise, in
what is called the Skolem Paradox, first-order set theory cannot say of its
own universe that it is uncountable. But this is, in fact, as it should be.
There is nothing wrong in a formal system not being able to talk about its
own semantics. Meaning is beyond language.
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The great flexibility of first-order logic has made model theory possible.
During the last 50 years model theory has made great advances in classifying
first-order theories with a nice structure theory for their models. One of
the surprising results of stability theory is that the mere number of non-
isomorphic models that a first-order theory has in different cardinalities gives
deep information about the geometric and algebraic structure of its models
[She82b, She82a].

7 The expressive power of second-order logic

Second-order formalization has a lot of appeal for the same reason which
makes it, in another sense, unappealing: it is very close to informal reason-
ing. Mathematicians are used to thinking of natural numbers as a structure
categorically defined by the (second-order) Peano axioms, and of reals as
the unique complete separable archimedian completely ordered field, and so
forth. Mathematical practice is full of categoricity results that can be for-
malized using second-order logic ([Mon65b]). This is an important feature of
the logic. In each case the reasoning remains informal.

Suppose we want to do set theory using second-order logic. Subset ex-
istence is built into the language, so we do not need the usual set existence
axioms. We still need axioms for iterating the set construction, i.e. forming
sets of sets, sets of sets of sets, etc. It is natural to proceed as in first-order set
theory with individual variables ranging over sets and second-order variables
ranging over subsets of the universe. Let ZFC2 be the resulting second-order
version of ZFC (see [Mon65b]). The models of ZFC2 are, up to isomorphism,
of the form Rκ, where κ is a (strongly) inaccessible cardinal. By adding the
appropriate second-order axiom, we can get a theory ZFCM

2 , which has as its
models exactly sets of the form Rκ, where κ is a (strongly) Mahlo cardinal,
and ZFCWC

2 , which has as its models exactly sets of the form Rκ, where κ
is a weakly compact cardinal. A well-known consequence of properties of
measurable cardinals is that one cannot go on in the same way to Rκ with
κ measurable, without at the same time going to third order logic9. Note
that ZFC2, ZFCM

2 and ZFCWC
2 are not equivalent. If there is an inaccessible

cardinal, then there is a model of ZFC2, which is not a model of ZFCM
2 , and

if there is a Mahlo cardinal, then there is a model of ZFCM
2 , which is not a

model of ZFCWC
2 .

9This has been pointed out by Kreisel [Kre67].
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If we add to ZFC2 the axiom “There are no inaccessible cardinals”, the
resulting system is categorical. Similarly ZFCM

2 and ZFCWC
2 can be strength-

ened to categorical second-order theories.
What happens to the property ZFC2 |= φ10 of a second-order sentence φ,

when we move to a formalization of second-order logic? Let us first consider
formalization in ZFC2 itself. The formalized version of ZFC2 |= φ holds in
every model of ZFC2 if and only if ZFC2 |= φ. So the property is absolute,
but for a (trivial) different reason than in the case of first-order logic. In par-
ticular, we achieved no reduction at all. In order to achieve some reduction,
let us try to formalize ZFC2 |= φ in second-order number theory. How are
we to talk about structures Rκ, where κ is inaccessible, using just natural
numbers and sets of natural numbers? This does not seem possible. Let us
then consider the predicate P2 |= φ, where P2 is the full second-order number
theory ([Mon65b]) and φ is a sentence of second-order number theory. As P2

has, up to isomorphism, only one model, P2 |= φ really means N |= φ. In
N there are just natural numbers, so we cannot talk11 about models of P2.
What would work, is talking about P2 |= φ in the full second-order arithmetic
A2. Then we get absoluteness. The property P2 |= φ is absolute relative to
the model(s) of A2. But this is uninteresting as A2 is stronger than P2. In the
case of first-order logic we got absoluteness (of ZFC ` φ) relative to a weaker
theory (viz. number theory), which could genuinely be called a reduction.

A feature of second-order set theories is that they are categorical. What
do these theories tell us? They tell us, that if we know what the universe is
like, we can pick the corresponding second-order categorical axiomatization
of it. The problem is of course, that we do not know and will never know.
The most informative use of second-order axiomatizations seems to be in the
framework of first-order set theory. The categorical second-order theories
pick certain interesting invariant structures among the many standard models
of set theory.

What do the various second-order set theories (i.e. models) tell us about
the Continuum Hypothesis (CH)? They tell us that if CH is true, then it is
true in these models. If CH is false, then it is false in these models. The
difference between this and the first-order ZFC is that we can prove, using
low level formalization, that whether CH is true or not, ZFC cannot prove

10I.e. φ is true in every model of ZFC2
11In a trivial sense then the formalized version of P2 |= φ could be considered true by

default. But this argument does not work in the other direction, if the formalized version
of P2 |= φ is true (by default) in N, it does not follow that P2 |= φ.
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or disprove it. This is a clear message that new axioms are needed for ZFC.
In contrast, the categorical second-order theories do not seem to give us any
clue as to what to do next.

Let V al2 be the set of Gödel numbers pφq of valid second-order sentences
φ in a vocabulary that contains one binary predicate symbol P . It is known
that V al2 is a highly complex subset of N. For example, V al2 is not Σm

n for
any m,n < ω ([Mon65a], [Hin55]). What exactly is the complexity of this
set?

Theorem 1 V al2 is the complete Π2-definable12 set of integers.

Proof. Let us first observe that the predicate x = P(y) is Π1-definable.
We can also Π1-define the property R(x) of x of being equal to some Rκ,
where κ is a strong limit cardinal. Let Str(x) be the first-order formula in
the language of set theory which says that x is a structure of the vocabulary
containing just one binary predicate symbol. If φ is a second-order sentence,
let Satφ(x) be the first-order formula in the language of set theory which
says “Str(x) and φ is true in the structure x”, and let Relsatφ(x, y) be the
first-order formula in the language of set theory which says “x ∈ y and if
Str(x), then Satφ(x) is true when relativized to the set y”. Thus pφq ∈ V al2
if and only if ∀x(Str(s) → Satφ(x)). Note that for limit α and a ∈ Rα:

Satφ(a) ⇐⇒ (Rα |= Satφ(a)).

Thus a second-order sentence φ is valid if and only if

∀x(R(x) → ∀y ∈ xRelsatφ(y, x)).

We have proved that V al2 is Π2-definable. Suppose then A is an arbitrary
Π2-definable set of integers. Let ∀x∃yψ(n, x, y) be the Π2-definition. Let φn

be the first-order sentence ∀x∃yψ(n, x, y), where n is a defined term. We
claim

n ∈ A ⇐⇒ pZFC−
2 → φnq ∈ V al2,

where ZFC−
2 is a finite second-order axiomatization of the models Rκ, κ

strong limit. Suppose first n ∈ A, i.e. ∀x∃yψ(n, x, y). Suppose Rκ is a
given model of ZFC−

2 . We prove Rκ |= ∀x∃yψ(n, x, y). Suppose a ∈ Rκ. By

12We mean definability in set theory by a formula of the form ∀y∃zφ(x, y, z), where
φ(x, y, z) is quantifier-free.
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the Levy Reflection Principle, there is b ∈ Rκ such that ψ(n, a, b). Hence
pZFC−

2 → φnq ∈ V al2. Conversely, suppose pZFC−
2 → φnq ∈ V al2. To

prove ∀x∃yψ(n, x, y), let a be given. Let κ be a strong limit cardinal such
that a ∈ Rκ. Then there is b ∈ Rκ with Rκ |= ψ(n, a, b). Now ψ(n, a, b)
follows. 2

Corollary 2 V al2 is not Σ2-definable.

The fact that V al2 is not Σm
n for any m,n < ω follows easily from this.

Moreover, it follows that we cannot in general express “φ is valid”, for second-
order φ, even by searching through the whole set-theoretical universe for a set
x such that a universal quantification over the subsets of x would guarantee
the validity of φ. In contrast, to check validity of a first-order sentence, one
needs only search through all natural numbers and then perform a finite
polynomial calculation on that number.

8 IF-logic

Hintikka has suggested that the so-called IF-logic provides a new foundation
for mathematics [Hin96]. IF-logic is an extension of first-order logic which is
semantically equivalent with the Σ1

1-part of second-order logic. The second-
order theories P2, A2 and ZFC2 can all be (finitely) axiomatized in the Π1

1-
part of second-order logic. Thus, if we want to know whether, say, ZFC2 |= φ,
where φ is first-order, all we have to do is to check whether (¬

∧
ZFC2) ∨ φ

is valid in IF-logic. Now IF-logic has the nice property, by virtue of its
relation to the Σ1

1-part of second-order logic, that the set of Gödel numbers
of satisfiable sentences is Π0

1. So this is the same as with first-order logic. We
have a logic with a Π0

1-concept of satisfiability and such important questions
as whether ZFC2 |= φ, can be reduced to validity in the logic. This seems
like an interesting reduction of set theory, and thereby all of mathematics,
to validity in pure IF logic.

Hintikka argues that validity in IF-logic is a combinatorial question,
rather than a set theoretic question; it is the question, whether a certain
relational structure cannot help being instantiated in every model [Hin96, p.
198]. In the case of P2 |= φ, since P2 has but one model, it is the question
whether φ is true in N or not. For ZFC2 |= φ, it is the question whether φ is
true in every Rκ, κ inaccessible, or not.
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The following question arises: Suppose we formalize the inference P2 |= φ
into something, let us call it pP2 |= φq. The goal of formalization is to be
able to say something of the nature of the inference. We are not satisfied
with the information: pP2 |= φq if and only if P2 |= φ, but want something
more. The question is, what more does formalization pP2 |= φq in IF-logic
tell us than just P2 |= φ? In comparison, first-order logic gives the analysis:
pP |= φq if and only if there is a finite proof of φ from P .

It follows from the preceding discussion that if V alIF denotes the set of
Gödel numbers of valid sentences of IF-logic with at least one binary predicate
symbol, then:

Theorem 3 V alIF is recursively isomorphic with V al2.

Corollary 4 V alIF is the complete Π2-definable set of integers, hence V alIF

is not Σm
n for any m,n < ω.

This shows that also in a technical sense IF-logic is as complicated as the full
second-order logic.

It is difficult to see how IF-logic would work as a foundation for mathe-
matics, apart from the way second-order logic itself works. We have argued
above that second-order logic as urlogic is indistinguishable from first-order
logic and the same seems true of IF-logic.

9 Conclusion

Whatever is proved from ZFC can be turned into an informal argument in
second-order logic, e.g. in ZFC2. On the other hand, if something can be
informally argued in ZFC2, it seems very likely, that behind the informal
argument is an argument that can be formalized in ZFC. In this respect
there is very little difference between first-order set theory and second-order
logic. The same applies to IF-logic.

On the other hand, if we try to analyse why we are not able to decide
e,g, Continuum Hypothesis, on the basis of ZFC2, it seems very plausible to
develop a theory about what the second-order quantifiers range over. The
first-order set theory ZFC is exactly such a theory, and it is indeed the
strongest currently available tool for investigating formalizations of second-
order logic. But this means we are back in the Henkin semantics of second-
order logic that full second-order logic was supposed to avoid.
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