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Abstract. We try to answer the question which is the “right” foundation of mathematics, second order logic
or set theory. Since the former is usually thought of as a formal language and the latter as a first order theory,
we have to rephrase the question. We formulate what we call the second order view and a competing set theory
view, and then discuss the merits of both views. On the surface these two views seem to be in manifest conflict
with each other. However, our conclusion is that it is very difficult to see any real difference between the two.
We analyze a phenomenon we call internal categoricity which extends the familiar categoricity results of second
order logic to Henkin models and show that set theory enjoys the same kind of internal categoricity. Thus the
existence of non-standard models, which is usually taken as a property of first order set theory, and categoricity,
which is usually taken as a property of second order axiomatizations, can coherently coexist when put into their
proper context. We also take a fresh look at complete second order axiomatizations and give a hierarchy result
for second order characterizable structures. Finally we consider the problem of existence in mathematics from
both points of view and find that second order logic depends on what we call large domain assumptions, which
come quite close to the meaning of the axioms of set theory.
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§1. Introduction. Two views of the nature of mathematics seem to be in utter con-
flict with each other. One is what we will call the second order view which takes the

Research partially supported by grant 40734 of the Academy of Finland and by the European Science
Foundation EUROCORES LogICCC programme LINT project.

1



2 JOUKO VÄÄNÄNEN

concept of structure as the basic notion in mathematics and stipulates that mathemat-
ics is simply the study of the higher order properties of such structures. According to
this view it is immaterial and even misleading to discuss what the elements of such
structures are, as the structures are taken up to isomorphism only. The apparently op-
posing view is the set theory view which takes mathematical objects (i.e. sets) and their
membership relation as the basic notion and builds all of mathematics from this basic
concept, not only up to isomorphism but to identity.

Both views have their appeal. Let us first discuss the appeal of the second order
view. It is indeed immaterial in mathematics what kind of objects for example the real
numbers are, as long as they satisfy the axioms of completely ordered fields. We know
that there is, up to isomorphism, only one such field, namely R, and giving preference
to one construction of the reals over another seems unfounded. The same applies to the
natural numbers N, the complex numbers C, the Euclidean spaces Rn, the free group of
countably many generators, the Banach spaces `p, and so on. Typically mathematical
research takes place in one of these classical structures making reference to elements,
subsets, and relations on the structure, in some cases also to families of subsets, all
well handled by second (or higher) order logic on the particular structure. There is no
need for a universal theory of mathematical objects which would show how all these
structures and their properties are reduced to some more basic objects (“sets”) and their
properties (“ZFC-axioms”). This mode of thinking is sometimes called structuralism as
it emphasizes structures; as it finds the search for a universal foundation of mathematics
unnecessary, it is sometimes thought of as anti-foundationalist.

Let us then consider the other side, the set theory view. According to this view it
is an important achievement that most if not all of mathematics can be reduced to the
concept of set, whose properties have an intuitively appealing axiomatization. If there
is ever doubt concerning a mathematical argument, one only needs to reduce it to set
theory and if this can be done, the argument can be declared correct. In this reduction
it may turn out that strong principles like the Axiom of Choice are invoked and this
may deserve a special mention in the result, and raise the question whether the use was
essential. As compared with the second order view, this approach is foundationalist1

in spirit. However, set theorists do not claim that mathematical objects really are sets,
only that they can be thought of as sets. The fact that set theorists define the ordered
pair (a, b) as {{a}, {a, b}} does not mean that set theorists claim that ordered pairs have
to be defined in this way, or in any way for that matter. The operation (x, y) could be
taken as an undefined basic concept in addition to ∈. However, there is certain beauty
in having as few basic concepts as possible, and taking only ∈ is a kind of record—hard
to beat. Since variables in set theory are thought to range over sets, that is, elements of
the universe, set theory is usually thought of as a first order theory.

The conflict between the two views is obvious: The second order view says that
building everything from one ingredient (sets) is not necessary and leads to questions
that cannot really be answered and which touch only very lightly on “core mathematics”
if at all. The second order view also points out that the first order axioms ZFC of
set theory have non-standard models, while the second order axiomatizations of the
classical structures are categorical. The set theory view maintains that, contrary to the

1By foundationalism I mean here the position that all mathematics can be reduced to one concept (here
the concept of a set) and to axioms governing this concept (such as the ZFC axioms of set theory).
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second order view, in order to know the second order properties of infinite structures
one needs some axioms, be they axioms of second order logic or set theory, and these
axioms have non-standard models in both cases. Even if one takes separate axioms
for each structure there is a common core in these axioms, and this, according to the
set theory view, is the foundation on which second order logic rests. Here then is the
foundationalist/anti-foundationalist divide: is there a unitary concept of mathematical
truth, or are there separate notions of truth each based on its own structure?

This paper ends with an investigation of the existence of mathematical objects. For
second order logic this means the existence of structures. We point out, and give some
technical results to this effect, that one cannot give evidence in the form of proofs from
the axioms of second order logic for the existence of a mathematical structure, unless we
already know the existence of at least one structure of at least the same cardinality. It is
not at all clear, and we leave it as an open problem, how to formulate an axiom of second
order logic that would remedy this weakness. Any axiom that states the largeness of the
universe would be false in all structures of smaller size and therefore cannot be called an
axiom. So we would seem to need an axiom that refers to the “outside” of a structure. If
we could state the existence of large structures “outside” our domain, as superstructures
in a sense, then we would have some way of solving this problem. In Section §6 we
discuss extensions of second order logic, such as sort logic and higher order logics,
which offer some ways to refer to a superstructure. We also discuss how set theory
solves this problem.

We conclude that the second order view suffers from a weakness that the set theory
view solves easily. It is tempting to adopt the set theory view as the primary view and
then formulate the second order view as a secondary view which appeals to set theory
for the existence of structures, but this ruins the autonomy of the second order view with
respect to set theory.

§2. The Second Order View. In the early years of the 20th century the basic clas-
sical structures N,R,C,Rn,Cn, and so on, of number theory, geometry, algebra and
analysis were axiomatized by Peano, Dedekind, Cantor, Hilbert, Veblen and Hunting-
ton (see e.g. [2]). These axiomatizations were second order and their first order versions
(axiom schemata) were introduced only later.

The second order view sees mathematics as formulated most intelligibly in second
order logic. According to this view the propositions of mathematics are of the form

A |= φ,(1)

where A is one of the classical structures and φ is a second (or higher) order sentence.
Both A and φ have some finite vocabulary, which we assume to be a first order vo-
cabulary, although higher order vocabularies are needed, for example in topology. The
nature of the vocabulary is, however, not important for our discussion. The meaning of
(1) is that whatever φ asserts about the elements, subsets, relations, etc of A, is true in
A. So a mathematician working in number theory takes A = N, and if he works in ana-
lytic number theory, he works with A = R or C. If he uses algebraic methods, he may
use A = Cn. Naturally, a mathematician moves smoothly from one structure to another
always appealing to the second order properties, such as induction or completeness, of
the relevant structure, paying no attention to the fact that the vocabulary changes. It is
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assumed that there are canonical translations of the smaller structures into the bigger
ones.

Not all mathematics is however of the form (1), for we sometimes establish universal
truths, such as “every compact Hausdorff space is normal”, or “every subgroup of a free
group is free”. So the second order view includes the provision that some mathematical
propositions are of the form

|= φ,(2)

where φ is a second (or higher) order sentence. The meaning of (2) is that whichever
structure A of the vocabulary of φ we consider and whatever φ says about the elements,
subsets, relations etc of this structure A, holds in A. So if φ talks about groups, the
meaning of (2) is that every group, be it one of the “known” groups or just an abstract
group, satisfies (2). The difference with (1) is that (2) is not a proposition about any
particular structure, as is (1), but rather about the universe of all structures of the type
that φ talks about. We prove below that there is no A and no effective translation φ 7→ φ∗

such that (2) can be reduced to A |= φ∗, so we cannot discard (2).
Some propositions of the form (2) need third or even higher order logic. For example

if we want to say that every linear order can be extended to a complete order, and similar
mathematical facts, we have to go beyond the cardinality of the model. This can be done
in third and higher order logics. This detail does not affect the main point of this paper.

2.1. More about Second Order Characterizable Structures. We will now sharpen
(1) by specifying what a “classical structure” means. We stipulate that this refers simply
to a structure that has a categorical second order definition, that is, we mean a structure
A such that there is a second order sentence θA such that the following two conditions
hold:

A |= θA(3)

∀B∀C((B |= θA ∧ C |= θA)→ B ∼= C).(4)

We call such structures A second order characterizable. Note that (3) is of type (1) and
(4) is of type (2) (see (10) below). The classical structures N,R,C,Rn,Cn are certainly
second order characterizable in this sense.

Second order characterizable structures have the following pleasant property: If A is
second order characterizable and φ is second order, then (1) is equivalent to

|= θA → φ.(5)

At first sight (1) may look like a proposition about the relationship between an infinite
object A and a finite object φ, but in the equivalent form (5) it looks like a property
of the finite string of symbols θA → φ. So we seem to have a reduction of something
which is infinitistic to something which is finitistic. The beauty of this reduction is
marred by the symbol “ |= ” in (5), which brings in a genuinely infinitistic element.
Still one cannot deny the virtue of dealing with the finite string θA → φ rather than with
the infinite structure A. Maybe we can see by merely inspecting θA → φ that indeed,
φ does follow from θA. This may even be something that a computer can detect by
looking at θA and φ very carefully.

The reduction of (1) to (5) demonstrates that the “particular truth” represented by (1)
can be reduced to the “universal truth” represented by (2). So in this sense it would
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suffice to study (2) only, but then the problem emerges of determining the meaning of
the universal quantification over all structures in (2).

For second order characterizable structures we can completely overlook the question
what kind of objects the elements of these structures are. This is part of the second
order view. A second order characterizable structure is nothing in particular but just
any structure that satisfies the axiomatization. We need not, it seems, worry about the
question how these structures are constructed or how they come into being, although
this is not uncontroversial. One possibility is to say that if the axioms define something
uniquely, and they are consistent, then this unique structure exists. The early researchers
took it for granted that the axiomatization of, say the ordered field of the real numbers,
is consistent, since the ordered field of reals itself satisfied it. However, it was later
recognized that it makes sense to try to establish consistency, however difficult it turned
out to be, without assuming first that we already have a model.

2.2. Second Order Truth. Let us then consider the question, what are the grounds
under which a mathematician can assert (1), communicating thereby that his or her
knowledge now covers (1). We assume that A exists and that (1) is meaningful. To
make progress in mathematics it is not enough to know that the proposition (1) has a
truth-value—we should also determine what the truth-value is. For example, we can
assume φ is false in A and try to derive a contradiction, allowing us to conclude that φ
is true in A. Or we can perhaps prove φ in A by induction. Centuries of efforts have
equipped mathematicians with tools to prove propositions of the form (1).

We want to emphasize the difference between knowing that φ has a truth value in A
and knowing what the truth value is. There is a marked difference between

“A |= φ or A |= ¬φ” is known,(6)

and

“A |= φ is known” or “A |= ¬φ is known”.(7)

If we have given a mathematical definition of a formalized language and a mathematical
definition of truth for that language, we can give a mathematical argument that every
sentence of the language has a truth value in every structure. Then we have established
(6), but from this it does not follow for any particular φ that we have established (7).

We maintain in this paper that the criterion for asserting a proposition in mathematics
is having a proof for it. This means neither that we are limiting ourselves to constructive
logic, nor that we give up the existence of mathematical objects and truth values of
mathematical statements. The position adopted here is that it is essential to use classical
logic in the analysis of infinite mathematical objects. A comparison of second order
logic and set theory in the constructive context would be perfectly meaningful but is not
the approach of this paper.

We have argued that the evidence we can give for asserting (1) is a proof of φ from
θA, a proof that follows standard mathematical rigor. It would be very surprising if such
a rigorous proof could not be written, albeit with a lot of work, in one of the standard
inference systems CA of second order logic consisting of Comprehension Axioms and
the Axioms of Choice ([4, Ch. IV §1]). Indeed, if there were a rigorous argument that
could not be so formalized, the immediate question would be, what is the argument
based on. Can we use semantical inference, that is, justify (1) by showing that every
model of θA satisfies φ? Yes, and this can even be shortened to the idea of showing
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that A satisfies φ, and this is exactly what we are trying to do. So reference to semantic
inference in this case means saying that A |= φ because A |= φ, and this is not very
helpful. So we have not committed any errors, but we have not made any progress
either.

Recently there has been discussion concerning Fermat’s Last theorem, in particular
the question what is needed to formalize the proof. Usually the higher order axioms
which are needed can be pin-pointed with some work. Many such results have been
obtained in so-called reverse mathematics.

2.3. Second Order Characterizable Structures and Internal Categoricity. Above
we discussed grounds for asserting (1). The same discussion applies to (2). We can as-
sert (2) if we have a proof of φ, typically from CA. But we should also ask ourselves,
how do we recognize second order characterizable structures? After writing down θA

we have to give grounds why (3) and (4) hold. In the light of the above discussion
we would give evidence for asserting (3) by giving a proof of θA → θA, which is not
evidence for anything. So how can we ever assert (3)? We can perhaps prove

∃R1, ..., RnθA,(8)

from the CA axioms, where R1, ..., Rn are the predicate symbols occurring in θA. But
then we would have given evidence for

|= ∃R1, ..., RnθA,(9)

which is not what we want. We are not trying to show that every structure whatsoever
permits relations that constitute a copy of A. Surely this cannot be true in structures
that have a different cardinality than A. It seems that the only possibility is to simply
assume (3), rather than trying to present evidence for it. This is the well-known problem
of consistency of formal systems raised by Hilbert and settled in the negative by Gödel.
If we are working in a stronger framework, we may “read off” A |= θA, or anyway the
existence of a model of θA, from the existence of some larger structure, but obviously
this only raises the question where did the larger structure come from? So (3) has to be
taken on faith. After all, we have written θA so that it is true in A, so we may take the
correctness of the process of writing down θA as the grounds for (3) even if this cannot
be substantiated. It is in the spirit of the second order view that we simply assume
the existence of A, or anyway a structure satisfying θA. In set theory this problem is
solved by assuming the existence of at least one infinite set and then working from there
onwards by means of the operations of power-sets, unions, separation and replacement.
We return to the problem of existence at the end of this paper.

Evidence for asserting (4) is clear. We may simply present a proof—informal or
formal—for ∀B∀C((B |= θA ∧ C |= θA) → B ∼= C). For a formal proof we have
to translate this into second order logic. Suppose the vocabulary of θA is {R1, ..., Rn}.
Let {R′1, ..., R′n, U, U ′} be new predicate symbols so that the arity of each R′i is the
same as the arity of Ri. Let θ′A be θA with each Ri replaced by R′i. Let

ISOM(U,R1, ..., Rn, U
′, R′1, ..., R

′
n)

be the second order sentence saying that there is a bijection U → U ′ which maps each
Ri onto R′i. Any proof of

∀U∀U ′∀R1...RnR
′
1...R

′
n(((θA)(U) ∧ (θ′A)(U

′))
→ ISOM(U,R1, ..., Rn, U

′, R′1, ..., R
′
n))

(10)
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from the axioms of second order logic can be rightfully used as evidence for asserting
(4). Here φ(U) means the relativization of φ to the unary predicate U . For the classical
structures this can be readily done.

Suppose we have given evidence for (1) by exhibiting a proof of φ from θA and the
axioms CA of second order logic, or of (4) by exhibiting a proof of (10) from CA. In
fact we have then proved more than was asked. We can define the concept of “Henkin
model” of the CA axioms of second order logic. These are non-standard or “false”
models in the same sense as a Klein Bottle is an “unreal” surface or Gödel’s rotating
universe is an “unreal” solution to Einstein’s field equations. The ordinary “real” models
are “full” Henkin models, because in them the range of second order variables includes
all subsets and relations. The Henkin models are like a cloud around the real models.
By proving φ from θA and the axioms CA we have shown that φ holds even in the
non-standard Henkin models that CA has. More exactly, we have shown that φ holds
in a whole class of structures, a class that has A as a member. In particular, we have
shown that φ holds in A. The fact that we proved that φ holds in more structures than
we wanted should in no way lessen our faith in φ holding in A. Most likely it is just
easier to justify (1) in this way.

But does the above discussion not contradict (4)? The answer to this riddle is revealed
by an inspection of the vocabularies. The vocabulary of θA ∧ θA′ is

L = {R1, ..., Rn, R
′
1, ..., R

′
n}.

Let us consider a Henkin model C of θA∧θA′ . Let C0 be the reduct of C to {R1, ..., Rn},
and C1 the reduct to {R′1, ..., R′n}. Since we assume that C satisfies the CA axioms,
and we have established (10), we may conclude that C0

∼= C1. If we start from two
arbitrary Henkin models C1 and C1, which do not arise from a common expansion C,
there is no way to conclude from (10) that C0

∼= C1. We call this phenomenon internal
categoricity, meaning that any two models even in the general sense of Henkin models
that cohere by having a common expansion to a model of CA, are isomorphic. Note
that internal categoricity implies categoricity in the ordinary sense: if we take two “real
models” of the CA axioms, that is, Henkin models in which all subsets and relations
are in the range of the second order variables, then the models do cohere because they
have a common expansion that satisfies CA, namely the “full” Henkin model of the
union of the vocabularies. So internal categoricity is indeed a particularly strong form
of categoricity.

2.4. Summary of the Second Order View. The second order view presented above
is based on the belief in the meaningfulness of propositions like (1) and (2) and on them
being true or false, on the belief that the second order variables of φ really range over
all subsets and relations on the domain of the model A, and on the belief that θA char-
acterizes A up to isomorphism. Where the above second order view may diverge from
the view of some supporters of second order logic is that the justification for asserting
(1), (2) and (4) is secured by means of proofs. We were driven to this by contemplating
the evidence that we could possibly give. We pointed out that the fact that the proof
systems, when formalized, permit countable and other non-standard models, does not
in itself cast doubt on the bound variables of φ in (1) ranging over all subsets and re-
lations on the domain. The existence of non-standard models reveals the strength—not
the weakness—of the relevant proofs, indicating that (1), (2) and (4) are special cases
of more general results.
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§3. The Set Theory View. Cantor introduced set theory in the context of studying
sets of reals and their properties. He then went on to introduce arbitrary sets probably
not realizing, but certainly not claiming, that his theory could be used as the foundation
for all of mathematics; rather he had to defend the idea that set theory is mathematics at
all.

Originally set theory had so-called urelements, that is, elements that are not sets and
also have themselves no elements. Subsequently it turned out that mathematics can be
developed in set theory without urelements. Despite this fact, it would be most natural
and perfectly in harmony with everything that is done in set theory to include natural
numbers, real numbers and so on as urelements and let the sets built “on top” of the
urelements dictate the necessary properties of these numbers. Indeed, we could build
a close relationship between the second order view and set theory by taking for every
second order characterizable structure a set of urelements from which the structure is
built. Although this approach would not change anything essential in our account of set
theory, we abandon it in favor of the more standard approach of disregarding urelements.

Set theory is based on the idea that there is a universe of sets and all of mathematics
can be embedded into this universe giving mathematics a uniform framework. The
prevailing view in set theory is that the universe of sets has the structure of a hierarchy,
called the cumulative hierarchy:

V0 = ∅
Vα+1 = P(Vα)
Vν =

⋃
β<ν Vα, if ν is a limit ordinal.

It is held that every set is an element of some Vα. This conviction, which may appear
somewhat arbitrary, is simply based on the fact that nothing else seems necessary. It is
also customary to denote the union of all the sets Vα by V and what we have just said
amounts to saying that V is the universe of set theory. Of course, V is not a set, but
what is called a proper class.

It is common in set theory to identify natural numbers with finite ordinals:

n = {0, ..., n− 1}
and N with ω. Then we can construct integers as equivalence classes of pairs of natural
numbers, so Z ∈ Vω+3, rational numbers as equivalence classes of integers, so Q ∈
Vω+5, and real numbers as equivalence classes of sets of rational numbers, so R ∈
Vω+7. The classical structures, so important in second order logic, can all be constructed
explicitly as elements of, say Vω+12. Since second order logic can be readily interpreted
in set theory one may easily check that the constructed structures all satisfy their second
order characterizations, so we have constructed, up to isomorphism, the same structures
as was done in second order logic. The difference with second order logic is that we
now accept these structures as individual structures rather than as particular equivalence
classes of the isomorphism relation. This decision is of no consequence mathematically,
it is just a curiosity and part of set-theoretical thinking.

According to what we are calling the set theory view mathematical propositions are
of the form

Φ(a0, ..., an−1),(11)

where Φ(x0, ..., xn−1) is a first order formula of the vocabulary {∈} and a0, ..., an−1

are some specific sets. The meaning of (11) is that the sets a0, ..., an−1 have the property
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Φ(x0, ..., xn−1). Note that Φ(x0, ..., xn−1) will most likely have quantifiers, and the
variables bound by these quantifiers range over the entire universe V of sets. In other
words, the meaning of (11) is that Φ(x0, ..., xn−1) is true in the proper class size model
(V,∈) under the assignment xi 7→ ai. But one should not think that this is a definition of
the meaning of (11). It is impossible to actually define the meaning of (11) because truth
is undefinable. However, for any fixed m the truth of (11) for formulas Φ(x0, ..., xn−1)
of quantifier rank≤ m (and hence, a fortiori, for formulas with at most m symbols) can
be defined by a formula of that quantifier rank (roughly speaking, because for anym set
theory has a so called universal Σm-formula, see [8]).

By specific mathematical objects we mean definable objects, that is, sets a for which
there is a first order formula θ(x) of the vocabulary {∈} such that the following two
conditions hold:

φ(a)(12)

∀x((φ(x) ∧ φ(y))→ x = y)(13)

Note the resemblance to (3) and (4). Like truth, also definability is not itself definable.
But for each fixed quantifier rank m we can define the concept of definability by a
formula of quantifier rank ≤ m.

As the above remarks show, set theory is open ended in the sense that we cannot once
and for all secure the meaning of (11), for two reasons: neither truth nor definability
is definable. If we limit ourselves to a bounded quantifier rank, then suddenly (11)
becomes expressible on that quantifier rank.

Familiar mathematical objects such as

N,Q,Z,R,C,Rn,Cn, π, 3
√

2, log, sin, etc

are all definable on quantifier rank ≤ 2. To find a definable mathematical object not
definable on quantifier rank 2 one has to go deep into set theory. Likewise, in mathe-
matical practice one has to think hard to find examples of (11) where Φ(x0, ..., xn−1)
could not be be written by a formula of quantifier rank ≤ 2.

There are only countably many definable sets so most sets are undefinable. For exam-
ple, most real numbers are undefinable. Also, there is no reason to believe that complex
things like well-orderings of the reals have to be definable. These objects are needed
for the general workings of set theory but there is no reason to think one is able to put
one’s finger on them. This is completely in harmony with the general philosophy of the
set theory view of mathematics, which is geared towards definable objects but allows
undefinable objects in the background as, after all, everything cannot be definable. To
assume that everything is definable would mean giving up the power-set axiom, which
however is necessary for constructing such basic structures as R. So the set theory view
maintains coherence by allowing some (most) sets to be undefinable, i.e. sets we cannot
talk about explicitly but which still occur in the range of bound variables. In modern set
theory (see e.g. [6]) one can actually prove from large cardinal assumptions that there
is no well-ordering of the reals which is projective (i.e. Σ1

n for some n).
We can easily express both (1) and (2) in the form (11), so the set-theoretic framework

is in this sense at least as powerful as the second order framework. Note that we think
of the quantifiers in (11) as ranging over all sets of the universe, including all subsets of
the parameters a0, ..., an−1.
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There is a bounded set theory view which is seemingly weaker than the above original
set theory view. It is the view that mathematical propositions are of the form

(Vα,∈) |= Φ(a0, ..., an−1),(14)

where α is a definable ordinal large enough for Vα to contain a0, ..., an−1, the sets
a0, ..., an−1 are definable over (Vα,∈), and Φ(x0, ..., xn−1) is a first order formula
of set theory. The meaning of (14) should be clear: we can use the ordinary Tarski
truth definition for first order logic. We can express (1) and (2) in this form. For (1)
in most cases α ≤ ω + 7 suffices. For (2) it is more difficult to determine an upper
bound for α and quite large α may be needed. So this modified set theory view is
sufficient to account for practically all of mathematics outside set theory (and perhaps
category theory) itself and also to account for mathematics in the sense of the second
order view. The disadvantage of the bounded view is that it does not cover all of set
theory, except by increasing α as soon as it is needed2. So the original set theory view is
more stable, needing no adjustment from proposition to proposition. On the other hand,
the original set theory view cannot be understood inside set theory itself (because of
the undefinability of truth) except on a case by case basis or by bounding the quantifier
rank.

The bounded set theory view allows us to focus on the interesting and confusing
question whether set theory is first order or higher order. In (14) the bound variables
of Φ(x0, ..., xn−1) range over Vα. If a0, ..., an−1 ∈ Vβ and β < α, then all subsets of
a0, ..., an−1 are in the range of those bound variables, so we can express second order
properties of a0, ..., an−1. In particular, if A is a structure such that A ∈ Vα, then
P(A) ⊆ Vα, so first order logic over (Vα,∈) can express any second order properties of
A. If A ∈ Vβ , β < α, then the same is true of third order properties of A. So is (Vα,∈
) |= Φ(a0, ..., an−1) first order or not? It is first order from the perspective of (Vα,∈),
the bound variables of Φ(a0, ..., an−1) ranging over elements of Vα. At the same time,
(Vα,∈) |= Φ(a0, ..., an−1) is higher order from the perspective of the sets a0, ..., an−1

in the following sense. Since a0, ..., an−1 ∈ Vα, P (a0) ∪ ... ∪ P(an−1) ⊆ Vα. So the
bound variables of Φ(a0, ..., an−1) have all subsets of each ai in their range. If α is a
limit ordinal, this is true of subsets of subsets of each ai, subsets of subsets of subsets
of each ai, etc. We conclude: the set theory view includes the higher order view in this
sense.

What are the grounds under which a mathematician can assert something like (11)?
Note that unless a0, ..., an−1 were definable we could not assert (11) at all. Intuitively
speaking, we can assert (11) if we somehow know that (11) is how a0, ..., an−1 sit in
the entire universe of sets. There are obvious difficulties in stating precisely what such
knowledge could consist of and we have alluded to this already in connection with sec-
ond order logic. The most obvious solution is again to rely on proofs. Justification
for asserting (11) is a formal or informal proof of Φ(a0, ..., an−1) from first principles,
such as the ZFC axioms. We need not go into the question whether the ZFC axioms are
acceptable as first principles, because in most cases of mathematics outside set theory
one can use weaker axioms such as Zermelo’s set theory (or even weaker). However, it
is part and parcel of the philosophy of the set theory view that one does not shy away

2By the Levy Reflection principle ([6] Theorem 12.14) any true sentence with set parameters is true in
some Vα.
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from the strongest first principles, even large cardinal axioms. There are other foun-
dational positions such as predicativism, finitism, quasi-intuitionism, constructivism,
intuitionism, and so on where the weaker axiom systems are relevant.

How can we recognize what the definable sets referred to in (11) are? As in the case
of second order logic there is no way to give evidence for (12) apart from making sure
we have written φ(x) so that it faithfully reflects our understanding of a. However, we
can prove

∃xφ(x)(15)

in ZFC and declare that a is the unique set given by (13)-(15). This corresponds in
second order logic to deriving (8) from θB for a bigger B.

Just as in the case of second order logic, giving a proof for Φ(a0, ..., an−1) from
ZFC tells us much more than what (11) maintains. For (11) to be true it is enough that
Φ(a0, ..., an−1) is true in (V,∈), while if Φ(a0, ..., an−1) is provable from ZFC, it is
true in every universe where the ZFC axioms hold. One important such universe is the
universe L of constructible sets due to Gödel. Other universes, called inner models, are
known in great numbers but even to prove V 6= L (and not just its consistency) one has
to use principles, such as large cardinal axioms, that go beyond ZFC. It is part of the
set theory view that we believe in the existence of countable transitive sets M for which
(M,∈) |= ZFC. Although we cannot present evidence for this assertion on the basis
of ZFC only, it is part of the set theory view. One can use large cardinal assumptions
as evidence. If we have a proof of Φ(a0, ..., an−1) from ZFC, then Φ(a0, ..., an−1)
is true in each such countable transitive model (M,∈) as well as in all the generic
extensions of such models obtained by Cohen’s method. All this emphasizes what deep
consequences the assertion of (11) with a proof from ZFC as evidence has. In such a
case we should not think that the fact that Φ(a0, ..., an−1) holds in numerous artificial
universes of sets in any way undermines our conviction that we have established the
truth of Φ(a0, ..., an−1) in the actual set-theoretical universe. We have just established
more than was asked. Practically, it is is easier to give evidence for a proposition holding
in a large number of different kinds of universes, one of which is the “real” one, than it
is to derive the proposition in just the one that we are considering.

As in second order logic, we can prove the internal categoricity of set theory: If set
theory is formalized with two ∈-relations, say ∈1 and ∈2, and the ZFC axioms3 are
adopted in the common vocabulary {∈1,∈2}, let us call it ZFC(∈1,∈2), then one can
prove in ZFC(∈1,∈2) that the equation

y ∈2 F (x) ⇐⇒ ∃z(y = F (z) ∧ z ∈1 x)(16)

defines a class function F which is an isomorphism between the ∈1-sets and the ∈2-
sets. In this sense set theory, like second order logic, has internal categoricity. If we
look at the formalized ZFC(∈1) and ZFC(∈2) inside ZFC(∈1,∈2), assuming the
consistency of ZFC, then we have non-isomorphic models (M,∈M1 ) and (N,∈M2 ) of
ZFC, but these two models cannot be put together into one model of ZFC(∈1,∈2).
As in second order logic, this demonstrates that the non-standard models really have
to be constructed from the outside. The maximalist intuition that the universe of sets
has really all the sets, and respectively the intuition that the second order variables
of second order logic really range over all subsets of the domain, corresponds to the

3In particular, formulas in the Replacement and Separation Schemata can involve both ∈1 and ∈2.
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idea that our language is so rich that whatever exists can already be referred to by
a term of our language4. When this intuition is combined with internal categoricity
we get ordinary categoricity. But note that we get ordinary categoricity only in an
informal sense, because the maximalist intuition is an informal principle. This is in
harmony with the overall approach of treating second order logic or set theory as the
foundation of mathematics rather than a formalization of the foundation. When second
order logic or set theory is conceived of as the foundation of mathematics, both have an
equal amount of (internal) categoricity, and when they are formalized and looked at as
mathematical objects, both have an equal amount of categoricity if only “full” models of
the formalizations are considered and an equal amount of non-categoricity if the proof
methods of the formalizations are considered.

Since the universe of sets is somewhat elusive, there is a temptation to forget about it
and study only the artificial universes (M,∈), which happen to satisfy the ZFC axioms.
One may even go further and deny the coherence of the set-theoretical universe and
maintain that any justified assertion of truth of a sentence in the set-theoretical universe
is merely assertion of truth of the sentence in all models of ZFC. All models are then
equal, one is not favored above the others. Let us give in to this temptation for a moment.
What are the propositions of mathematics, if not of the form (11)? Are they of the form
(1) and (5), in which case we are working within the second order view? Are they of the
form (M,∈) |= Φ(a0, ..., an−1), where (M,∈) |= ZFC? What is ∈ here? Are they
of the form (M,E) |= Φ(a0, ..., an−1), where a0, ..., an−1 ∈ M , E ⊆ M ×M , and
(M,E) |= ZFC? So what is M here? How can we assert (M,E) |= Φ(a0, ..., an−1)
if we do not know how to refer to M and a0, ..., an−1? Or are they of the form

∀M∀E ⊆M ×M((M,E) |= ZFC → (M,E) |= Φ(t0, ..., tn−1)),

where t0, ..., tn−1 are definable terms of the language of set theory? If this is the form
of a mathematical proposition, it would be simpler to give it in the form

ZFC ` Φ(t0, ..., tn−1),

because then we would be dealing with just finite proofs and we would not have to
answer the question, what are the ranges of the quantifiers ∀M∀E ⊆M×M? We have
arrived at the position that propositions of mathematics are existence claims of proofs
from the ZFC axioms. This is appealing because we have just argued that proofs are the
evidence for asserting truth anyway. So why not just stick to the evidence and forget
what it is evidence for? If we take this line because we believe only in the existence of
finite mathematical objects, then we can really only justify the use of constructive logic
in proofs, and then we have abandoned classical mathematics. On the other hand if we
believe in the existence of infinite mathematical objects, we have not explained what we
mean by propositions about them.

§4. Second Order Characterizable Structures. The concept of a second order
characterizable structure makes perfect sense in the context of the set theory view (see
Section 3). Let us then adopt the set theory view and spend a moment investigating

4In the case of set theory we noted above that if we have several epsilon-relations and they satisfy the
ZFC axioms even in the larger vocabulary which contains all of them, we get the result that they are all
isomorphic to each other. We can interpret this by saying that the set theoretical universe is unique as far as
we talk about alternatives that can be named.
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what can be said about such structures. Since the set theory view as formulated here is a
foundationalist position it is particularly suited to an attempt to understand the general
concept of a second order characterizable structure.

4.1. A hierarchy of second order characterizable structures. We show that sec-
ond order characterizable structures form a hierarchy. Upon closer inspection this hier-
archy reveals some essential features of second order logic.

Suppose A is a second order characterizable structure in a relational vocabulary L =
{R1, ..., Rn} and |A| = κ. Then κ is second order characterizable as a structure of
the empty vocabulary by the sentence θκ = ∃R1...∃RnθA, that is, a structure B of the
empty vocabulary satisfies θκ if and only if |B| = κ. Thus the cardinalities of second
order characterizable structures are all second order characterizable.

The concept of being second order characterizable is definable in set theory, so we
can consider without difficulty the countable set of all second order characterizable
cardinal numbers. It starts with the finite numbers, then come ℵ0,ℵ1, ... until we reach
ℵω . Then follow ℵω+1,ℵω+2, .... In fact it is not so easy to see where this simple pattern
breaks. This has been studied by S. Garland [3]. The following observation shows that
the second order characterizable cardinals extend all across the set-theoretical universe,
apart from very large cardinals.

PROPOSITION 1. The first inaccessible (Mahlo, weakly compact, Ramsey) cardinal
is second order characterizable. If κ is the first measurable cardinal, then 2κ is second
order characterizable. All second order characterizable cardinals are below the first
strong cardinal.5

PROOF. Let φ0 be the conjunction of the finitely many ZFC axioms written in second
order logic. Models of φ0 are, up to isomorphism, of the form (Vκ,∈), κ inaccessible.
Let φ1 be the conjunction of φ0 and a first order sentence saying that every limit cardi-
nal is singular. Then φ1 characterizes up to isomorphism (Vκ,∈), where κ is the first
inaccessible. Let φ2 be the conjunction of φ0, the second order sentence saying that ev-
ery closed unbounded class of ordinals has a regular element, and a first order sentence
saying that every limit cardinal is non-Mahlo. Then φ2 characterizes up to isomorphism
(Vκ,∈), where κ is the first Mahlo. Let φ3 be the conjunction of φ0, the second order
sentence saying that every class size tree with set size levels has a cofinal branch, and
a first order sentence saying that there are no weakly compact cardinals. Then φ3 char-
acterizes up to isomorphism (Vκ,∈), where κ is the first weakly compact cardinal. Let
φ4 be the conjunction of φ0, the second order sentence saying that every coloring of
finite subsets of the universe by two colors has a class size set which is for each n ho-
mogeneous for finite subsets of size n of its elements, and a first order sentence saying
that there are no Ramsey cardinals. Then φ4 characterizes up to isomorphism (Vκ,∈),
where κ is the first Ramsey cardinal. Let φ5 be the conjunction of the relativization of
φ0 to the unary predicate M , the second order sentence saying that every subset of M
is in the universe, the second order sentence saying that a subset U of the universe is an
ultrafilter on U which is complete with respect to subsets of U which are elements of
M , and a first order sentence saying that there are no measurable cardinals in M . Then
φ5 characterizes up to isomorphism (P(Vκ), Vκ,∈), where κ is the first measurable
cardinal. Finally, let κ be strong. Suppose λ is second order characterizable. Suppose

5The result concerning inaccessible cardinals is due to Zermelo. The result concerning measurable cardi-
nals is due to D. Scott. The result concerning strong cardinals is due to M. Magidor.
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j : V → M is an elementary embedding with critical point κ such that P(λ) ∈ M .
Since P(λ) ⊆M , M |= ∃α < j(κ)((θλ)(α)). Thus V |= ∃α < κ((θλ)(α)). Let α < κ
with α |= θλ. Then α = λ, so λ < κ. a
The second order characterizable cardinals come in clusters in the following sense:

LEMMA 2. If κ is second order characterizable, then so are κ+, 2κ, ℵκ and iκ.
More generally, if κ and λ are second order characterizable, then so is κλ.

PROOF. Let φ0 be the second order sentence saying that < is a well-order in which
every initial segment satisfies θκ but the whole universe itself does not satisfy θκ. Then
φ0 is satisfied, up to isomorphism, only by (κ+, <). Let φ1 be the second order sentence
saying that < is a well-order in which no initial segment satisfies θκ but the whole
universe itself satisfies θκ. Then φ1 is satisfied, up to isomorphism, only by (κ,<
). Let φ2 be the conjunction of the relativization of φ1 to a unary predicate U , the
second order sentence saying that < is a well ordering of the universe with each initial
segment of smaller cardinality than the universe, the second order sentence saying that
elements of U are “cardinals” in < that is, points a whose every initial segment has
fewer elements than a in <. Then φ2 is satisfied, up to isomorphism, only by (ℵκ, <).
Let φ3 be the conjunction of the relativization of φ1 to a unary predicate U , the second
order axioms of Zermelo’s set theory, and the first order axiom which says that U is
the class of all cardinal numbers. Then φ4 is satisfied, up to isomorphism, only by
(Vκ,∈), the cardinality of which is iκ. For the last claim, let ψ be the conjunction
of the relativization of θλ to a unary predicate P , the relativization of θλ to the unary
predicate Q, the first order sentence saying that for every x the function z 7→ F (x, z) is
a function Q → P , and the second order sentence saying that every function Q → P
is the function z 7→ F (x, z) for some x. Then, up to isomorphism, the only model of
∃Fψ is (λκ, λ ∪ κ, λ, κ). a

Thus the first non-second order characterizable cardinal is a singular strong limit
cardinal. The smallest singular strong limit cardinal is iω , but this cardinal is second
order characterizable by the above. In fact it immediately follows from Lemma 2 that if
κ is the supremum of second order characterizable cardinals, then κ = ℵκ = iκ.

If we put any particular second order characterizable cardinal κ under the microscope
we can immediately see that there are countably infinitely many non-isomorphic second
order characterizable structures of that cardinality. First, there are certainly infinitely
many non-isomorphic ones because each structure (α,<), κ ≤ α ≤ κ + ω is second
order characterizable. On the other hand there are only countably many second order
characterizable structures overall.

How far from each other are the second order characterizable structures in a given
cardinality? Let us say that a structure is Turing-reducible to another structure if the
second order theory of the first is Turing-reducible (see e.g. [9, §9.4]) to that of the
second. Two structures are Turing-equivalent if they are Turing-reducible to each other.

PROPOSITION 3. If A and B are second order characterizable structures such that
|A| ≤ |B|, then A is Turing reducible to B. In particular, all second order characteriz-
able structures of the same cardinality are Turing-equivalent.

PROOF. Suppose A and B are second order characterizable structures such that
|A| ≤ |B|. Let L = {R1, ..., Rn} be the relational vocabulary of A. Now for any
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FIGURE 1. The hierarchy of second order characterizable structures

φ in the vocabulary L

A |= φ ⇐⇒ B |= ∀P∀R1...∀Rn((θA → φ)(P )),

where ψ(P ) denotes the relativization of ψ to the unary predicate P . a
The picture (Figure 1) that emerges now about infinite second order characterizable

structures is the following: There is a countable hierarchy of second order characteriz-
able cardinals that extends very high in the scale of cardinal numbers. At each cardinal
there are countably many non-isomorphic structures and also structures of different vo-
cabularies. Whatever the vocabulary L (apart from trivial cases), in each infinite cardi-
nality κ there are ℵ0 non-isomorphic second order characterizable L-structures of that
cardinality. All we need to do is take one predicate symbol R ∈ L and consider struc-
tures with universe κ and R of different finite sizes. However, all these ℵ0 second order
characterizable structures of a fixed cardinality have the same second order theory up
to Turing-equivalence. Knowing truth in one, means knowing truth in any of them, as
well as in any structure on a lower level. Thus when we go down in size, the complexity
goes down, or at least does not increase. What about going up? Does the complexity
increase every time we go up in the cardinality of the model?

PROPOSITION 4. If A and B are any infinite second order characterizable structures
such that 2|A| ≤ |B|, then B is not Turing reducible to A.

PROOF. The proof is a standard undefinability of truth argument. Let κ = |A| and
λ = |B|. Note that (κ,<) and (λ,<) are second order characterizable, and therefore
also B′ = (λ∪P(κ), λ,<,P(κ), κ, π,N) and A′ = (κ,<, π,N), where π is a bijection
of κ× κ onto κ. It suffices to show that B′ is not Turing-reducible to A′. Let L be the
vocabulary of B′ and L′ ⊂ L that of A′. Suppose for all second order L-sentences φ

B′ |= φ ⇐⇒ A′ |= φ∗

with some recursive function φ 7→ φ∗ from L-sentences to L′-sentences. We use n
to denote the definable term which in B′ and A′ denotes the natural number n. Using
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standard methods (see e.g. Craig-Vaught) one can write a second order L-sentence
Θ(x, y) such that for all L′-formulas φ(x) and any n ∈ N

B′ |= Θ(pφq, n) ⇐⇒ A′ |= φ(n).

Thus
A′ |= φ(n) ⇐⇒ A′ |= Θ(pφq, n)∗.

Let ψ(x) be the L′-formula which says ¬Θ(a, a)∗ for the “natural number” a, in the
formal sense, that is the value of x. Let k = pψ(x)q. Now

κ |= Θ(k, k)∗ ⇐⇒ A′ |= ψ(k) ⇐⇒ A′ |= ¬(Θ(k, k))∗,

a contradiction. a
Let us now revisit the picture (Figure 1) of second order characterizable structures.

When we go up in the cardinalities of the models, we obtain more and more complex
theories. We can interpret this as a form of anti-foundationalism in the sense that there
is no individual second order characterizable structure A such that the truth of any other
second order characterizable structure is Turing-reducible to truth in A. This is even
true if we only consider empty vocabularies, that is, structures with a universe only
and no structure whatsoever. If we try to use brute force by letting P be the set of
Gödel numbers of second order sentences φ such that (2) holds, then we do get a struc-
ture (N,+, ·, P ) such that truth in any second order characterizable structure is Turing-
reducible to truth in (N,+, ·, P ), but the price we pay is that the structure (N,+, ·, P )
itself is not second order characterizable.

4.2. Definability of Second Order Characterizable Structures. The second order
characterizable structures are by definition definable in second order logic but here we
examine in what sense they are definable in set theory.

The Levy-hierarchy ([8]) of Σn- and Πn-formulas is useful in estimating the set-
theoretical complexity of mathematical concepts. Most concepts in mathematics outside
set theory are Σn- or Πn-definable with n ≤ 2. Since a concept may have several
equivalent formulations it is important to specify which axioms are used to obtain Σn-
or Πn-definability. Accordingly we say that a property of sets is Σn-definable if there
is a Σn-formula that defines the property. The concept of Πn-definability is defined
similarly. Finally, a property of sets is ∆n-definable if it is both Σn- and Πn-definable.
For example, finiteness is ∆1-, countability is Σ1- and “x is the power-set of y” is
Π1-definable.

Since a second order characterizable structure is specified up to isomorphism only,
it does not make sense to ask if an individual second order characterizable structure is
definable in set theory. The whole isomorphism class is obviously definable and we
now show it is actually ∆2-definable.

PROPOSITION 5. If A is a second order characterizable structure, then the class
{B : B ∼= A} is ∆2-definable.

PROOF. Suppose L a finite vocabulary and A is a second order characterizable L-
structure. Suppose σ is the conjunction of a large finite part of ZFC. Let us call a model
(M,∈) of θ supertransitive if for every a ∈ M every element and every subset of a is
in M . Let Sut(M) be a Π1-formula which says that M is supertransitive. Let Voc(x)
be the standard definition of “x is a vocabulary”. Let SO(L, x) be the set-theoretical
definition of the class of second order L-formulas. Let Str(L, x) be the set-theoretical
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definition of L-structures. Let Sat(A, φ) be the standard inductive truth-definition of
second order logic written in the language of set theory. Let

P1(z, x, y) = Voc(z) ∧ Str(z, x) ∧ SO(z, y) ∧
∃M(z, x, y ∈M ∧ σ(M) ∧ Sut(M) ∧ (Sat(z, x, y))(M))

and

P2(z, x, y) = Voc(z) ∧ SO(z, y) ∧ Str(z, x) ∧
∀M((z, x, y ∈M ∧ σ(M) ∧ Sut(M))→ (Sat(z, x, y))(M)).

Now ZFC ` ∀z∀x∀y(P1(z, x, y) ↔ P2(z, x, y)) and if L is a vocabulary, B an L-
structure, then B ∼= A ⇐⇒ P1(L,B, θA). This shows that B ∼= A is a ∆2 property
of B and L. a

The following result, based on the idea of the proof of a related result of Ajtai [1]
(see also [10],[5],[7]), demonstrates that even though the isomorphism class of a second
order characterizable structure is definable in set theory, the question whether individual
structures in the isomorphism class are definable in set theory is independent of the
axioms of set theory:

PROPOSITION 6. Suppose A is a second order characterizable structure. If V = L,
then {B : B ∼= A} contains a Π2-definable model. If ZFC is consistent, then it is
consistent to have a countable second order characterizable structure A such that {B :
B ∼= A} contains no structures that are definable in set theory.

PROOF. If V = L, then we can define the smallest element B of {B : B ∼= A} in
the canonical well-order of L: B is the unique set satisfying

Str(L,B) ∧ P2(L,B, θA) ∧ ∀x(P1(L, x, θA)→ B ≤L x).

On the other hand if ZFC is consistent there is a forcing extension in which the set
R has no well-ordering which would be definable in set theory with real parameters.
However, let <∗ be a well-ordering of R (by the Axiom of Choice) in the order-type
|R|. The structure (R, <∗) is second order characterizable as <∗ is the unique well-
ordering of the set R of the order-type |R|. If (R, <∗) were definable in set theory, then
we would get a definable well-order of R. a

The above Proposition shows that second order characterizable structures can be cap-
tured in set theory up to isomorphism, but if one wants to “pick out” any particular one
there may be obstacles. This is in harmony with the general trend in set theory that
one may not be able to choose elements from a definable class in a definable way. A
good example is the set of well-orderings of the reals, used in the above proof. This
set is of course a definable set, but there is no provably definable way of defining any
particular such well-ordering. Rather the contrary, it is a consequence of large cardinal
assumptions that no well-ordering of the reals can be definable on any level Σ1

n of the
projective hierarchy. Still it is consistent, relative to the consistency of large cardinals,
that there is a supercompact cardinal and the reals have a definable well-order.

Perhaps the non-availability of specific definable structures in the isomorphism class
of a second order characterizable structure gives credibility to the idea, seemingly part
of the second order view, that we should consider structures up to isomorphism only,
and not try to pinpoint any specific structure. In set theory all the structures isomorphic
to a given one exist on an equal basis, none above others, and whether they are definable
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or not is an afterthought. The fact that we cannot pick a definable well-ordering of the
field of reals does not mean that we could not use such (arbitrary) well-orderings.

We now investigate how complicated is the truth concept in the structures of the
hierarchy (Figure 1) of second order characterizable structures. We already know that
in terms of Turing-reducibility the complexity goes up as the size of the model goes up,
at least if we make an exponential jump. We now show that the second order theories of
all the second order characterizable structures are ∆2-definable and this is the sharpest
result at least in terms of the Levy-hierarchy. Moreover, we show that universal second
order truth (2) is on the strictly higher level of Π2-definability.

PROPOSITION 7. The second order theory of any second order characterizable struc-
ture is ∆2-definable. The second order theory of a second order characterizable struc-
ture of cardinality ≥ im cannot be Σmn for any n.

PROOF. We use the notation of Proposition 5. We showed already that the Σ2-
predicate P1(z, x, y) and the Π2-predicate P1(z, x, y) are equivalent and hence ∆2-
definable. Now A |= φ ⇐⇒ ∃xP1(L, x, θA ∧ φ) ⇐⇒ ∀x(P1(L, x, θA) →
P2(L, x, φ)). If P (x) is a Πm

n property of natural numbers and A has cardinality≥ im,
then there is a second order θ in the vocabulary L = {R1, ..., Rk} of number theory
such that

P (a) ⇐⇒ A |= ∃R1...∃Rk(θ ∧ P (a)).

Thus the second order theory of A cannot be Σmn .
a

The validity |= φ, i.e. truth in all structures is more complicated than truth in any
particular second order characterizable structure:

PROPOSITION 8 ([12]). The predicate “φ has a model” is a Σ2-complete predicate.
Hence the predicate |= φ is a Π2-complete property of (the Gödel number of) φ.

PROOF. φ has a model if and only if there is a supertransitive setM such that it is true
in (M,∈) that φ has a model. Thus the predicate “φ has a model” is Σ2. On the other
hand, suppose ∃x∀yP (x, y, n) is a Σ2-predicate. Let φn be a second order sentence the
models of which are, up to isomorphism, exactly the models (Vα,∈), where α = iα
and (Vα,∈) |= ∃x∀yP (x, y, n). If ∃x∀yP (x, y, n) holds, we can find a model for φn by
means of the Levy Reflection principle ([6] Theorem 12.14). On the other hand, suppose
φn has a model. W.l.o.g. it is of the form (Vα,∈). Let a ∈ Vα such that (Vα,∈) |=
∀yP (a, y, n). Since in this case Hα = Vα, (Hα,∈) |= ∀yP (a, y, n), where Hα is the
set of sets of hereditary cardinality < α. By another application of the Levy Reflection
Principle we get (V,∈) |= ∀yP (a, y, n), and we have proved ∃x∀yP (x, y, n). a

COROLLARY 9. The second order theory of every second order characterizable struc-
ture is Turing reducible to the proposition “φ is valid” and to the proposition “φ has a
model” but the latter propositions are not Turing reducible to the second order theory
of any second order characterizable structure.

Note that the proposition “φ is valid” is trivially Turing reducible to the second order
theory of the structure (N, <, P ), where P is the set {pφq : |= φ}. Thus (N, <, P ) is an
example of a structure that can be defined in set theory but is not second order charac-
terizable. Note that the above Corollary is also an easy consequence of Proposition 4.



SECOND ORDER LOGIC OR SET THEORY? 19

PROPOSITION 10. The predicate “φ has at most one model up to isomorphism” is a
Π2-complete predicate.

PROOF. We show that the predicate “φ has at least two models up to isomorphism”
is a Σ2-complete predicate. φ has at least two models if and only if there is a super-
transitive set M such that it is true in (M,∈) that φ has at least two models. Thus the
predicate “φ has at least two models up to isomorphism” is Σ2. On the other hand, sup-
pose ∃x∀yP (x, y, n) is a Σ2-predicate. Let φn be as, in the proof of Proposition 8, the
second order sentence the models of which are, up to isomorphism, exactly the models
(Vα,∈), where α = iα and (Vα,∈) |= ∃x∀yP (x, y, n). If ∃x∀yP (x, y, n), then φn
has two models of different cardinality, hence two non-isomorphic models. On the other
hand, if φn has at least two models, it has a model and hence ∃x∀yP (x, y, n) holds. a

PROPOSITION 11. The predicate “φ is a second order characterization of a struc-
ture” is the conjunction of a Σ2-complete and a Π2-property of φ. This predicate is not
Σ2 or ΠZFC

2 .

PROOF. The first claim follows from the previous two propositions. Suppose a Σ2-
predicate ∃x∀yP (x, y, n) is given. Let ψn be a second order sentence the models of
which are, up to isomorphism, exactly the models (Vα,∈), where α = iα, (Vα,∈) |=
∃x∀yP (x, y, n), and (Vα,∈) |= ∀β(β 6= iβ∨¬∃x∀yP (x, y, n))(Vβ). Note that ψn has
at most one model up to isomorphism. If ∃x∀yP (x, y, n) holds, we can find a model
for ψn by using the Levy Reflection principle and taking the model of minimal rank.
On the other hand, if ψn has a model, then clearly ∃x∀yP (x, y, n). This shows that
the predicate “φ is a second order characterization of a structure” cannot be ΠZFC

2 . To
show that it cannot be Σ2 either let ∃x∀yP (x, y, n) be again a Σ2-predicate. let φn be
as above, and let θn = φn ∨ ∀x∀y(x = y ∧ x ∈ y). Note that θn has a model, whatever
n is, and it has at least two non-isomorphic models if and only if φn has a model. Thus
θn does not characterize a structure up to isomorphism if and only if φn has a model if
and only if ∃x∀yP (x, y, n). This concludes the proof. a

So recognizing whether a candidate second order sentence is a second order charac-
terization of some structure is so complex a problem that it cannot (by Proposition 11
above) be reduced to truth A |= φ∗ in any particular second order characterizable struc-
ture A. It encodes a solution to propositions of the type 6|= φ∗. So in complexity it is
above all the particular truths A |= φ∗ and on a par with, but not equivalent to |= φ∗.
The whole framework of the second order view takes the concept of a second order
characterizable structure as its starting point. In the case of familiar classical structures
we can easily write the second order characterizations. But if we write down an arbi-
trary attempt at a a second order characterization, the problem of deciding whether we
were successful is in principle harder than the problem of finding what is true in the
structure, if the sentence indeed characterizes some structure.

Note that if φ is a second order characterization of A, then φ is complete, for if ψ
is any second order sentence in the vocabulary of φ, then A |= ψ implies φ |= ψ and
A 6|= ψ implies φ |= ¬ψ.

PROPOSITION 12. The property of φ being a (consistent) complete second order sen-
tence is not Π2. If V = L, then every consistent complete sentence characterizes some
structure, but consistently some complete sentences have non-isomorphic models. (The
second claim is due to [10], see also [1] and [7]. For stronger results see [5].)
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PROOF. The proof is similar to the proof of Proposition 6. a
4.3. What if only second order characterizable structures exist? We already re-

ferred to the problem, what is the real meaning of |= φ? Is it that every second or-
der characterizable structure satisfies φ, or are we thinking of some larger category of
structures, each of which satisfies φ? In the latter case the question arises, what are
those structures that may not be second order characterizable? We first point out that if
V = L, then there is no difference, but otherwise this is a real issue:

PROPOSITION 13. Consider the conditions:
(a): A |= φ for every A
(b): A |= φ for every second order characterizable A

If V = L, (a) and (b) are equivalent. On the other hand, if ZF is consistent, then it is
consistent that (a) and (b) are not equivalent.

PROOF. We build on [1] and [10], see also [5] and [7]. Trivially (a) implies (b).
Suppose V = L. Assume (a) fails. Suppose A is a structure such that A 6|= φ. Let A
be the <L-smallest A such that A |= ¬φ. Now A is second order characterizable by the
sentence “I am isomorphic to the <L-smallest model of ¬φ”. We contradict (b). For
the second claim we add a Cohen real G and construct the countable non-isomorphic
models F (G) and F (−G) as in [1]. As proved by Ajtai [1], these are second order
equivalent but not isomorphic. As pointed out by Solovay [10], there is a second order
sentence θ which is true in both of them and which is complete. Let L′ = {R1, ..., Rn}
be the relational vocabulary of θ. Let θ′ be θ written in a new disjoint vocabulary
L′ = {R′1, ..., R′n}. Let Iso(f,R1, ..., Rn, R

′
1, ..., R

′
n) be the first order sentence which

says that f is an isomorphism between the model determined by R1, ..., Rn and the
model determined by {R′1, ..., R′n}. Consider φ which says in the vocabulary L ∪ L′:

(θ ∧ θ′)→ ∃f Iso(f,R1, ..., Rn, R
′
1, ..., R

′
n).

Let (F (G), F (−G)) be the L ∪ L′-structure the L-reduct of which is F (G) and the
L′-reduct F (−G). So φ and (F (G), F (−G)) violate (a). We now show that (b) holds
for φ. Suppose (A,B) is second order characterizable L ∪ L′-structure and satisfies
θ ∧ θ′. Then A and B are second order equivalent, modulo a translation of the vocabu-
lary. If ψ characterizes (A,B), then A is second order characterizable by the sentence
∃R′1...∃R′nψ, for suppose A′ |= ∃R′1...∃R′nψ. Then (A′,B′) |= ψ, building B′ from
R′1, ..., R

′
n, whence A ∼= A′. (b) is proved. a

What about categoricity? When we defined the concept of a second order character-
izable structure in (4) we used a quantifier ranging over all structures. To say that the
quantifier ranges over second order characterizable structures leads to a circular defi-
nition. Still we obtain the following. We use the original definition of a second order
characterizable structure and then make the following observation afterwards:

PROPOSITION 14. Suppose all models of θ have the same cardinality6. Consider
(a): (B |= θ ∧ C |= θ)→ B ∼= C for every B,C.
(b): (B |= θ ∧ C |= θ)→ B ∼= C for every second order characterizable B,C.

If V = L, (a) and (b) are equivalent. On the other hand, if ZF is consistent, then it is
consistent that (a) and (b) are not equivalent.

6For example, θ is a complete second order sentence.
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PROOF. We build again on [1] and [10] (see also [5] and [7]). Trivially (a) implies
(b). Assume V = L. Suppose (b) and suppose there are structures B and C such that
B |= θ, C |= θ but B 6∼= C. Let (B,C) be the <L-smallest (mod isom) (B,C) such that
this holds. Now (B,C) is second order characterizable, hence both B and C are, and
therefore (b) gives B ∼= C. For the converse we add a Cohen real G and construct the
countable non-isomorphic models B = F (G) and C = F (−G). As proved by Ajtai,
these are second order equivalent. As pointed out by Solovay, there is a second order
sentence θ which is true in both of them and which is complete. So we have a failure of
(a). To see that (b) holds suppose B′,C′ are second order characterizable, and B′ |= θ,
C′ |= θ. Since θ is complete, B′ and C′ are second order equivalent. Hence C′ |= θB′ ,
and B′ ∼= C′ follows. a

The pattern is the same in both of the above results: If we assume V = L, then we can
more or less dispense with non-second order characterizable structures, but otherwise
we cannot. This shows that the set-theoretical assumption V = L has analogues in
second order logic, for example the assumption that every second order sentence with a
model has a second order characterizable model. This is true if V = L, and false if we
add a Cohen real, demonstrating that intrinsic properties of the mathematical universe
according to the second order view play a similar role in second order logic as V =
L plays in set theory. The latter assumption solves virtually all otherwise unsolvable
problems in set theory. Similarly the assumption that every consistent second order
sentence has a second order characterizable model simplifies working with second order
logic, because one need not worry about arbitrary structures. One can focus on the
second order characterizable structures.

4.4. Summary of Second Order Structures. The second order characterizable struc-
tures form a hierarchy of increasing complexity. Second order truth is not expressible
as truth in any particular second order characterizable structure. We can view this as a
vindication of an anti-foundationalist position: there is no second order characterizable
structure which “stands above” all others, rather each carries its own truth concept.

However, we observed that universal truth |= φ is more complex than any A |= φ∗.
In a sense7, universal truth provides a foundation for second order logic, albeit a very
complex one, in particular more complex than is needed for any individual second order
characterizable structure.

The situation is not unlike that prevailing in set theory, where truth in the whole
universe is so complex that it is not definable at all. But for most practical purposes
truth in some Vα for relatively small α, such as α = ω + ω, suffices.

The universe of set theory is needed for general reasons: in order that the axioms
could be spelled out in a simple and appealing way, in order not to have to decide how
many different kinds of sets are in the end needed, and in order to have total freedom
in set-theoretic constructions without “hitting the ceiling.” If we tried to limit the set-
theoretic operations we would raise the question, what is it that we have left out, and
why?

In second order logic universal truth is needed to account for universal propositions
(2). At the same time we can use it to give (1) the pleasant formulation (5).

We have used set theory to analyze second order characterizable structures and found
set-theoretical concepts such as the cardinality of the model and the Levy-hierarchy

7Recall that (1) can be reduced to (2).
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useful tools. One can redefine these tools in the second order setting, but one would
have to rely heavily on the concept of universal truth, and having done that, there is a
temptation to see the whole of second order logic as the ∆2-fragment of a more powerful
framework, namely set theory.

§5. Set theory from a second order point of view. How does the set theory view
appear from the perspective of the second order view? The structure (Vκ,∈) (or Vκ
for short), where κ is the first inaccessible cardinal, is second order characterizable, as
Zermelo observed. It is fair to say that any mathematical proposition outside certain
areas of set theory itself is of the form Vκ |= φ, where φ is a first order sentence of the
vocabulary {∈}. In particular, if A is a second order characterizable structure in Vκ,
such as any of the classical structures, then the proposition A |= φ, where φ is second
order, can be readily translated into Vκ |= “A |= φ”, and thereby, using the notation of
(3), into

|= θVκ
→ “A |= φ”.

The idea now is that from the understanding of what θVκ means we should be able to
deduce that what A |= φ means is true. The foundationalism of set theory manifests
itself here inside of the second order view: the single sentence θVκ

encodes almost all of
mathematics. From the anti-foundationalist point of view one may find it unreasonable
that a single θVκ

would encode so much information that all questions A |= φ would
be solvable. But we are working inside the second order position and conceived θVκ in
the second order framework as any other second order characterization. In this position
we accept every second order characterizable structure on an equal basis. We did not
stipulate that some structures are more important than others but merely that the second
order characterizable structures are the important ones. So on what grounds should we
abandon the poor devil Vκ who knows too much?

If we have a mathematical proposition of the form A |= φ and A ∈ Vκ, then we can
use Vκ as follows. We want to assert A |= φ as true. We know that it is enough to
assert the truth of |= θVκ

→ “A |= φ”. How can we justify this assertion? According
to the above discussion the only method available is to give an informal (or formal)
proof of θVκ

→ “A |= φ” from the axioms CA of second order logic in the vocabulary
{∈}. It would be very surprising if this would be anything but a proof of “A |= φ”
in ZFC, although theoretically the proof based on the second order language and the
comprehension axioms is slightly stronger. So unless we have grounds to rule out Vκ
as a legitimate second order characterizable structure, we can do full-fledged set theory
inside the second order view. Only arguments involving cardinals larger than the first
inaccessible are ruled out. But the first inaccessible can be replaced above by the second
inaccessible, the third Mahlo, the fourth weakly compact, the fifth inaccessible above
the third measurable, etc. So the limitation to κ can be eliminated case by case. In short,
(practically) every set theoretic argument can be recast as an argument in second order
logic.

Does doing set theory inside the second order view, however contrary to the anti-
foundationalism of the second order view it is, give us anything more than what the set
theory view does? It can be suggested that because θVκ characterizes Vκ categorically,
we have gained something. Let us take the CH as an example. We know that CH is true
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or false in Vκ and therefore

|= θVκ → CH or |= θVκ → ¬CH.
In the set theory view we also know that CH is true or false in Vκ, that is

Vκ |= CH or Vκ |= ¬CH.
In fact, the former does not give us anything more than the latter. In both cases we know
that the means we have for giving evidence either way have been proved by Gödel and
Cohen to be insufficient. If a second order principle concerning Vκ emerged that solves
CH it would be immediately recognized in set theory in the same vein. A central crite-
rion for accepting such new principles is the somewhat vague demand for naturality. It
is conceivable that some principles would be more natural in the second order context
and some others in the set theory context. For example, the assumption of large cardi-
nals, which is used in set theory to prove that there is no projective well-order of the
reals, has arisen in the set-theoretic framework and seems natural there. Formulating
large cardinal assumptions in second order logic is uncharted territory.

§6. Large Domain Assumptions. We now return to the question of giving evidence
for a proposition of the form “φ is a second order characterization of a structure”. This
proposition is the conjunction of “φ has a model” and “models of φ are isomorphic”.
The predicate “φ has a model” is a Σ2-complete property of φ. Thus it can neither be
reduced to the question A |= φ∗ for some second order characterizable structure A nor
to |= φ∗ for some second order φ∗ obtained effectively from φ. This means that “φ has a
model” is a proposition of a new kind. It is a proposition of a kind that we do not know
how to give evidence for. This is a weakness in the second order view, as presented so
far. It is not at all clear, and we have to leave it as an open problem, how to formulate
an axiom of second order logic that would remedy this weakness.

One possible approach is the following: Suppose we already know the existence of
some second order characterizable structure B of the same cardinality as A. We can
then give evidence for (8) by proving

θB → ∃R1, ..., RnθA

from the CA axioms. But from where do we obtain B? We can assume without loss of
generality that B has empty vocabulary. If we use relativization to a new predicate R
we only need a second order characterizable structure B of the empty vocabulary which
is as large as A. Then we could give evidence for (8) by proving

θB → ∃R(∃R1, ..., RnθA)(R)

from the CA axioms. What we need, in short, is a large domain assumption θB. Just as
with the large cardinal assumptions in set theory, the large domain assumptions cannot
be proved from the CA axioms of second order logic.

Trying to manage without large domain assumptions amounts to talking about a big-
ger universe inside a smaller universe. What we seem to need are logical means to
refer to the “outside” of a structure. Such logical means are the heart of the extension
of second order logic called sort logic (see [11]). Alternatively, in higher order logics
we can build an “outside” from the higher type objects, but we would need higher and
higher types with no end. This problem does not arise in set theory because the axioms
are designed for the very purpose of producing sets of higher and higher cardinalities
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and if larger sets are needed than provided by the axioms, large cardinal assumptions
(inaccessible cardinals, measurable cardinals, etc) are added to the axioms.

Most of mathematics can be done in set theory without large cardinals, but in second
order logic one seems to need large domain assumptions in order to give evidence for the
construction of any infinite structure: we cannot give evidence for a characterization of
the natural numbers without assuming the existence of a second order characterizable
infinite structure; we cannot give evidence for a characterization of the real numbers
without assuming the existence of a structure of at least continuum size; we cannot
give evidence for the existence of a structure built from all mappings from reals to
reals unless we assume the existence of a structure with that many elements. As we
proceed we need more and more assumptions about the largeness of the universe. This
phenomenon is familiar from Gödel’s Incompleteness Theorem and is remedied in set
theory by a combination of the axioms of infinity, power-set and replacement.

With this method we can give evidence for the second order characterizability of a
structure if we already have a second order characterizable structure of the same or
bigger cardinality, and we can give evidence for a sentence φ being a second order
characterization of some structure if we already have evidence for the second order
characterizability of another structure of the same or bigger cardinality. The idea comes
to mind to assume the existence of as large second order characterizable structures as
we may ever want. We might then ask what would be a second order characterization
of a structure which is sufficiently large? A natural candidate is Zermelo’s Vκ, where κ
is the first strongly inaccessible. We have thus created for ourselves a copy of ZFC set
theory.

We conclude that the second order view suffers from a weakness—the need to keep
making new large domain assumptions one after another—that the set theory view
solves succinctly by assuming that the universe is as large as possible. It is tempting
to adopt the set theory view as the primary view and then formulate the second order
view as a secondary view which appeals to set theory for the existence of structures, but
this ruins the claim of the second order view as giving an autonomous explanation of
mathematics.

§7. Conculsion. Second (and higher) order logic is comparable to set theory on the
level of Π2-formulas. Individual second order characterizable structures are organized
into a hierarchy on the lower level of ∆2-definability.

Second (and higher) order logic has its foundation, not in second order logic itself
but in set theory, because the truth of Π2-formulas can be defined in set theory. Respec-
tively, set theory in full generality does not have a truth definition in set theory itself,
but one can organize it into the hierarchy of Πn-definability, n ∈ N, each level being
definable on the next higher level. As was mentioned, higher order logic corresponds to
the case n ≤ 2.

Compared to each other, second order logic and set theory are not in total synchrony
because of the different nature of the formalizations, namely what is the language and
what is taken as an axiom. When we consider each as a description of what it is that
mathematicians do, the differences of formalization all but disappear.

In particular, it is misleading to say that second order logic captures mathematical
structures up to isomorphism while set theory is marred by the weakness of expressive
power of first order logic manifested in the existence of non-standard models of basic
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foundational theories. Rather, both second order logic and set theory either manifest a
high degree of categoricity or alternatively permit a plethora of non-standard models,
depending on the perspective. Categoricity results when models are assumed to be
“full”, which in the case of formalized second order logic means that every subset and
relation of the domain is in the range of the second order variables, a criterion that can
be conveniently formulated in either informal set theory or in informal second order
logic.

In the case of set theory the “fullness” of the models of the formalized set theory
means that every subset of every set is in the range of first order variables, a criterion
that can be conveniently formulated either in informal set theory itself or in informal
second order logic. Much confusion arises if formal and informal are mixed up. If they
are kept separate, the informal being what mathematicians are doing and the formal
being our attempt to make the informal intelligible, second order logic and set theory
fare rather equally.

Set theory gives a smoother approach but one has to be prepared to allow sets to be
built up in an uninhibited way combining power-set, unions and applications of replace-
ment. Second order logic settles for the more modest approach involving only one (or
a couple of) application(s) of the power-set operation at a time, but the price is that one
needs the concept of universal truth which turns out to encode a tremendous amount
of set theory, and one cannot prove from the (comprehension) axioms the existence of
second order characterizable structures without large domain assumptions.
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to appear.

[6] THOMAS JECH, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The
third millennium edition, revised and expanded.

[7] LAURI KESKINEN, Characterizing all models in infinite cardinalities, Ph.D. thesis, University of
Amsterdam, 2011.
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