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Effective and intermediate Hamiltonians obtained by similarity
transformations

Leszek Meissner® and Marcel Nooijen
Quantum Theory Project, University of Florida, Gainesville, Florida 32611

(Received 23 November 1994; accepted 22 March 1995

A simple similarity transformation is used to derive equations for effective and intermediate
Hamiltonians in a lucid way. Effective and intermediate Hamiltonians based on the wave operator
formalism provide only a subset of all eigenvalues while the similarity transform technique divides
the eigenvalue problem into two subproblems that can be solved separately. This means that the
complete spectrum of the Hamiltonian remains well defined and this proves to be advantageous in
the formal analysis and may be useful in many applications. Moreover both left and right hand
eigenvectors of the transformed Hamiltonian can be obtained and this allows a convenient
evaluation of properties. Rayleigh—Sctinger and Brillouin—Wigner perturbation expansions of

the intermediate Hamiltonians are discussed and a comparison is made of the various possible
schemes. ©1995 American Institute of Physics.

I. INTRODUCTION by diagonalization of the effective Hamiltonian. The inter-
mediate Hamiltonian approach is based on the idea of taking
Effective Hamiltonians play a fundamental role in the into account contributions from the states that potentially can
quantum theory of matter. Several reviews have been writtegtrongly interact with the model space not through the wave
on the subject and specific references may be found tére. operator but also by diagonalization. In this way the interme-
The basic idea of effective Hamiltoniaht™ is to isolate the  diate Hamiltonian acts in an extended space consisting of the
problem of obtaining a few eigenvalues from the total eigenmain model and intermediate spaces. The inclusion of the
value problem given by the Schdimger equation. Most of intermediate space does not provide extra eigenvalues but
the derivations are based on a mapping of the set of exaglermits to deal with the problem of intruder states in a more
eigenfunctions corresponding to eigenvalues we are intekfficient way. The equations that determine the intermediate
ested in onto the set of zeroth-order functions. Then, theiamiltonian are not uniquely defined by a specification of
so-called wave operaft’® is assumed to give the exact only the main and full model spaces and some additional
eigenfunctions corresponding to the eigenvalues of interegfonditions have to be imposed to arrive at a well-defined
while acting on the model spa¢space spanned by selected computational scheme. Different strategies can be followed
zeroth-order functions The resulting equation for the wave here (for an overview see Ref. }6and it is a matter of
operator gives a necessary condition to have the above mesngoing research to find an optimal scheme that is relatively
tioned mapping, but it does not determine the mappingimple, well convergent and size-extenshé® Other desid-
uniquely. That is reflected by the possibility of obtaining erata might be Hermiticity of the intermediate Hamil-
multiple solutions in a coupled cluster framewddad relat-  toniant®°and a relatively high accuracy of the phony solu-
edly the intruder state probleffior discussion see Ref. 10  tions that are obtained from a diagonalization of the interme-
In spite of the fact that we are interested only in some subgiate Hamiltonian22!
problem of the total eigenvalue problem of the Hamiltonian  Previous formulations of effective and intermediate
H it is convenient to keep track of the rest of the problem.Hamiltonian schemes have been mainly based on the wave
That can be important in the case when one would like to gegperator formalism. In this work we will show how alterna-
some additional eigenvalues or the left eigenvectors whickively a simple similarity transformation can be used to ar-
would be required for some further calculations. An examplerive at effective and intermediate Hamiltonian formulations
of such a situation is given by the equation of motionin a transparent way. In the derivation of effective Hamilto-
coupled cluster method; *°where the excitation energy cal- nians the similarity transformation divides the eigenvalue
culation is preceded by the ground state calculation. The latoroblem ofH into two subproblems allowing to deal with
ter can be considered as an effective Hamiltonian implemereach of them separately. This has been also observed while
tation with a one-dimensional model space. analyzing extra solutions obtained within the Fock-space
A promising remedy for the problem of intruder states iscoupled cluster method for ionization potenti&lsn order to
provided by the concept of intermediate Hamiltonians intro-define this similarity transformation we do not need a map-
duced by Malrietet all° The effective Hamiltonian formal- ping of any kind but only a simple partitioning of the vecto-
ism includes the correlation effects in two ways; contribu-rija| space in whichH acts into two subspaces. A similar
tions from the orthogonal space are provided by the waveechnique of employing similarity transformations is used in
operator while the impact of model space functions is giverthe more complicated case of intermediate Hamiltonians.
Applying a sequence of two similarity transformations it is
permanent address: Physics Institute, Nicolas Copernicus Universipf€latively easy to see how the desired structure of the trans-
PL-87 100 TorunPoland. formed Hamiltonian can be obtained. In general, at the start-
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L. Meissner and M. Nooijen: Effective and intermediate Hamiltonians 9605

ing point the number of the parameters to be determined wilAlthough the expansion of) and U ! terminate after the
be greater than the number of initial equations, so some adirst two terms it is convenient to formally introduce the
ditional conditions must be imposed to determine the transexponential form ofU to have an immediate form of the
formation. As a consequence the same structure of the transwerse operator. Using the transformatldrthe transformed
formed Hamiltonian can be obtained in a variety of waysHamiltonian reads
yielding different intermediate Hamiltonians. ~

The question of imposing additional conditions to define H=(1=X)H(1+X)=H+HX=XH-XHX. ©)
a set of equations that determines the similarity transformaWe want to consider the similarity transformation that fulfills
tion is intimately tied to the means of solving the equationsthe condition that the off-diagonal blo€®HP of the trans-
One possibility is to work in the coupled cluster frame- formed Hamiltonian vanishes. That is sufficient to split the
work 1"1822\e will restrict ourselves here to the use of per- eigenvalue problem off into two subproblems. Hence we
turbation theory to determine the transformation coefficientsequire
that ) couple to the orthogonal space. Both Rayleigh— Q|:|P=0 )
Schralinger (R—-9 and Brillouin—Wigner(B—W) perturba- '
tion expansions are discussed. In the final section of thigénd X contains a sufficient number of parameters to satisfy
paper we apply a variety of possible schemes to a simpléhis condition. The expressions for the various blocks of the
model problem introduced by Malrieet al° Our main goal transformed Hamiltoniaii can be obtained in the form
is to obtain a first impression of the performance of the dif- _
ferent schemes. We have also found this model very useful to PHP=PH(1+X)P,
gain some insight in the plethora of possibilities that arises in QI:|P= Q(1-X)H(1+X)P,
the domain of the intermediate Hamiltonian formalism. ~ (8)

PHQ=PHQ,
QHQ=Q(1-X)HQ.

Requirement?7) combined with the second expression in Eq.
(8) leads to an equation foxX,

Most of the recent derivations of the effective Hamil- Q(1-X)H(1+X)P=0. 9
tonian equations are based on a mapping that connects Hg

II. SIMPLE HILBERT-SPACE SIMILARITY
TRANSFORMATIONS

X satisfies Eq(9) then the whole spectrum of eigenvalues
H is given by the separate diagonalizations of the diagonal
PHP andQHQ blocks. To see this one can consider a sub-
sequent transformation of given by

space spanned by some selected eigenfunctions of t
Hamiltonian with a subspace of the same dimension con:
structed from elgenfunctlons of a suitably chosen zeroth-
order HamiltonianH,.* This is usually called the wave op-
erator formalismt=* Such an approach provides equations W=1+S, (10
for a subset of the eigenvalues but leaves the problem
others undetermined. We find it convenient to employ a very
simple similarity transformation and introduce the effective =~ S=PSQ (13)
Hamiltonian as a particular block of the transformed Hamil-1e doubly transformed Hamiltonian then reads
tonian. Within this approach we can either consider the full -
eigenvalue problem or a subset of eigenvalues and this fa- H=(1-S)H(1+S)=H—-SH+HS (12
cilitates the analysis. Denoting By andQ projection opera-  and we requires to satisfy

tors onto some subspadé of the Hilbert space and its or-

ere

thogonal complemenM’, respectively, we introduce the PHQ=PHQ—-SHQ+PHS=0. (13
operatorX, It is easy to see that because of Ef. we have
X=QXP. 1) PAP=PHP,
The Hilbert-space transformation operator takes the form Q|f|P=Q|:|P=O (14)
u=e*, 2 v -
@ qfie=qfe
and therefore the inverse operator is thus the second transformation changes onlyRi#Q part
U l=e X (3) by putting it equal to zero. Now the relation
BecauseP andQ are projection operators onto disconnected ~H=PHP+QHQ, (15
subspaces we have shows that indeed all eigenvaluesléfcan be obtained by
X2=0 (4) separate diagonalizations of tfHP and QHQ blocks. A
similar idea of splitting a Fock-space-type similarity trans-
SlY formation leading to a block diagonal structure of the trans-
U=1+X formed Hamiltonian into two transformations has been pre-
’ (5)  sented by Stolarczyk and Monkhdrsin their version of the
Uul=1-x. Fock space coupled cluster method. Obtaining a block-
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9606 L. Meissner and M. Nooijen: Effective and intermediate Hamiltonians

diagonal structure in one step is troublesome, especially findions sod is equal to zero. In case whdéh andD’ have at

ing an explicit form for the inverse operator can beleast one common eigenvalue then puttilygO is a matter of

difficult.?* choice. Ifd=0 thena=A andb=B. Hence, the right eigen-
The doubly transformed Hamiltonian in which the se-vectors ofH form the matrix

guence of transformations is reversed: c

A
U w tHwuU, (16) R=[0 B

whereW and U satisfy analogous conditions

: (21)

whereC=c has to satisfy the third equation in EQO).

PW HWQ=0, 1 One can see that thepo submatrix which does not con-

QU-IW-HWUP=0 17) tribute to the determination of the eigenvalues, now is nec-

' essary to determine the right eigenvectors corresponding to

has the same block diagonal structurétabut is differentin ~ D’. The biorthogonal set of left eigenvectors is given by

general. IfH is Hermitian these two transformed Hamilto- _1 gy —1
. . . A —-A"CB

nians are Hermitian conjugates. L= -

The equation foiX, Eq. (9), is nonlinear. This indicates 0 B

that the transfqrmatiorU cannot be uniquely determirjed One can also see that the right eigenvectorgiven by di-

from the condition(7) and there are many transformations 54nalization offipp allow the determination of the right

that satisfy this condition. Different solutions of E@®) and eigenvectors oH corresponding t®,

hence different transformations of the Hamiltonian lead to

exchange of eigenvalues bf between the®HP andQHQ

blocks. Multiple solutions obtained within an effective Vo=

Hamiltonian formalism have been recently found and dis- ) 1 ) o

cussed within the Hilbert-space and Fock-space multirefervhile the left elgenvegtorg given by d@gonahzanon of

ence coupled cluster method$2 This phenomenon of Hag allow the de'Eermlnatlon of the left eigenvectors tof

multiple solutions may pose problems, particularly if the cal-corresponding t@’,

culatl_on of the transformatlon is b_ased on a p_erturbatlon e v=[-B~X B7Y. (24)

pansion. The perturbation expansion may be ill behaved and

it may be very difficult or impossible to converge to any However, determination of the left eigenvectorstbfcorre-

particular solution. This is referred to as the intruder statesponding to eigenvalue3 as well as the right eigenvectors

problem?® corresponding td’ requires to obtain th€ matrix or theS

While the transformatiot) Eg. (2) leads to the separa- matrix that relates t& through

tion of the eigenvalue problem into two subproblems it does 1

not do the same for the eigenvector problem. To have the left S=BC . (29

and right eigenvectors correctly described the nonvanishingpe right eigenvectors correspondingRcare

off-diagonal block of the transformed Hamiltoni&h has to

be considered along with the diagonal blocks. LetAhand bV=[A"1+A"ISX —A~1g], (26)

B matrices contain the eigenvectors of thigp and Hgg

matrices, respectively, so

HppA=AD,

(22

A
XA}’ 23

while the left eigenvectors correspondingo are given by

SB
B+ XSB

: 27)

VD/

~ 18
HQQB: BD, y ( ) . ~

) ) _ o ) Thus, to calculate eigenvalueép andp/V the Hpg part of
whereD andD’_are diagonal matrices containing eigenval-tne transformed Hamiltonian is not necessary and can be
ues ofHpp andHoq, respectively. Assuming a general form jgnored while to obtaiV andVp, it is indispensable. Hav-
of the matrix containing the right eigenvectorstéfone has  jq the eigenvectors of the transformed Hamiltonian deter-

[ﬁpp ,Z,PQ a ¢ D 0 mined properties other than energy can be calculated. It must

d b

a c
d b

~ /. (199  be stressed here that while the equation XgrEq. (9), is
0 Hgo 0 D g ; : :
quadratic inX and can give many solutions corresponding to
That leads to the set of equations exchange of eigenvalues betwderandD’ the equation for
S, Eq.(13), is linear inS. This is quite understandable, since
once one of the possible solutions f&ris determined and

|:| ppa+ |:| de = aD,

I:|QQd=dD, the corresponding partitioning of the eigenvaluesHobe-
B ~ (20) tweenD andD’ is established then there should not be any
HppC+ Hpgh=cD’, ambiguity in the determination of the remaining eigenvectors

G b=bD’ pV andVp, for which Sis necessary. The linear character of
QQ ' Eg. (13) guarantees that.

If all eigenvalues contained iB are different from those in Let us mention here an example of the formalism that

D’, so none of them is a solution of characteristic equation ofmplicitly uses the above technique. We would like to refer

Hqq then the second equation (80) has only trivial solu-  here to the single-reference coupled cluster method that has
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been found a very powerful tool in describing the correlationwhere the subscripB means the Bloch effective Hamil-
effects of the ground staté.It is based on the Fock-space tonian. Usually the appropriaté can be determined rela-
similarity transformation tively easily if diagonalization oH within the model space
H—e THeT 28) M gives a reasonable approximation to the exact eigenvalues
' we are interested in and thiXscan be considered as giving a
where T is a second-quantized excitation operator definedelatively small correction. Another form for the effective
with respect to the ground state determinant, usually thélamiltonian can be obtained by applying transformatién
Hartree—Fock functiorb. Similarity transformation28) is Egs.(10) and(11), and require
different from the Hilbert-space transformation described by

1 —
Eq. (6), however, the transformed Hamiltonian is required to PW"HWQ=0. (37)
fulfill a relation analogous to EdY), This leads to an equation f& and the Hermitian conjugate
QﬁPzO 29 of this equation is given by
where Q(1+S"HH(1-shP=o0. (38)
P=|®d)}®|, Q=I-P (30) Comparing this with the equation fof, Eq. (9), one can see
' ' that

Equation(29) allows to determine the cluster operafiarAs :
discussed, more than one solution can be obtained from Eq. S= X" (39

(29)77%¢ however, usually there is no problem with finding The effective Hamiltonian given by this transformation is
the solution corresponding to the ground state. Then

PHP=E,P, (31)

whereE, is the ground state energy. The similarity transfor-Where the 3%‘é‘bs9ripto refers to the @ubo effective
mation (28) gives the right eigenvector correspondingBg Hamlltonlan.*. Using the correspondence betwegand X _
while the the left eigenvector is still to be determined. One®N® can find the relation between both effective

can employ the Hilbert-space similarity transformation toHamiltonians;

HE'=P(1-S)HP, (40)

find it ~ HE'=P(1+ X" HP=(HEH'. (41)
+ - = B
P+AH(I-4)Q=0, (32 The Bloch and ®ubo effective Hamiltonians are the basic
whereA is used to denote the operator ones that can be derived within the scheme described in the
A=PAQ. (33) previous section. These formulations are completely equiva-

_ _ . . _ lent (Hermitian conjugatealso if approximations are intro-
This leads immediately to the well known linear equation forquced. The other effective Hamiltonian that is well known is
the A coefficient$® that parameterize the left eigenfunction the des Cloizeaux effective Hamilton&n

P(1+A)(H-EqQ=0. B4 HS=P(1+X"'X)" ™21+ XNHH(1+X)(1+XTX)~V2p,
Even if one uses a more complicated parameterization of the (42)
left eigenvector oH corresponding tdt, like, e.g., employ-  where againX is determined by Eq(7). The characteristic
ing an exponential expansion instead of a linear one feature of this effective Hamiltonian is that it is Hermitian

P(1+A)=PeS (35) unlike both previous formulations:
whereS is a second-quantized deexcitation operator, the re- Hie=(HiO". (43

sulting equations fpr ths amplitugles_ 258 a_ga_lin linear as has Of course, all these effective Hamiltonians that furnish the
_been_found by Je2|9rsk| and _Mos;s;kn. This IS NOLSUPIS- gy act eigenvalues dfi must be related by similarity trans-
ing since the left eigenfunction corresponding to some parg, ations within the model space. Let us show now simi-

tlculgr eigenvalue must be unllquely determined while Eq'Iarity transformations that relate all these effective Hamilto-
(29) in general has many solutions. nians. We start with the des Cloizeaux effective Hamiltonian
that can be cast into the form
Il. EFFECTIVE HAMILTONIANS
HE=P(1+XTX)"¥2(1+ XN (1+ X)(P+Q)

The purpose of using the similarity transformation de-
scribed above is obviously the reduction of the problem of X (1= X)H(1+X)(1+X"X) " 12P. (44)
finding all eigenvalues ofl to the problem of finding some Using Eq.(9) that is satisfied b one can get
of them. We assume that we have some small model ddace
and we are able to determine such a similarity transformation  Hin=P(1+X"X) =21+ X"™X)PH(1+X)
that all eigenvalues we are interested in are giverbbyVe fyy—(1/2)
start with the most common effective Hamiltonian given by XP(L+XTX) P
the transformatior, Eq. (2) fulfiling Eq. (7) defined a¥" =P(1+X"X)Y2HefM(1+ XTX) " 1/2p, (45)

HE'=PHP=PH(1+X)P, (36)  Using Egs.(43) and (41) we also have
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9608 L. Meissner and M. Nooijen: Effective and intermediate Hamiltonians

HSE= (HEM T=P(1+XTX) " V2HE (1+ XTX) 2P, (46) Q
0 Ri = EI _H . (53)
Finally, from Eqgs.(45) and(46) we get o e
. That gives the recursive formula fof,
HE™=P(1+X™X) " *HE (1+XTX)P. (47)
Equations(45)—(47) show similarity transformations within X=2 2 R(VR)"V-XV(1+X)]P;, (54)
the model space relating all discussed effective Hamilto- iel n=0

nians. Of course, there are many similarity transformation§hat can be used to build the order-by-order Rayleigh—
leading to many different effective Hamiltonians but all of gy, iqiinger expansion for the effective Hamiltonians. It is
them can be expressed through the basic similarity transfog—een that the various component®; are coupled in the
mationU (or W) and an additional similarity transformation above equation by the occurrence)ﬁlf/.
within the model space. However, it is important to realize Closer inspection of Eq8) shows that Eq(7) can be
that results using the des Cloizeaux effective Hamiltonian, o \vritten in the form
will be different from those obtained in the Bloch okabo B
formalisms if approximations are introduced. QVP+QHX—-XPHP=0, (55

For the purpose of the next section we would like to . - )
introduce now the most basic perturbation expansionfor that can be used to qlli)tam athIIp uin—Wigner-type of exFan—
As mentioned before we can expect to obtain all eigenvalue%'::b-rgf (:ﬁesz f\f':; ((a:t\il\vlle ﬂzemtiltineifneg\azcurfiin? etlr?:na\llt?o_ve
of interest in a relatively easy way ¥ can be considered to ion f he riaht by th iated pa?t/ C
give a small correction to the eigenvalues obtained with th quation from the right by the associated operatacting in

first-order approximatior{diagonalization ofH within the to obtain

model space If X is relatively small then a perturbation QVA+QHXA-XAD=0, (56)
expansion can be used f&r and thus the effective Hamil- ] ] o

tonian can be obtained in terms of a perturbation expansioff’hereD is the diagonal operator containing the exact ener-
We assume that the Hamiltonian is divided into a zeroth9i€S- OperatoA can be expressed in the form

order partH, and a perturbatiovV. The basis function®,

are assumed to be eigenfunctionshHy, A= A, (57)
iel
H=Ho+V, Ho®=E5D,, (48)
where
whereE§ is the zeroth-order energy. Using this zeroth-order HefA — A E 58
description of the system the projector operaorcan be BT A= (58
expressed as so we have
Q[V—(E;—Hy—V)X]A;=0. (59)
P=2 [®)ND|=2 Py, (49 P '
iel iel In a similar way as Eq52) the B—W perturbation expansion

o ] can be obtained foXA,,
wherel contains indices of the zeroth-order functions span-

ning the model spachl. Equation(9) can be written in the »
form XA =2, R(E)[VR(E;)]"VA, (60)
=0
Q[V+ (Hg+V)X—=XHo—XV(1+X)]P=0 (50) "
where
or 9
QVP —Q(E,—Ho—V)XP,—XV(1+X)P;=0.  (51) RE)=E—H, (61)

One can see that a formal expression ¥dP; can be ex- Interestingly, if we would know the eigenvectors of the ef-
tracted from Eq(52) if one is able to find the inverse opera- fective Hamiltonian as well as the eigenvalue the individual
tors of (Eo—Ho—V) within the orthogonal spackl’. This  componentsKA; satisfy completely decoupled sets of equa-
can be done be using the geometric expansio¥ is as-  tions. This indicates that the Brillouin—Wigner scheme has
sumed to be small: potential for a self-consistent scheme, where each eigenvec-
tor is calculated individually. We will return to this topic later
. ” on. The complete operatot can be obtained by summing
[Q(E,—Ho—V)QI *=Ri(1-VR) =2 R(VR)",  over the various components
n=0
(52) ”
XA=2 XA=2 X RE)VRE)IVA, (62

where all inversions are considered within the' space - e
€ € =

only. R; is the inverse of the diagonal operat(E{)& Ho)
within M, and finally
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Y=QYP,

_ . AN A1l
x-iZI EO R(ED[VR(E)]"VAA™, (63) Z—P,ZPy, 64
where
IV. INTERMEDIATE HAMILTONIANS P=Py+P,, (65)

The idea of interm%jiate Hamiltonians has been introwhile the transformed Hamiltonian is assumed to be
duced by Malrieuet al.™ The formalism introduces two ~
kinds of model spaces; the main model spatg and the H=1=2)(1=Y)H(1+Y)(1+2). (66)
intermediate model spadd, . Let us denote the projection To have the eigenvalue problem corresponding to the main
operator on these spaces®yandP, , respectively. The rest model spaceVl, separated we have to require
of the space is called the orthogonal spatewith the pro- -
jection operatorQ. The idea of intermediate Hamiltonians (Q+P))HPo=0, (67)

was motivated by the problem of intruder states that is facedg that the diagonalization d?,HP, gives the desired ei-

in many practical implementations of the effective Hamil- genvalues of. One can see that at this moment the number
tonian theory. This is especially important when a perturbapf parameters to determine is greater than the number of
tion expansion is applied since in this case one can expeglguations in Eq(67). That gives an extra degree of freedom
divergency problems or alternatively the perturbation expangng it will be necessary to impose additional conditions on

sion may converge to an undesired solution. In such a casfe transformation to determine it uniquely. Inserting Eq.
the use of an intermediate Hamiltonian appears to be a promgg) into Eq. (67) and using Eq(65) we get

ising solution to the problem. The situation is often different

when the multireference coupled cluster theories are em- Q[H(1+Y)(1+Z)—=YPH1+Y)(1+Z)]Py=0 (68
ployed within the effective Hamiltonian framework becausegpq

it may be possible to converge to a nhumber of different so-

lutions using different starting points or different conver-  Pi(1-2)H(1+Y)(1+Z)Py=0, (69)
gence procedures. This phenomenon has recently been foupg,ijo

and discussed in both the Hilbert-spa@ad Fock-spacé N

versions of the multireference CC method. Although the CC  PgHPy=PyH(1+Y)(1+2)P, (70
theories within the effective Hamiltonian framework seem
more efficient in dealing with the intruder state problem, the
intermediate Hamiltonians can be useful in many situations P=(1+2Z)P(1-2) (71
like for example when the proper description of some low-,
lying states requires the inclusion of many reference func!” Eq. (68) one has
tions in the model space. Then those essential for all geon@[H(1+Y)(1+2Z)—-Y(1+Z)P(1-2)

etries can be included in the main model space while the rest

of them span the intermediate model space. Coupled cluster <H(1+Y)(1+2)]Po=0. (72)
theories based on the intermediate Hamiltonian formalisniow making use of Eq(69) we get

have been recently proposed by Kbtand Mukhopadhyay

et al’® In some cases intermediate Hamiltonians are conve- QIH(1+Y)=Y(1+Z)PoH(1+Y)](1+2Z)P;=0.
nient to use also for formal reasons to simplify the formalism (73)

like in the coupled electron pair approximatit@EPA) type  Now to make the number of equations sufficient to determine

method3* or in a recently proposed dressing for the matrix ajl unknown components of one can impose the condition
elements of equation of motion coupled cluster method

(EOM-CQ).3° Q[H(1+Y)—=Y(1+2Z)PyH(1+Y)]P=0. (74

In the following we will present a way of obtaining in- Thjs condition leads to satisfying E73) but must be seen
termediate effective Hamiltonians based on the idea of thgg only one of the possible ways to do so. It corresponds to
simple similarity transformation presented in the second seGhe so-called simplest generalization of the wave operator
tion. This approach shows properties and structure of theyrmalism by Malrieuet al°
transformed Hamiltonian. One can get a variety of interme-  pjagonalization ofp0|:| P, vields a subset of the exact
diate Hamiltonians since we split one transformation ”keeigenvalues oH. The number of eigenvalues is equal to the
that used in the effective Hamiltonian scheff®. (2)] into  dimension of the main model space but one can also notice
two similarity transformations and that can be done in manyhat this set of eigenvalues along with some other set of

different ways. Extra conditions have to be imposed in ordefhymbers that are not, in general, eigenvaluesiotan be
to make the equations unique and there are different possistained by diagonalization of

bilities. Therefore, only some of the possible schemes that

can be obtained are considered explicitly. Hf"=P(1-Y)H(1+Y)P=PH(1+Y)P, (795
We will first consider the general formalism of interme-

diate Hamiltonians from the point of view of similarity trans- .

forms. Let us definé&’ andZ operators as PHP=P(1-2)(1-Y)H(1+Y)(1+2Z)P. (76)

plays the role of the effective Hamiltonian. Using the identity

since the same eigenvalues are furnished by
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9610 L. Meissner and M. Nooijen: Effective and intermediate Hamiltonians

The operatoP|:|P and the intermediate Hamiltoni&t" are  number of Y parameters is minimal. Malrieat al° have

related by a similarity transformation within the model spacediscarded this possibility because the intermediate Hamil-

by the operatoiP(1+2Z)P and hence have the same eigen-tonian can be rather nonsymmetric because the so-called

values. However, due to E¢G7) part of the eigenvalues of dressingPHY B, modifies only the main model space col-

PHP (andH,eﬁ) is a set of eigenvalues of the Hamiltonidn  umns of the intermediate effective Hamiltonian. However,

The rest of eigenvalues ch“ are phony ones in the sense the assumption in these schemes is always Yhaan be

that in general they are not eigenvaluedof obtained from a perturbation expansion and will hence be
It can be seen from Eq75) thatZ can be directly ob- small. Therefore we consider this scheme perfectly viable for

tained from the diagonalization of the intermediate Hamil-application to quantum chemical problems. Jolicard and

tonian if the eigenvectors corresponding to the main modeBilling®*® have implemented a scheme that is based on the

space are expressed in the intermediate normalization. It caabove parametrization and applied it successfully to some

be viewed as a particular way of solving E§9). Another = model problems relating to nuclear dynamics.

way of solving Eq.(69) is to develop into a perturbation Another kind of condition that satisfies E({.3) can be

expansion, and this choice has been implicit in most of thdound when the main model space is completely degenerate

work on intermediate Hamiltonians using R—S perturbationin the zeroth-order approximation

expansions. However, in suitable applications of the interme- 0

diate Hamiltonian formalism there will be a fairly strong HoPo=EoPo. (8D

coupling between the main and the intermediate model spaagsing the partitioning of the Hamiltonian into a zeroth order

and therefore a perturbation expansion can be expected to B@d perturbed part, E473) can be rewritten in the form
at best slowly converging. In the following we will explore

the possibility of obtaining by diagonalization of the inter- QLH(1+Y)(1+2Z)=Y(1+Z)PoHo

mgdigte Hamiltonian. The equation. fgr(or approximatioqs —Y(1+Z)PV(1+Y)(1+Z)]Py=0. (82

to it) in most cases depends @n This suggests an iterative

solution to the problem. We can solve fé@r givenY and  Due to Eq.(81) we have

then forY with fixed Z and iterate this sequence until self- Y(1+2)PoHo=YEY(1+2)Py, 83)

consistency.
Another way of satisfying Eq(73) can be found by em- and Eq.(82) takes the form

ploying the simplest decomposition of the similarity transfor-

mation leading toH®" in which theY and Z operators are

defined as follows:

Y=QYPR,, Z=P/,ZPy, (77

QIH(1+Y)—YE—Y(1+2Z)PoV(1+Y)](1+2)Py=0.
(84)

Equation(84) is satisfied if

or alternatively we have imposed the extra conditions Q[H(1+Y)_YEg_Y(1+Z)P°V(1+Y)]P:O' (85)

QYR =0, which imply QYZRy=0. One can see that the The number of unknown parametersyirandZ is now equal
number of parameters to determine is again equal to thg the number of equations. The set of E(®5), (69), and

number of equationsY must satisfy (75 may be developed completely into perturbation expan-
H(14Y) = YH(L-Y) (14 7)Pa=0 78 sions to obtain the generalized degenerate perturbation ex-
QLH( ) ( ) )Po 78 pansion(GDPT).2° We have immediately from Ed85),
or
Q(1-Y)H(1+Y+Z)Py=0, (79 Y=RoY (VRo)"[V-Y(1+Z)PeV(1+Y)]P, (86)
n=0

and the intermediate Hamiltonian is traditionally given by

Eqg. (75). Equation(79) can be considered as an equation foryhere

Y that also depends on (1Z)P, which corresponds to the

set of eigenvectors d*FI;aﬁ for the selected eigenvalues idf R.— Q

we want to obtain. Therefore the right eigenvectors-kﬁf‘ Q_Eg— Ho'

are necessary to determiiYe This scheme has been imple- _ . . L

mented to modify the equation of motion coupled cIusterWhlle the perturbation expansion fdris given by

method with singles and doubldEOM-CCSD (Refs. 11 o

and 132 to include the effect of higher excitations and elimi- - _ n _

nate the extensivity errdr. z R'zo (VRITVL+Y+Y2)=Z2V(1+2)(1+Y)Po,
Equation(79) can be cast in an iterative form using the (89)

partitioningH=Hy+V,

Q(YHy—HgY)Po=Q(1-Y)V(1+Y+2Z)Py, (80

(87

where

P
and this allows for a convenient determinationYofAll en- R, =Eo_|—H- (89
ergy denominators involve energy differences between the o 70
main model space and th@-space and are therefore well Equations(86)—(89) can be used to obtain an explicit order-
behaved. This very simple scheme has the advantage that thg-order expansion folY and hence for the intermediate
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L. Meissner and M. Nooijen: Effective and intermediate Hamiltonians 9611

Hamiltonian[Eqg. (75)]. One can see that because of use ofto determine the solution uniquely we have an equatioryfor
the intermediate Hamiltonian scheme denominators appeathat is now noZ-dependent but energy dependent. The equa-
ing in R, that may cause problems have been shifted frontion is linear inY, which means that for a selected enekyy
the second order in thel®™ expansiofmultireference R—S there can be only one solution faf;
PT (Sec. lll), which under conditiori81) is called degenerate
perturbation theoryDPT)] to the fourth order in theH "
expansion(GDPT).X° Alternatively, the operatoZ can be
obtained from diagonalization of the intermediate Hamil-
tonian. This alleviates all problems arising from the strongwhere R(E) is given by Eq.(61). The intermediate Hamil-
coupling between the main and intermediate model spacestonian is again defined by E¢75) giving only one selected
The above two schemes involving eitf@lY By or QY P eigenvalue oH. The scheme presented above has been dis-
and a degenerate main model space are closely related. Swirssed by Lindgren as a version of B-W expansion of the
pose the intermediate Hamiltonian is given Byi(1+Y)P  effective Hamiltoniar. However, in the light of subsequent
and Z is determined to satisfy Eq(69), then one can developments it is better to consider the scheme as an ex-
alternatively ~ use the intermediate  Hamiltonian ample of an intermediate Hamiltonian formulation. One can
PH[1+Y(1+Z)Pg]P. This intermediate effective Hamil- find many more implicit implementations of this idea like,
tonian provides the same eigenvalues for the main modgbr example, the partitioning technique bywadin®” and the

©

Y= R(E)[VR(E)]"VP, (96)
n=0

space, because self-energy operator in the theory of propagat@se, e.g.,
_ Ref. 38. In all of these approaches an eigenvalue is deter-
Pi1=2)H[1+Y(1+2)Po](1+2)Po mined by diagonalizing a matrix that depends on the eigen-
=P(1-2)H(1+Y)(1+Z)Py=0 (900  value. The final solution is obtained at self-consistency.

The scheme introduced by Lindgren does not depend on
and the eigenvectors given by the diagonalization. This is a con-
PoH[1+Y(14+2Z)Py](1+2Z)Py sequence of having a one-dimensional main model space. In

the scheme proposed by Zaitsevskii and Demeft'based
=PoH(1+Y)(1+2Z)Po=PoH"Py. (91 also on the B-W type expansion in which divh, is greater

This shows that the vital information is provided gy(1  than one the dependence on the eigenvectorsl i does
+2Z)Py=QY’P,. The relation between the two approaches@PPear. In the above scheme we used an ope¥oiP and
becomes even deeper if we compare the equation¥ fd ~ Included extra equations by replacing{Z)P, by P. As

Y'. The explicit perturbation expansion fof is before we can construct an alternative scheme by equating
the QY P, components to zero. Let us for later convenience
* indicate this operator a%'. In this case we have
= nv-Y' +Y’ + .
Y RQE (VRQ)"IV=Y'V(1+Y")](1+2)Py. (92 PoH(1+Y'+Z)Po=EP,, 97

n=0

Comparing Egs.(86) and (920 we find that QY'P, and Eq.(73) takes the form

=QY(1+2)P, in each order of the perturbation provided Q[H(1+Y'+2)—EY']Py,=0. (99

the same operat@ is used in both equations. It follows that
both schemes yield exactly the same result in each order
the perturbation if and only if the operatdris calculated up Q(Ho+V—E)Y'+QV(1+2Z)Py=0, (99
to self-consistency. The change in results due to self-

consistency will usually be small and therefore we expecW
these two schemes to give very similar results, irrespective of

OL‘Jsing the partitioning of the Hamiltonian we obtain

hich leads to another B—W type expansion

the details of solution. Let us stress here that the number of y'_gE) > [VR(E)]V(1+2)]P, (100
parametery’’ is much less and this will be a distinct advan- n=0
tage.

The intermediate Hamiltonian schemes presented aboyhere againR(E) is defined by Eq(61). In this way Y’
are based on dependence of teperator on some eigen- Pecomes energy and eigenvector dependen_t.
vectors ofH®, through their dependence ¢b+Z). For the The two B—W type of approaches described above lead
one-dimensional main model spaigk, (dim M,=1) this de- 0 the same results in each order of the perturbatiah it
pendence can be replaced by an eigenvalue dependence. Egfculated self-consistently. This can be easily seen if we

dim My=1 we have multiply Eqg.(96) by (1+Z) Py, and compare with Eq100).
- It follows thatY'=Y(1+Z)P,. Given thatZ is determined
PoHPo=PoH(1+Y)(1+Z)Po=EPy, (93 from H" = PH(1+Y)P and the fact that PH[1

+Y(1+2Z)Py]P gives the same main eigenvalues and op-
eratorZ it follows that both approaches yield identical results
Q[H(1+Y)-YE](1+Z)Py=0. (94  if Zis calculated self-consistently. It seems therefore that the
second schem@ising less parameters to be preferred over
the first scheme. However, the first scheme does not explic-
Q[(Ho+V—-E)Y+V]P=0 (95 itly depend onZ and therefore it is likely that self-

and then Eq(73) gives

Requiring
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9612 L. Meissner and M. Nooijen: Effective and intermediate Hamiltonians

consistency can be achieved easier in the first approacN. NUMERICAL EXAMPLE
Therefore, if one aims at a self-consistent solution of the
equations, the first scheme may be preferable.

Let us for the sake of completeness also consider th
case of a multidimensional main model space within
Brillouin—Wigner framework. Substituting

We have discussed a number of possible schemes within
the framework of intermediate Hamiltonian theory. These
&chemes can be classified as follows. We consider either a
ull dressingQY P or a minimal dressindQY P,. As men-
tioned before if the quantities determined from the interme-
pOH(1+Y)(1+z)p0:Heff (102 diate Hamiltonian,Z and/or E, are calculated up to self-
consistency the results from these schemes will be identical
in each order of the perturbation with respectvtoThis is

Q[H(L+Y)(1+2)-Y(1+Z)H*MP,=0. (102  true in both the Rayleigh—Schdimger (assumingH, is de-

i o i i generate in the main model spaead Brillouin—Wigner for-

To arrive at a _Bnlloum—ngnf?r scheme we need the eigenm ations. The number of iterations required to achieve self-
vectors and eigenvalues &f*", denotedA andD, respec-  psistency does depend on the dressing, however. In order

into Eq. (72 we get

tively, to get a first impression of the performance of these schemes
HefA=AD. (103  We apply the various schemes to a well known model prob-
lem introduced by Malried® The model is defined by a real
Multiplying Eq. (102 by A from the right we find symmetric matrix of dimension 20. Five of the eigenvalues

Q[H(1+Z)A+HY(1+Z)A—Y(1+Z)AD]=0. (104 ©f the matrix are centered around unity and five others are
close to two. Therefore, the dimension of the full model

Let us note that (+ Z)A represent simply the eigenvectors space is 16° The matrix is dominantly diagonéthe diago-
of the intermediate Hamiltonian. If we now define a newna| definingH,) and the first five elements dfl, are all
quantity Y’ =QY(1+Z)A the working equations become  ynity, so that we can define a degenerate main model space
Q[H(1+2Z)A+HY'—Y'D]=0. (105 of dimension 5. We have carried out seh_‘—consistent _RSPT
(SC-RSPY and BWPT(SC-BWPT) calculations employing
This last equation can be cast into an iterative form as  either a full or minimal dressinfgiving identical resultsand
, N ) an iterative RSPT scheme in whighandY are not calcu-
(YD =HoY)=QIV(1+2)A+VYT]. (106 lated self-consistently but we simply updaeandY alter-
As discussed before the intermediate Hamiltonian can beately. In all calculations presented the dimension of the
written asPH[1+ Y (1+ Z)P] P, if the operatotZ is deter- main model space was 5. In Tables | and Il we show the
mined self-consistently. It follows that in terms & the  convergence behavior of the first and fourth eigenvalues as
intermediate Hamiltonian is given BH(1+Y'A™Y)P. The typical examples. We show the difference with exact eigen-
parameters as well asA are obtained from a diagonaliza- value as a function of the order of iteration ¥h Also in-
tion of the intermediate effective Hamiltonian. An important cluded in the tables is the behavior of conventional degener-
feature of this general B—W scheme is that results are strictlgte perturbation theorypossibly suffering from intruder
independent of the size of the main model space in eacbtate$ and generalized degenerate perturbation th¥ofe
order of the perturbation. From E(LO6) it follows that each  results in Table Il are most indicative of the performance of
componentY; corresponding to a particular eigenvecfyr  the various methods. It is seen that all schemes based on the
can be calculated individually. Moreover defining the inter-intermediate Hamiltonian formulation exhibit a substantially
mediate Hamiltonian asl(1 + Y'PyA’ ~1P(), wherePjis  more stable and smoother convergence behavior than DPT. It
a model space smaller thdm, yields the same eigenvalues can also be seen that the convergence of GDPT slows down
corresponding to the eigenvecto¥y included in P as after the first few orders, and this is due to the slowly con-
H(1+Y'Py,A~1P,). This adds a lot of flexibility to the gen- verging perturbation expansion f@ which involves small
eral B—W scheme in actual applications. denominators. This problem is alleviated in the self-
All B-W schemes discussed in this section yield theconsistent schemes which show very similar convergence be-
same result in each order of the perturbation if the intermehavior. The convergence behavior of iterative RSPT is quite
diate model space quantiti€ls, Z, and/orA) are iterated up  stable too, and this shows that self-consistency may not be
to self-consistency. However, the convergence behavior inery important. Let us note that the total number of iterations
the self-consistency cycle may be quite different. Theon Z is much larger in the self-consistent formulations and
scheme proposed by Lindgren does not dependZaand  this most likely explains the slower convergence of iterative
therefore one can expect this scheme to converge very raRSPT.
idly. However, the number of parameters is larger than in The self-consistent SC-RSPT and SC-BWPT calcula-
the other two schemes and therefore we think that thisions have been carried out using both a full dressggP
scheme will be most usefssuming a rather large interme- and a minimal dressin@Y P,. The use of a minimal dress-
diate spacgif Y is calculated only up to first ordém first  ing requires most iterations to achieve self-consistency. Typi-
order the computational cost to incorpor@® Por QY Pyis  cally we need 12-14 iterations to find the energies stable up
the samg The B—W scheme has the interesting property thato 11 decimal places. Reducing the dimension of the main
results are independent of the size of the main model spagaodel space to one reduces the required number of iterations
and this provides a high flexibility in the application of the to 10—12. The reduction of the dimension of the main model
scheme. space has hardly any effect on the order by order conver-
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TABLE |. Convergence behavior of first energy eigenvalue of the Malrieu model problem using various
schemes based on the intermediate Hamiltonian formalism. The main model space has dimension 5 in all
schemes and the full model space has dimension 10. DPT is the standard effective Hamiltonian scheme, GDPT
is the generalized degenerate perturbation thédejrieu, 1985. In the self-consistent schem&C-RSPT and
SC-BWPT) the operato is optimized in each order of the perturbation until it does not change anymore. In
the iterative RSPT scheme operatdrandY are calculated alternately. For more details see the text.

Iterative
Order of PT DPT GDPT SC-RSPT SC-BWPT RSPT
1 0.13-2 0.13-2 0.13-2 0.13-2 0.13-2
2 —0.26e—-2 0.2%-3 0.2%-3 0.34e-3 0.3%-3
3 0.83-3 0.11e—-3 0.76e—4 0.9%-4 0.11e-3
4 -0.27e-3 0.25%—-4 0.1%-4 0.2%-4 0.37%e—-4
5 0.10e-3 0.9%-5 0.51e-5 0.88-5 0.13-4
6 —0.46e—4 0.20e-5 0.13-5 0.26e—5 0.43%-5
7 0.24e—-4 0.72-6 0.3%-6 0.7%-6 0.1%-5
8 —0.14e—-4 0.10e—6 0.8%-7 0.24e—6 0.52-6
9 0.82-5 0.31e—7 0.2%-7 0.71e-7 0.18-6
10 —0.4%-5 -0.71e—-8 0.60e—-8 0.21e-7 0.622-7
11 0.3¢k-5 0.64e—8 0.21e-7
12 —-0.18-5 0.74e—-8
13 0.1%-5
14 -0.62e—6
15 0.3%—-6
16 -0.21e—6

gence. Using the full dressing in the SC-RSPT scheme wécular if the perturbation expansion f¥rcan be restricted to
still need about 10-12 iterationgseduced to 8-10 if the first order. The full dressing shows hardly any advantages for
dimension of the main model space is taken to be nity the SC-RSPT scheme and we think therefore that the itera-
This slight reduction is not very useful considering the in-tive RSPT schem@n which Y andZ are determined alter-
crease in the number of paramet&tsHowever, in the SC- nately in conjunction with a minimal dressing is probably
BWPT scheme with a full dressin@nd necessarily a one- most useful in the context of higher ord@r coupled cluster
dimensional main model spgceself-consistency can be based intermediate Hamiltonian schemes.
achieved in two to three iterations. This clearly shows the
enormous |mprovemept that is obtained by replacing the de\-/l_ CONCLUSION
pendence oiZ by an eigenvalue dependence.

Preliminary conclusions from these model calculations  We have shown how effective and intermediate Hamil-
are that the full dressing shows promise in conjunction withtonians can be derived from a simple similarity transforma-
the one-dimensional SC-BWPT scheme. This is true in partion. This scheme provides a necessary condition for the

TABLE Il. Convergence behavior of the fourth eigenvalue of the Malrieu eigenvalue problem. The same
computational schemes are used as in Table I.

Order of PT DPT GDPT SC-RSPT SC-BWPT Iterative
RSPT
1 0.1%-2 0.1%-2 0.1%-2 0.1%-2 0.1%-2
2 —-0.73e-3 —-0.9%—4 —0.9%—4 —0.18-3 0.14e—-3
3 0.73-3 0.6le—4 0.71e—4 0.86e—4 0.8%—-4
4 —-0.40e—-4 0.21e—-4 —-0.13e-5 —-0.11e—-4 0.36e—4
5 0.13-3 0.5%-5 0.61e-5 0.78&-5 0.17e—4
6 0.14e—4 0.86e—5 0.30e—-6 —0.98e—-6 0.81e—5
7 0.3%—4 0.17%e-5 0.6—6 0.8e—-6 0.3%-5
8 0.10e—4 0.28-5 0.6%—7 —-0.9%-7 0.18-5
9 0.10e—4 0.76e—6 0.63%—-7 0.84e—7 0.87e—6
10 0.47%—-6 0.86e—6 0.10e—-7 —-0.10e—7 0.422—-6
11 0.32-5 0.34e—6 0.6%-8 0.8%-8 0.20e—6
12 0.1%-5 0.27e—-6 0.9%-7
13 0.11e-5 0.14e—6 0.4%-7
14 0.72-6 0.8%—-7 0.22-7
15 0.3%—-6 0.52-7 0.10e—7
16 0.26—6 0.31e—7 0.4%-8
17 0.13-6
18 0.9&-7
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