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Abstract

A novel algorithm, based on a hybrid Gaussian and Plane Waves (GPW) approach, is

developed for the canonical second-order Møller-Plesset perturbation energy (MP2) of finite

and extended system. The key aspect of the method is that the electron repulsion integrals

(ia|λσ) are computed by direct integration between the products of Gaussian basis functions

λσ and the electrostatic potential arising from a given occupied-virtual pair density ia. The

electrostatic potential is obtained in a plane waves basis set after solving the Poisson equation

in Fourier space. In particular for condensed phase systems, this scheme is highly efficient.

Furthermore, our implementation has low memory requirements and displays excellent parallel

scalability up to 100000 processes. In this way, canonical MP2 calculations for condensed phase

systems containing hundreds of atoms or more than 5000 basis functions can be performed
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within minutes. Lattice constants and cohesive energies of various molecular crystals have been

studied with MP2 and double hybrid functionals.

1 Introduction

The second-order Møller-Plesset (MP2) energy is a relatively cheap and effective correction to

the Hartree-Fock ground state energy that accounts for electron correlation effects. It is obtained

from Rayleigh-Schrödinger perturbation theory, for which the zero order Hamiltonian is chosen as

the sum of the one electron Fock operators1,2. MP2 is appealing because it recovers a relatively

large part of the dynamic correlation, and maintains an easy and compact formulation. Most notably,

MP2 introduces dispersion, which is an essential non-covalent interaction. With the introduction of

Double-Hybrid Density Functionals3,4, MP2-like correlation has also established itself in Density

Functional Theory (DFT). In Double-Hybrids, an MP2-like term obtained from the Kohn-Sham

orbitals and eigenvalues is mixed into the correlation energy. However, the advantages of MP2

come at a computational cost that is high compared to that of Hartree-Fock or traditional DFT. In

its canonical formulation, MP2 scales a O(n5), where n represents the number of basis functions,

and a large amount of memory is needed to store the intermediates of the calculation. Furthermore,

MP2 calculations need larger basis sets than DFT to reach a similar convergence. In order to extend

the applicability of MP2 to large system these limitations have to be overcome5.

Various reformulations of the MP2 energy expression, and new algorithms, have been proposed

to address these limitations. Reducing the formal O(n5) scaling is achieved with methods such as

local MP26–15 (LMP2) and Laplace-Transformed MP216–22. The prefactor of the various terms that

dominate for smaller systems can be reduced with the resolution of identity approximation23–28

(RI-MP2), while explicitly correlated methods speedup the convergence of the MP2 energy with

respect to basis set size29 (F12-MP2). Despite this progress, calculations with good basis sets

on systems containing fifty or more heavy atoms remain computationally demanding with MP2

or double hybrid DFT. In order to perform such calculations with acceptable time to solution,
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massively parallel computing is becoming an indispensable tool. A variety of MP2 algorithms

suitable for parallel architectures has been proposed30–40 and these algorithms have demonstrated

good scalability up to a few hundred cores.

The development of efficient parallel algorithms is of prime interest in the case of MP2 en-

ergy calculation with periodic boundary condition12,22,27,28,41–43. In fact, in this case, due to the

considerably high cost, the practical applications are limited to periodic systems with small unit

cell. XXXXXXXXXXXXX we need to say a word on periodic MP2 as well, including citations to

Kresse XXXXXXXXXXXXX

Here, we present a novel MP2 algorithm that is particularly suitable for the condensed phase and

has been designed to achieve excellent scalability on modern massively parallel architectures having

1000s-100000s of cores. The prefactor of the O(n5) term is minimal and the memory usage per core

is small. It is based on the Gaussian and Plane Wave (GPW) approach44, which allows for avoiding

the computation of four center electron repulsion integrals (ERI) over Gaussian basis functions

(µν |λσ). In conventional canonical MP2 algorithms, the computation of these integrals and their

transformation into the molecular orbital basis is usually the most time-consuming step. This step

is furthermore difficult to parallelize efficiently, involving significant communication and difficult

load balancing issues. In the Gaussian and Plane Wave MP2 (GPW-MP2) method, half transformed

ERIs of the type (ia|λσ) are directly computed in a communication free way. This is achieved by

the direct computation of the electrostatic potential of the pair density ρ ia = ψi ·ψa in an auxiliary

plane waves basis by means of Fast Fourier Transforms (FFTs) and the numerical integration of this

potential in real space over products of pairs of Gaussian basis functions λσ . With this strategy,

only fully transformed ERIs (ia| jb) are communicated for the calculation of the exchange like

part of the MP2 energy. The efficiency derives from the use of regular auxiliary grids and FFTs,

which distinguishes the method from other approaches employing numerical integration.45,46 We

report parallel scalability up to 100000 processes with 80% efficiency, allowing calculations on

molecular crystals containing more than 5000 basis functions within minutes. We further validate

the GPW-MP2 method by performing calculations on molecular crystals with extended basis sets.
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2 The Gaussian and Plane Wave MP2 method

In the canonical orbital formalism, the closed shell MP2 correlation energy E(2) is obtained as

E(2) =−
occ,vir

∑
i j,ab

(ia| jb)[2(ia| jb)− (ib| ja)]

εa + εb − εi − ε j

. (1)

Indices i, j refer to occupied and a,b to virtual canonical orbitals, and εp to the corresponding orbital

energy. The ERIs over molecular orbitals (MO ERI) are given by

(ia| jb) =
∫ ∫

ψi(~r1)ψa(~r1)
1

~r12
ψ j(~r2)ψb(~r2)d~r1d~r2 (2)

and conventionally computed by a four index transformation from ERIs over atomic orbitals (AO

ERI) (µν |λσ) as

(ia| jb) = ∑
µνλσ

(µν |λσ)CµiCνaCλ jCσb (3)

where Cµi represent elements of the MOs coefficient matrix and Greek indices refer to AOs, a

linear combination of Gaussian basis functions in our approach. For systems described by periodic

boundary conditions (PBC), Brillouin sampling is implicitly implied for Eq. (1), but here we will

assume that Γ-point sampling is sufficient for systems with a sufficiently large unit cell and band

gap.41,42,47 In the periodic case, AOs and the integrals in Eq. (2) must take the PBC into account.44

The basis of the Gaussian and Plane Wave MP2 method (GPW-MP2) is the direct formulation

of the half transformed ERIs based on the electrostatic potential via of the pair density ρ ia

(ia|λσ) =
∫ ∫

ψi(~r1)ψa(~r1)
1

~r12
φλ (~r2)φσ (~r2)d~r1d~r2 (4)

=
∫

[

∫

ψi(~r1)ψa(~r1)

~r12
d~r1

]

φλ (~r2)φσ (~r2)d~r2 (5)

=
∫

[

∫

ρ ia(~r1)

~r12
d~r1

]

φλ (~r2)φσ (~r2)d~r2 (6)

=
∫

via(~r2)φλ (~r2)φσ (~r2)d~r2 (7)
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The form of the last equation is essentially identical to the one used in the GPW method44 to

compute matrix elements of the Hartree potential. Thus, the highly efficient implementation of that

operation in CP2K48 can be directly used and we refer to Ref.49 for a detailed discussion.

Central in the GPW method is the representation of the density ρ ia(~r) on a regular grid, which

can be considered equivalent to an expansion of the density in an auxiliary basis of plane waves

(PW). The expansion is given by

ρ ia(~r)≈
1
Ω

∑
|~G|≤Gc

ρ ia(~G)ei~G·~r (8)

where the sum over the reciprocal lattice vectors ~G is determined by the resolution of the grid.

ρ ia(~G) are the Fourier coefficients of the density, and Ω is the volume of the simulation cell.

Conventionally, the resolution of the grid is specified as the energy cutoff 1
2G2

c that limits the kinetic

energy of the PWs. Fast Fourier transforms (FFTs) efficiently change representation between

real space (ρ ia(~R)) and reciprocal space (ρ ia(~G)). In particular, for a grid with S grid points, the

transformation can be performed in linear scaling time (O(S logS)). In reciprocal space, it becomes

straightforward to solve the Poisson equation for the potential via

via(~G) =
4π

G2 ρ ia(~G) (9)

and an additional back FFT (FFT−1) will yield the potential in real space. The orthonormality of

the orbitals implies that ρ ia(~G = 0) = 0 and divergence at ~G = 0 is thus avoided.50 Note that the

PW auxiliary basis is a natural choice for periodic systems, but it can equally be used for gas phase

or surface calculations. Indeed, once the density is specified on a regular grid efficient methods

are available for solving the Poisson equation with free (for example cluster or slab) boundary

conditions51–53. The simplicity of the GPW method has as a drawback that all-electron calculations

are not possible, and that pseudopotentials have to be employed in order to have densities that are

smooth. The Gaussian and Augmented Plane Wave (GAPW) scheme54,55 overcomes this limitation

and is suitable for all-electron calculations. However, whereas this method is available in CP2K for
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all-electron DFT calculations, our MP2 implementation is currently limited to the GPW method

only.

Once the potential via is available on a regular real space grid, the numerical integration over the

basis functions is performed by summing the product of the value of the potential and the primitive

Gaussian functions (PGFs) over the grid points. Within a given threshold (εgrid), all non-zero matrix

elements for a given pair ia can be obtained in linear scaling time. This is possible since only pairs

of overlapping Gaussians need to be considered, and only a finite number of grid points within a

spherical region around the center of the PGF is required. A further gain in efficiency is obtained by

employing a multi-grid technique that represents the potential via on grids with increasingly coarser

grid spacing. Depending on the smoothness or width of the PGF, the appropriate grid is selected so

that the number of points employed for the integration is essentially independent of the exponent of

the PGF. The accuracy of the multi-grid scheme is fixed by specifying a relative cutoff (Erel
cut) that

specifies the Ecut of the grid that will be employed for a PGF with exponent 1.0.

Finally, (ia|λσ) integrals are transformed into MO ERIs using (sparse) matrix multiplication.

Introducing for a given pair ia the matrix of half transformed ERIs Bia ((ia|λσ) = Bia
λσ

), the matrix

of MO ERIs Via is obtained by two index transformations as Via = C†
oBiaCv, where Co and Cv

represent the coefficient matrices of the occupied and virtual orbitals. The multiplication by Cv

can exploit the sparsity of Bia, implying an O(nv) scaling per ia pair, while the final multiplication

can not exploit sparsity and is asymptotically dominant, scaling as O(onv). o, v, and n refer to the

number of occupied, virtual, and total orbitals respectively. The thresholding in the sparse matrix

multiplication is enforced using a threshold ε f ilter ≈ εgrid . As we will show below, the overall

accuracy of the MP2 energy can be well controlled, and for the systems tested here, is on the

order of 10−7 −10−8 a.u. per heavy atom for Ecut = 300 Ry, Erel
cut = 50 Ry, ε f ilter = εgrid = 10−8.

Ecut depends on the largest exponent of the basis used, while the other parameters are system

independent.
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3 Implementation of the Gaussian and Plane Wave MP2 method

3.1 Serial algorithm

Loop over all i occupied orbitals

Calculate wavefunction ψi(~R) on the real space grid

Store ψi(~R)

End i Loop

Loop over all a virtual orbitals

Calculate wavefunction ψa(~R) on the real space grid

Loop over all i occupied orbitals

Compute ρ ia(~R) = ψi(~R)∗ψa(~R) on the real space grid

Transfer ρ ia(~R)→ ρ ia(~G): ρ ia(~G) = FFT[ρ ia(~R)]

Solve the Poisson equation: ρ ia(~G)→ via(~G)

Transfer via(~G)→ via(~R): via(~R) = FFT−1[via(~G)]

Integrate potential in real space: (ia|λσ) = Bia
λσ =

∫

via(~R)φλ (~R)φσ (~R)d~R

Index transformations Via = C†
o(B

iaCv)

Store Via

End i Loop

E(2) = E(2)+∑i j,b
(ia| jb)[2(ia| jb)−( ja|ib)]

εi+ε j−εa−εb

End a loop

Figure 1: Pseudocode for the serial implementation of the GPW-MP2 energy.

The pseudocode for the serial algorithm is presented in Figure 1. In a first step, the wavefunctions

of all occupied orbitals (ψi(~R)) are precalculated on real space grids, which speeds up the calculation

of the pair density ρ ia in the main loop. In the next step, the outer loop iterates over all virtual orbitals

a, while the inner one loops over occupied orbitals i. For each value of a, the MO ERIs (i.| jb) for

all other indices are available after the inner loop, making it possible to compute both Coulomb

and exchange contributions to E(2) with O(o2v) memory usage, which compares favorably with

the O(on2) memory required in the standard direct canonical algorithm. Other objects, such as the

stored grids and molecular orbital coefficients, require memory scaling no worse than quadratically

with system size. In the inner loop, all the grid operations and integral transformations for a given

pair ia are performed. The density ρ ia(~R) on the real space grid is simply obtained by multiplying
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the values for ψi(~R) and ψa(~R), and is transformed by FFT to reciprocal space, where the Poisson

equation is solved. An inverse FFT yields the potential in real space, which is used in the numerical

integration procedure to yield the (ia|λσ) integrals. The latter are stored as a sparse matrix, which

can directly be employed in the following index transformations that yield the MO ERIs (ia| jb).

Note again that the first transformation can exploit the sparsity of the Bia matrix, while the second

transformation can not. The main features of the serial GPW-MP2 algorithm are summarized in

Table 1.

Table 1: Features of the serial and parallel GPW-MP2 energy algorithm expressed as “order of”
the calculation parameters. n number of basis functions, o and v number of occupied and virtual
orbitals, S grid size, Ni and Na number of occupied and virtual divisions, NG and Nw number of
groups and group size, Np number of processes. Ni, Na, NG, Nw and Np are related by NG = NiNa

and Np = NGNw.

Serial Parallel

Memory Execution Time Memory Execution Time

Wave functions calculation oS nS oS
NiNw

(

o
Ni
+ v

Na

)

S
Nw

FFT and Poisson solver S ovS logS S
Nw

ovS logS
Np

via integration S ovn S
Nw

ovn
Np

1st quarter transformation on o2vn on
Nw

o2vn
Np

2nd quarter transformation ov o2v2n ov
Nw

o2v2n
Np

MP2 energy contraction o2v o2v2 o2v
NiNw

o2v2

Np

Communication - - o2v

N2
i Nw

Ni−1
Ni

o2v2

Np

3.2 Parallel algorithm

The parallel algorithm for the GPW-MP2 energy calculation has been designed to enable

calculations on large systems and to display excellent scalability. This implies that the computational

load and the amount of data communicated per process decreases linearly as the number of processes
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Assign each process its coordinate-triplet (ni,na,nw)

Create ranges [ini
start , i

ni

end ], [a
na
start ,a

na

end ], [b
nw
start ,b

nw

end ]

Loop over i occupied orbitals (ini
start ≤ i ≤ i

ni

end)

Calculate wavefunction ψi(~R) on the real space grid

Store ψi(~R)

End i Loop

Loop over a virtual orbitals (ana
start ≤ a ≤ a

na

end)

Calculate wavefunction ψa(~R) on the real space grid

Loop over i occupied orbitals (ini
start ≤ i ≤ i

ni

end)

Compute ρ ia(~R) = ψi(~R)∗ψa(~R) on the real space grid

Transfer ρ ia(~R)→ ρ ia(~G): ρ ia(~G) = FFT[ρ ia(~R)]

Solve Poisson’s Equation: ρ ia(~G)→ via(~G)

Transfer via(~G)→ via(~R): via(~R) = FFT−1[via(~G)]

Integrate Potential in real space: (ia|λσ) = Bia
λσ =

∫

via(~R)φλ (~R)φσ (~R)d~R

Index transformation Via = C†
o(B

iaCv)

Redistribute and store Via (all j, b
nw
start ≤ b ≤ b

nw

end)

End i Loop

Loop over Ni processes with same na and nw but different ni

determine the coordinates nS
i and nR

i of sending and receiving process.

Receive ( ja|ib) from (nR
i ,na,nw)

(i
nR

i
start ≤ j ≤ i

nR
i

end ,ini
start ≤ i ≤ i

ni

end ,bnw
start ≤ b ≤ b

nw

end)

Send (ia| jb) to (nS
i ,na,nw)

(i
nS

i
start ≤ j ≤ i

nS
i

end ,ini
start ≤ i ≤ i

ni

end ,bnw
start ≤ b ≤ b

nw

end)

E(2) = E(2)+∑i j,b
(ia| jb)[2(ia| jb)−( ja|ib)]

εi+ε j−εa−εb

(i
nR

i
start ≤ j ≤ i

nR
i

end ,ini
start ≤ i ≤ i

ni

end ,bnw
start ≤ b ≤ b

nw

end)

End loop over processes

End a loop

Global summation of E(2)

Figure 2: Pseudocode of the parallel GPW-MP2 energy.
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(Np) increases. Furthermore, the computational load is easily balanced and the communication

pattern involves relatively large messages between a small subset of all possible pairs of processes.

Additionally, no significant data is fully replicated and memory usage can be decreased as the

number of processes is increased. This is achieved by a multi-level parallelization scheme, and

a careful process layout. The first level of parallelization corresponds to the work performed for

a given ia pair. The second level of parallelization corresponds to a distribution of the nearly

independent calculations for each of the ia pairs. The Np processes are therefor split in NG groups,

each group working on a given ia pair and consisting of Nw processes (Np = NGNw). The first

level of parallelization is complicated, involving parallel FFTs, halo-exchanges, and sparse matrix

multiplications over Nw processes. However, this level is readily available, as it corresponds to the

standard parallelization scheme for DFT calculations in CP2K.49 As a rule of thumb, reasonable

speedups are observed as long as Nw ≤ o, while memory usage benefits from the nearly perfect

distribution of the grids and sparse matrices. Nevertheless, the best performance is obtained if

groups do not communicate across nodes, ideally, if memory permits, Nw = 1. The second level of

parallelization is more straightforward, as it only requires inter-process communications of fully

transformed ERIs. In order to distribute the ia pairs efficiently, the occupied orbitals i and the

virtual orbitals a are split into Ni and Na disjoint ranges respectively. A 2D Cartesian layout with

dimensions Ni ×Na is considered for the NG groups (NG = NiNa) giving each group coordinates

(ni,na) and the corresponding index ranges [ini
start , i

ni

end] and [ana
start ,a

na

end]. Additionally, each of the

Nw processes within a group is given an index nw, so that a processes is uniquely identified by its

coordinate triplet (ni,na,nw). Finally, the b index is split in Nw ranges [bnw
start ,b

nw

end], while a splitting

of j is not necessary.

The pseudo-code of the parallel algorithm is shown in Figure 2 and it follows the serial algorithm

closely (but with restricted index ranges for i and a), until the end of the inner loop over i. Here,

as a last step of the inner loop, the matrix of fully transformed integrals Via is redistributed within

the group, so that the full range of j and the restricted range of b, corresponding the process’ index

nw, is stored locally. After completion of the loop over i the inter-group communication takes
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place, and here the benefit of the process layout becomes apparent. Indeed, only processes with

identical coordinates na and nw need to exchange data, i.e. only within small subgroups of size Ni

communication takes place. This is due to the fact that for a given pair ab, only (ia| jb) and ( ja|ib)

need to be simultaneously available to a process. Since each process stores only ERIs (ia| jb) for i

in [ini
start , i

ni

end] and all j, the locally held integrals can be contracted if integrals are received from

all the other processes that store the ERIs for which i /∈ [ini
start , i

ni

end] for the current ab pair. This

communication step is easily accomplished by employing the standard message passing interface

(MPI) point-to-point communication protocol.56 The fact that the computational effort for every ia

pair is essentially the same, implies that processes arrive well synchronized at the communication

step, contributing to the scalability of the algorithm. The size of each message send is O

(

vo2

wN2
i

)

,

while the number of message exchanges, including the loop over a, is O

(

(Ni −1)
v

Na

)

, yielding

an expected communication time O

(

Ni −1
Ni

o2v2

p

)

in the bandwidth-limited regime. Note that if

only the spin opposite (SO) component of the MP2 energy is required, the MO ERIs do not need

to be communicated among processes, yielding an essentially communication free algorithm with

reduced O(on/Nw) memory usage. The main features of the parallel GPW-MP2 algorithm are

summarized in Table 1.

4 Benchmark Calculations

4.1 Computational Details

Basis Sets, thresholds and pseudopotentials

The GPW-MP2 method as implemented in CP2K48 has been employed for all calculations

in this manuscript. The MP2 calculations are based on pseudopotentials of the form suggested

by Goedecker, Teter and Hutter (GTH) in Ref.57 but specifically parameterized for Hartree-Fock

(HF) calculations. In this way, core states do not need to be represented and valence orbitals are

smooth, as required by the GPW method. Valence-only basis sets have been generated for use
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with these pseudopotentials, and are suitable for MP2, i.e. of the correlation consistent type. The

basis sets have been labeled as cc-DZVP, cc-TZVP and cc-QZVP, denoting increasing quality.

A family basis set scheme has been adopted, using the same set of exponents for each primitive

with s and p l-quantum number. The number of primitive Gaussian functions (for the valence

only) has been chosen to be 4, 5 and 6 for cc-DZVP, cc-TZVP and cc-QZVP respectively. The

three primitive Gaussian functions with higher exponent have been used to generate a contracted

Gaussian, while the others have been kept uncontracted as in the split valence scheme. For the

cc-QZVP basis the most diffuse functions have exponents H=0.13906, C=0.0597, O=0.10700. The

basis sets have been augmented by the polarization functions taken from the all-electron basis set

cc-pVXZ (X=D,T,Q) of Dunning58,59, up to g-functions. Despite the relatively diffuse nature of

the Gaussian primitives, our robust implementation of Hartee-Fock exchange60,61 allows for stable

calculations in the condensed phase.61,62 The Schwartz screening threshold for the HF calculations

is in the range 10−8 − 10−10, periodic calculations used a truncated Coulomb operator61, using

approximately half the length of the smallest edge of the simulation cell as truncation radius. The

threshold for the SCF convergence was 10−7 or tighter. The PW cutoff for the DFT calculations was

Ecut = 1200Ry to guarantee convergence, at small cost compared to the MP2 calculation. The MP2

calculation employed high quality PW cutoffs of Ecut = 300 Ry, Erel
cut = 50 Ry, ε f ilter = 10−7, and

εgrid = 10−6, unless mentioned otherwise. Gas phase systems have been computed using cluster

boundary conditions for solving the Poisson equation53.

Geometries

For all crystals, supercells have been generated by replicating the unit cell, so that the smallest

edge was larger than 9Å, in order for the Γ-point approximation to be reasonable. The geometries

of the NH3 and CO2 crystals have been built from the experimental lattice parameter and the

space group (a = 5.048 Å , P213, for NH3; a = 5.55 Å , Pa-3, for CO2) as detailed in Ref.63. The

experimental geometries of the other molecular crystals have been retrieved from the Cambridge

Structural Database (CSD)64. These positions of the hydrogen atoms of these geometries have been

12



(a) (b)

(c) (d) (e) (f)

(g) (h) (i)

Figure 3: Unit cells of the molecular crystals under study. For all crystals α = β = γ = 90◦, all
lattice parameters expressed in Å. (a) NH3, a = b = c = 5.048, supercell 2×2×2, Nmol = 32 (b)
CO2, a = b = c = 5.55, supercell 2× 2× 2, Nmol = 32 (c) Formic Acid, a = 10.241 b = 3.544
c = 5.356, supercell 1×3×2 (refcode FORMAC01), Nmol = 24 (d) Urea, a = b = 5.645 c = 4.704,
supercell 2× 2× 2 (refcode UREAXX09), Nmol = 16 (e) Succinic Anhydride, a = 5.4257 b =
6.9746 c = 11.7167, supercell 2×2×1 (refcode SUCANH15), Nmol = 16 (f) Benzene, a = 7.398
b= 9.435 c= 6.778, supercell 2×1×2 (refcode BENZEN07), Nmol = 16 (g) 2,3-Diazanaphthalene,
a = 13.695 b = 10.557 c = 9.285, supercell 1×1×1 (refcode DAZNAP), Nmol = 8 (h) Pyromellitic
Dianhydride, a = b = 10.792 c = 7.4128, supercell 1 × 1 × 2 (refcode PYMDAN), Nmol = 8
(i) Trinitro-Triazacyclohexane, a = 13.182 b = 11.574 c = 10.709, supercell 1× 1× 1 (refcode
CTMTNA), Nmol = 8
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further relaxed at the DFT/BLYP65,66 level employing the cc-TZVP basis set. The main features of

the structure of each crystal, together with the supercell used in the calculation and the CSD refcode,

are reported in the caption of Figure 3.

Cohesive Energies and Lattice Parameter Optimization

The counterpoise (CP) corrected cohesive energy per molecule at a given volume V has been

computed as

ECP
coh(V ) =

Esupercell(V )

Nmol

−E
gas
mol −E

crystal
mol+ghost(V )+E

crystal
mol (V ). (10)

Here, Nmol is the number of molecules per supercell, Esupercell(V ) the total energy of the supercell,

and E
crystal
mol+ghost(V ), E

crystal
mol (V ), and E

gas
mol the total energy of an isolated molecule in either the crystal

geometry (Ecrystal
mol+ghost(V ) and E

crystal
mol (V )) or a gas phase geometry (Egas

mol). E
crystal
mol+ghost(V ), includes

ghost atoms from the 12 nearest neighbor molecules in the case of NH3 and CO2, while only the first

coordination shell has been retained for the other crystals. This procedure has also been followed in

Ref.63 and Ref.67. The gas phase geometry employed for NH3 and CO2 corresponds to XXXXXX,

consistent with Ref.63. The other molecular crystals have been computed twice, once with gas

phase geometries relaxed at the B3LYP/cc-pTZVP level66,68,69, and once, for direct comparison

with Ref.67, using the crystal geometry also for the gas phase geometry.

Lattice parameter optimization has been carried out for the NH3 and CO2 crystals. The employed

procedure is approximate, as MP2 gradients and stresses are currently not available in CP2K, but

is similar to the procedure in Ref.63. First, structures have been relaxed at a DFT/B3LYP level

with the cc-TZVP basis set for various values of the lattice parameter. Next, ECP
coh(V ) has been

computed for each of these geometries. Finally, these results have been fitted with a third order

Birch-Murnaghan equation of state in order to get the equilibrium cohesive energy and volume.

To assess the accuracy of computed cohesive energies, these values will be compared to the

experimental sublimation enthalpies (∆H(s)). However, it has to be emphasized that this comparison

includes theoretical bias and is subject to experimental error. Indeed, for non-volatile compounds,

the sublimation enthalpies can be hard to measure, and can be subject to several kJ/mol error.
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Experimental sublimation enthalpies usually are obtained at high temperature, while the cohesive

energy is a zero temperature property. Only in a few cases can experimental sublimation enthalpies

be extrapolated down to 0K, CO2 being such an example70: 26.8kJ/mol at 0K, 25.2kJ/mol at

195K. Even at 0K, zero point energy differences should be taken into account, and in fact the

anharmonicity of molecular crystals implies that also lattice parameters might need to be corrected

for quantum effects to be truly comparable with experiment. Such corrections require the calculation

of vibrational or phonon properties, see for example Ref.71 for an early example based on a force

field description of molecular crystals, and this has not been attempted in this work.

4.2 GPW-MP2 Accuracy

Figure 4: Root-mean-square deviation (RMSD) of the absolute error for the GPW-MP2 energy
as a function of the plane wave cutoff (Ecut) for different values of the relative cutoff (Erel

cut). Red
Squares Erel

cut = 30 Ry, Green Triangles Erel
cut = 40 Ry and Black Circles Erel

cut = 50 Ry (XXXXX
adjust abbreviation in the figure, remove line for Erel

cut = 60 XXX). The non-monotonic behavior of
the curves is the result of fortuitous cancellation of errors.

In order to judge the impact of the PW cutoff (Ecut), and the multi-grid relative cutoff (Erel
cut)

on the accuracy of the GPW-MP2 energy, calculations with various values for these parameters

have been performed and summarized in Figure 4. The benchmark set is based on 10 molecules
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(from Figure 3 and H2O) in the gas phase with the cc-TZVP basis, for which reference energies

have been obtained using a traditional direct MP2 algorithm based on analytic four center integrals

over atomic orbitals. The root-mean-square deviation (RMSD) of the absolute difference between

the GPW-MP2 energy and the traditional MP2 implementation is used as a measure of the error.

Tight values ε f ilter = 10−12 and εgrid = 10−12 together with a 17Å cubic cell and cluster boundary

conditions have been used, to guarantee convergence with respect to these parameters. It can be

observed that the GPW-MP2 energy converges rapidly with respect to both parameters, in particular

if one realizes that the time for the integration in the MP2-GPW algorithm grows slowly as E
3
2
cut .

Not unexpectedly, both parameters need to be increased simultaneously in order to obtain accurate

results. The combinations 300/50Ry, 250/40Ry, and 200/30Ry yield errors of approximately 10−6,

10−5, and 10−4 Hartree respectively. Note again that Ecut depends on the largest exponent in the

basis set used, while Erel
cut is system independent.

4.3 Performance of the Parallel Algorithm

(a) (b)

Figure 5: Measured speed up and efficiency for the calculation of the GPW-MP2 energy. (a) Speed
up measured with respect to 1600 processes for NH3 crystal and with respect to 3200 processes
for CO2 crystal. (b) Efficiency measured with respect to 1600 processes for NH3 crystal and with
respect to 3200 processes for CO2 crystal. (XXXX should we have just 2 panels, i.e. speedup and
efficiency, and two curves per panel ? XXXX)
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To assess the performance of the parallel algorithm, test calculations on molecular crystals of

NH3 and CO2 have been performed. For NH3 a cc-TZVP quality basis set has been chosen, while

CO2 has been described with a cc-QZVP basis. Each supercell contains 32 molecules, resulting

in 2272 and 5184 basis functions respectively The speed up and the parallel efficiency for the two

test cases are reported in Figure 5. For both benchmarks the algorithm shows very good parallel

scalability in a wide range. In particular in the case of CO2, the efficiency remains higher than

80% even for the 102400 processes run. For the NH3 calculation, the number of ia pairs (274560)

becomes similar to the number of processes, making an even distribution of the pairs more difficult.

Additionally, the overhead of initializing grids and matrices becomes non-negligible leading to a

efficiency of 70%. At full scale-out, the MP2 calculation required a wall-time of 74 and 518 seconds

respectively.

4.4 System Size Scaling

Figure 6: Shown is the time spent in the various significant parts of the GPW-MP2 energy calculation,
as a function of the number of replicas of the supercell, containing 32, 64, 96 and 128 molecules of
NH3 respectively. Lines represent a linear two-parameter fit of the form y = bxa. The values of a

for each task are reported in the legend.
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In order to validate the expected timings for the important parts of the GPW-MP2 algorithm

shown in Table 1, we have performed calculations on systems of increasing size. The test system

is the supercell of NH3, containing 32 molecules, with a cc-DZVP basis. This supercell has been

replicated in one dimension, yielding an orthorhombic supercell containing up to 128 molecules.

The timings, as obtained from runs on 1200 cores, are shown in Figure 6, together with a fit of

the form y = bxa. The measured exponents agree very well with the expected values as reported

in Table 1, being very close to 3 for the integration and the Poisson solver, 4 for the first and 5 for

the last index transformation. In addition to giving information about the scaling behavior, insight

about the prefactor can be inferred from the graph. In particular, the last index transformation has a

very small prefactor and an extrapolation suggest that it will only dominate for systems containing

more than 200 molecules. Note that in an RI-MP2 calculation, this term has a larger prefactor,

approximately given by the ratio of basis function in the auxiliary and primary basis. For all system

sizes tested, the cost is currently dominated by the integration routine, yielding an apparent overall

scaling exponent of the GPW-MP2 algorithm of 3.21.

4.5 NH3 and CO2 Molecular Crystals

The molecular crystals of NH3 and CO2 present two useful benchmark systems, as they differ

in the nature of their interaction: NH3 is hydrogen bonded, while CO2 is not. Furthermore,

results for these systems can be compared to results presented in Ref.63 and obtained by LMP2

as implemented in CRYSCOR. The effect of the basis set and the supercell size on the cohesive

energy at the experimental geometry are reported in Table 2. Not unexpectedly, it can be seen that

cc-DZVP yields poor results for the cohesive energy, and a cc-TZVP basis is required to yield a

cohesive energy within approx. 5 kJ/mol of the basis set extrapolated result. However, the smaller

cc-DZVP basis allows for larger systems, and hence can be used to study the size dependence of the

result. Indeed, since our results are obtained at the Γ-point only, the size of the supercell matters.

Fortunately, we see that the difference between the cohesive energies obtained 2x2x2 and 3x3x3 unit

cells (32 and 108 molecules respectively) is rather small, a few kJ/mol, smaller than the difference
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Table 2: Counterpoise corrected cohesive energy (ECP
coh) in kJ/mol for the NH3 and CO2 crystals.

Results have been calculated employing different basis sets and system sizes at the experimental
geometry. Values in parenthesis refer to the HF+LMP2 results from Ref.63 as obtained with the
CRYSCOR program, using basis sets of comparable quality.

NH3 CO2

HF HF+MP2 HF HF+MP2

cc-DZVP -8.43 -25.78 (-22.6) -7.48 -8.92 (-8.9)

cc-DZVP (3×3×3) a -8.80 -27.89 -7.47 -11.46

cc-TZVP -5.98 -30.93 (-29.6) -5.86 -20.95 (-19.3)

cc-QZVP -5.60 -32.76 (-32.3) -5.91 -23.28 (-24.4)

Extrapolated b -5.52 -33.93 -5.99 -26.09

Experiment c -36.3 -31.1

a Calculation performed with supercell 3×3×3 instead of 2×2×2.
b (T-Q) extrapolation toward the basis set limit72.
c Values from Ref.63, see also Ref.73 for NH3 and Ref.74,75 for CO2. (XXXX check this, or provide references to the

original literature XXXX).

(a) (b)

Figure 7: Lattice parameter optimization curves for NH3 (a) and CO2 (b), computed at different
level of theory and different basis sets. The crosses represent the location of the minimum point for
each curve.
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Table 3: Equilibrium counterpoise corrected cohesive energy (ECP
coh in kJ/mol per molecule) and

lattice parameter (a in Å) for the NH3 and CO2 crystals calculated employing different methods.
The basis set is cc-TZVP, except when specified otherwise.

NH3 CO2

a Ecoh a Ecoh

HF 5.98 -15.7 6.05 -5.00

B3LYP 5.36 -20.9 6.20 -8.20

B3LYP-D2 4.93 -43.7 5.52 -27.2

B3LYP-D3 5.04 -41.1 5.51 -30.7

HF+MP2 5.11 -31.4 5.53 -25.1

HF+MP2 a 5.08 -33.1 5.51 -24.9

Exp. 5.048 -36.3 5.55 -31.1

a Calculated with cc-QZVP basis set.

between cc-TZVP and basis extrapolated results. Note that the HF results are less sensitive to both

system size and basis set effects. Of course, the Hartree-Fock level of theory is a poor description

for these systems, since the MP2 correlation contributes almost 80% of the cohesive energy. Careful

estimates of the MP2 cohesive energy could combine the size effect as computed with smaller basis

sets with basis set extrapolated results for smaller supercells. Furthermore, our results are in good

agreement with those reported in Ref.63, despite the various differences in methodology, such as

the use of pseudopotentials, corresponding basis sets, local MP2, etc.

In Figure 7, lattice parameter optimization curves are reported as obtained at various levels of

theory. In the case of NH3, the quality of the pseudopotential approximation has been verified as

illustrated by the excellent agreement between the HF results as obtained with pseudopotentials

and the corresponding cc-TVZP basis, and an all-electron calculation employing the Dunning

cc-pVTZ basis. For both NH3 and CO2, the DFT/B3LYP and HF results predict an equilibrium

lattice parameter much larger than the experimental one, and a cohesive energy that is far from the

experimental one. The HF results are significantly improved by the MP2 correction, and the same

can be said for the dispersion corrections in the case of B3LYP. The calculated equilibrium values

of a and Ecoh are summarized in Table 3. The MP2 lattice constants are within approx. 1% of the
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experimental results, and while the same holds for B3LYP-D376, a larger error is observed with

B3LYP-D277. The cc-TZVP and cc-QZVP MP2 results are very similar, suggesting that the former

might be a cost effective choice for these calculations.

4.6 Cohesive Energy of Molecular Crystals from MP2 and double hybrid

DFT

Finally, cohesive energies for the remaining molecular crystals reported in Figure 3 are presented

in Table 4, in all cases using the experimental crystal cell, and employing the cc-TZVP basis. Here,

a wider set of theoretical methods is employed, including MP2 as well as double hybrid functionals.

These values are compared to the experimentally measured sublimation enthalpies, with the caveats

mentioned in Figure 3. The RMSD, measured over this relatively small test set, is reported as well.

First, HF and DFT/B3LYP methods display the largest RMSD, demonstrating that these methods are

not suitable for computing, even to a qualitative level, the lattice energy of molecular crystals. Small

molecules that interact mostly via hydrogen-bonds and dipole-dipole electrostatics are described

best, but van der Waals dominated complexes can have even a negative computed lattice energy.

On the other hand, the D2 and D3 dispersion corrections appreciably improve the bare B3LYP

results, for all cases the computed lattice energy goes closer to the experimental value, decreasing

significantly the RMSD. However, both B3LYP-D2 and B3LYP-D3 tend to overbind the crystals,

B3LYP-D3 being slightly worse. With an RMSD of 16.9 kJ/mol, the lattice energies calculated at

the MP2 level agree outperform the DFT results. The molecules that display the largest deviations,

Benzene and Pyromellitic Dianhydride, have a large π electronic delocalization, which is known

to be unfavorable for the performance of MP2. Relaxation of the gas phase geometry has a large

effect on the cohesive energies for those systems with strong interactions in the crystal, and is only

negligible for benzene. Also in this case, there good agreement between the computed GPW-MP2

energies (non relaxed case) and the LMP2 calculations reported in Ref.67.

The spin component scaled variants of the MP2 method tend to improve slightly over the

performance of standard MP2, the MP2-SCF method of Grimme78 yielding the smallest RMSD.
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Table 4: Counterpoise corrected cohesive energy (−ECP
coh) in kJ/mol for the the molecular crystals

of B = Benzene (fig Figure 3f), FA = Formic Acid (fig Figure 3c), SA = Succinic Anhydride
(fig Figure 3e), D = 2,3-Diazanaphthalene (fig Figure 3g), PD = Pyromellitic Dianhydride (fig
Figure 3h), U = Urea (fig Figure 3d), CT = Cyclotrimethylene-Trinitramine (fig Figure 3i). The sign
of the ECP

coh has been changed in order to be compared with the experimental sublimation enthalpies
∆H(s). (C) means that the gas phase geometry has not been relaxed but was constrained to the
crystal geometry.

B FA SA D PD U CT RMSD

Exp ∆H(s) a 45 68 81 83 83 92 112

LMP2 (C) b 56.6 63.2 87.0 108.6

GPW-MP2 (C) 58.7 64.9 84.9 93.3 127.3 106.6 126.6 19.7

GPW-MP2 58.8 55.5 81.2 79.7 123.4 94.6 113.7 16.9

HF -21.2 26.3 38.6 -5.7 31.3 55.8 49.8 58.1

B3LYP -12.5 34.1 27.5 -7.0 15.8 64.2 17.3 65.1

B3LYP-D2 56.9 69.1 91.8 84.0 122.0 110.5 128.4 18.5

B3LYP-D3 60.5 71.9 94.7 87.3 128.1 111.6 131.0 21.5

B2PLYP c 14.7 44.8 51.0 74.2 60.0 78.4 58.8 29.2

B2PLYP-D3 c 53.4 64.7 86.4 77.3 119.8 103.7 119.9 15.6

DSD-BLYP c 31.6 54.4 67.6 50.6 88.8 90.9 90.8 17.2

DSD-BLYP-D3 c 56.9 67.4 90.8 82.8 128.1 107.4 130.9 20.2

MP2-SCS d 38.6 52.2 75.6 62.3 106.4 89.2 112.0 13.6

MP2-SOS e 28.5 50.6 72.9 53.6 97.9 86.7 111.2 15.8

MP2-SCS(MI) f 47.9 47.3 70.1 63.9 104.6 84.8 90.2 16.5

MP2-SCSN g 52.3 44.9 67.1 64.3 103.4 82.3 79.3 19.7

a Taken from the supporting information of Ref 67, see also http://webbook.nist.gov/chemistry/.

b Local MP2 calculation performed with the CRYSCOR program reported from Ref 67.

c The parameter for these double hybrid functional and their relative D3 corrections have been taken from Ref 4.

d Spin Component Scaled (SCS)78 (pS = 1.2, pT = 0.333).

e Scaled Opposite Spin (SOS)79 (pS = 1.3, pT = 0).

f Spin Component Scaled (Molecular Interaction) (SCS(MI))80 (pS = 0.4, pT = 1.29).

g Spin Component Scaled for Nucleobases (SCSN)81 (pS = 0, pT = 1.76).
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This is largely due to the better agreement observed for Pyromellitic Dianhydride, for which the

discrepancy is reduced from ∼40 to ∼20 kJ/mol. Interestingly, the MP2-SCS(MI) of Distasio et

al.80, which has been parameterized explicitly for molecular interactions using the S22 database82

as training set, does not perform best for the molecular interactions in these crystals. It is the best

method for benzene, which is also present in the S22 database in a similar configuration as the one

found in the crystal, but it is less accurate for formic acid, which is present in S22 in a fairly different

geometry. This suggests that a database of accurate cohesive energies for molecular crystals would

complement the S22 set by providing a wider range of molecular geometries, and thus provide

valuable input for the development of improved methods.

Two different double hybrid functionals have been tested: B2PLYP and DSD-BLYP with and

without dispersion corrections.4 The main difference between these two functionals is that the

MP2-like term is scaled with a single parameter in B2PLYP, while independent parameters are

used for the same spin and opposite spin MP2-like terms in DSD-BLYP, as is done in MP2-SCS.

B2PLYP without dispersion correction shows a large RMSD (XXXX please add to the table, for

relaxed gas geo XXXXX). B2PLYP-D3, with an added D3 correction, improves slightly over MP2.

Finally, the DSD-BLYP functional yields the best results for Pyromellitic Dianhydride, which is the

source of large errors for other methods. Surprisingly, adding the D3 correction actually increases

the RMSD, increasing the errors for some compounds significantly.

5 Conclusions

In the present work a novel method for the calculation of the canonical MP2 energy of finite and

extended systems has been presented. The crucial aspect of the method is that half-transformed

electron repulsion integrals (ERIs) (ia|λσ) are directly calculated. This is possible using a mixed

Gaussian and Plane Wave approach, which allows for computing the electrostatic potential via of

the occupied-virtual pair density ρ ia in an auxiliary basis, and numerically integrating over products

of basis functions λσ . The method is naturally suited and robust for periodic systems and the
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numerical accuracy can be easily controlled. The corresponding algorithm shows excellent parallel

performance up to 100000 processes, and allows for MP2 calculations of systems containing

hundreds of atoms and thousands of basis functions in minutes. Benchmark calculations on

molecular crystals have been performed to validate the GPW-MP2 method, and good agreement

with literature results and, for most benchmarks, with experiment is obtained. These calculations

also suggest that a database with reliable reference cohesive energies for molecular crystals could

complement existing gas phase databases, and contribute to the development of improved methods

and functionals for weak interactions. We believe that the GPW-MP2 method can now be used to

study condensed phase systems with a few hundred atoms per unit cell, including not only crystals

but also systems without symmetry such as molecules on surfaces and liquids. Advanced techniques,

such as RI-MP2 and local MP2, and adaptation to new hardware, such as accelerators, are likely to

further improve upon the method presented here.
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