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Second-Order Noiseless Source Coding Theorems  although this restriction is not necessary and it will be dropped later
on (the extension of our results to Markov chains of any finite order,

I. Kontoyiannis, Student Member, IEEE as well as to non-Markov sources under mixing conditions is outlined
in Section V).
We are interested in the asymptotic behavior of the deviation of
Abstract—Shannon’s celebrated source coding theorem can be viewed tha codeword length&.,, (X1 from their “ideal means’H (X]') =

as a “one-sided law of large numbers.” We formulate second-order A - o "
noiseless source coding theorems for the deviation of the codeword IengthsE(_10g2 P(X7)); if we let D, = [L.(Xi) = H(X{)] then the

from the entropy. For a class of sources that includes Markov chains converse coding theorem (1) can be restated as

we prove a “one-sided central limit theorem” and a law of the iterated . . . D,
logarithm. liminf — >0 a.s.

n—oo n

Index Terms—Coding variance, convergence rates, source coding the- Our first result is a CLT refinement to this. If instead of normalizing
orems. by n we normalize by,/n then the deviationD,,/\/n is (asymp-
totically) bounded below by a sequence of random variables whose
distribution converges to a Gaussian.
] ) . Theorem 1(CLT):Let X be a stationary ergodic Markov chain

Let X = {Xx; n € Z} be a stationary ergodic source with finite,yit alphabetA, and suppose(L.} is an arbitrary sequence of
alphabet4, and letL,,: A" — N be an arbitrary sequence Ofcodeword-length assignments,: A" — N. Define
fixed-to-variable codeword length assignments. Kdt denote the
block (X, X»,---,X,) andH be the entropy rate ok. From the D, = L.(X{)— H(XT).
pointwise converse source coding theorem [2], [6] we know that ) .
eventually, the per-symbol codeword length will exce®d along There exists a sequence of random variafigssuch that
almost any source realization {

. INTRODUCTION

. lim inf
L (AY1 ) Z H a.s. (l) n—oo

Jn

& — Zn} >0 as.
liminf =212 Vi

n—oo n
We also know that there exists a sequefi£é }, such that the above

D A 2
! . : Z,—N(0,
lower bound is actually met with equality =N, o)

* S 1 2 & H H H
L inf Ly (XT) - H as. @ and the variance“ is given by the limit
n—oo n 2 . 1 - n
Equation (2) tells us that the average number of bits required to o” = lim —Var(—log, P(X7)). 3)

n—oo 1

describeX ' converges tdd, with probability one. In a formal sense, ) ) ] ]
this can be thought of as a “strong law of large numbers” for the Our second result is a corresponding law of the iterated logarithm.

codeword lengths, and, similarly, the corresponding asymptotic lower ' "€orem 2 (LIL): Under the assumptions of Theorem 1, and with

bound (1) as a “one-sided” law of large numbers. o defined as in (3)
It is then a natural question to ask whether this relationship can be ) . D.,
refined to a “one-sided” central limit theorem (CLT) or a law of the ) hfl_s;p V2 log log 1t 20 as.
iterated logarithm (LIL). In this correspondence we show that when
X is a Markov chain, or, more generally, wheéh satisfies certain - D,
mixing conditions, the answer to this question is affirmative. i) liminf Vo Tog oz i > —c as.

In the next section we state and discuss our main results, a one-
sided CLT and a LIL for the codeword lengtHd..}. In Section Supposes? > 0. Then part i) of Theorem 2 implies that for
Il we give their proofs, and Section IV discusses their extensiorhy sequenced L.} and any constanfy € (0, ¢), along almost
to non-Markov sources. In the Appendix we give the proof of aany realization of the source, the codeword lengthsX") will be
unpublished result that is used in Section III. greater than

Il. RESULTS H(XT)+ K+/2n log log n

_Let_)_( = {Xuin € _Z}_be a Stationa_lry ergodic Markov Chaininfinitely often. The interpretation of this bound is discussed in some
with finite alphabetA, distributed according to the measuke Let more detail in Remark 2 below.

. AT f * H T _ - . B R 3 )
Cn:A” — {0.1}7, n > 1, be an arbitrary sequence of fixed-to As for the caser® = 0, a complete characterization is provided

variable length prefix codes (not necessarily mutually compatiblegy the following theorem. If was first stated in [12], and a proof was
and L,: A" — N, n > 1, be the associated sequence of Iengtgupplied in [7]

functions. LetH = E(-log, P(X:|Xo)) denote the entropy. rate  Theorem 3 [12], [7]: SupposeX is a stationary ergodic Markov
of X. (Here and throughout the papdng.,” denotes the logarithm chain, and letr> be defined as in Theorem 1. TheR = 0 if and

to base two and *log” denotes the natural logarithm.) For the sakg it o)l the nonzero transition probabilities of the chain are equal
of simplicity we will assume thaX is a first-order Markov chain, to 2—H
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(5) and (6)), it is clear that whem® = 0 a slightly stronger statement Lemma [1], [2]: For any sequencéc(n)} of positive constants

than Theorems 1 and 2 can be made with 32275 < ~ then
liminf 22 >0 as. L.(X}') > —log, P(X]) — c(n) eventually a.s.
n—oo n

) . ) ! . An elegant application of this Lemma to string matching was given
In view of the preceding comments we think ©f as aminimal  p, ghjelds in [10], where the Lemma is referred to as “Barron’s
coding variance It is a characteristic quantity of the source which oqma

tells us that, when we encode the source in the most efficient way, Proof of Theorem 1:Since the serieg‘_)*‘ﬁ is finite for any

then the asymptotic variance of the codeword lengths will be equalg% 0, we can apply the Lemma with(n) = ¢/ to deduce that
o2, If we do not use the most efficient code, then the deviation of our

codeword lengths from the entropy will asymptotically be bounded . 1 " .
. . . . l f—[L.(X log, P(X > — .S.
below by a Gaussian random variable with variance e \/ﬁ[ (A1) + log, P(XT)] 2 ¢ as
Remarks:
1) Achievability: and sincee > 0 is arbitrary
In traditional information theoretic terms, Theorems 1 and 2 could 1
be called “second-order converse source coding theorems.” But are lim inf W[Ln(Xf) +log, P(XT)] >0 as.

they ever satisfied with equality? As will become obvious from the
proofs (cf. (6) below), equality in all the “almost sure” statementsy, equivalently,
of Theorems 1 and 2 is achieved by the Shannon cédéX") =

— loo n D,
[—log, P(X)]. liminf |22 - Z,| >0 as. ®)
2) D,, Versus Pointwise Redundancy: n—oo | \/n
As remarked earlier, from Part i) of Theorem 2 we can deduce
a lower bound to the rate of convergencelof/n to H. If o2 is Where
positive then for any constart” € (0, o) P —log, P(X}) — H(X}) ©)
L. (X" -v2n log | P | v
Lu(X7) > H 4 KY08 98 Minfinitely often a.s.  (4) i i . .
n n Let S, = —log, P(X7) — H(X7) and consider the Markov chain
Since/2n log log n increases much faster thasg n this seems to X = {X, = (X0, X )i n €17}

disagree with the well-known universal coding results [8], [11], that
exhibit universal procedures achieving convergence rates of orggf alphabet
(log n)/n.

The reason for this discrepancy is that here we are investigating the B={(i,j)EAXA: P(Xy1 = j|Xx =1i) >0}
asymptotic behavior of the quantiy,,, whereas the two main quan-
tities of interest in the universal coding literature are ffuéntwise Using the Markovity ofX, we can expand,. as
redundancyand its expected value. The pointwise redundaRgyis
defined as the difference between the actual codeword ldhgtmnd _ _ _
the ideal Shannon codeword lengffi (X}') = — log, P(X1): Su = (=log, P(Xiy1|Xi) = H) + (= log, P(X1) = H(X1))

=1

n—1

n—1

B (A7) = Ln(X1) = (~logz PIXT)), =Y (f(Xi) = Bf(Xi)+ (=log, P(X1) — H(X1)) (7
=1

and the rate at whicl®,, tends to zero tells us at which rate our code
approaches the performance of the Shannon code. The quantity
on the other hand, is the deviation of the codeword ledgthfrom Where f: B — R is the map
the “ideal mean"H (X7") o ) )
(i, j) = —logy P(Xyqr = j|Xo = i).
D, (X7') = L (XY') — E(-log, P(XY)). .

Therefore, the random variablés, behave (up to a bounded term)
It is, therefore, plausible that the quantitiBs andD,, will decrease like the partial sums of a centered, bounded function of a Markov
at different rates. As for the expected redundarféR,,, although it chain. SinceX is stationary ergodic so &, and sinceB is finite X
is of course equal td&D.,,, the pointwise bound given by (4) doesis irreducible and aperiodic. By the central limit theorem for functions
not necessarily imply a corresponding bound for the expectatiofMarkov chains (see [4], for example) the limit
ED, = FER, (it is trivial that the expectations of a sequence ‘ 1
of random variables can converge much faster than the individual = Jim = Var (= log, P(X/'[Xo))
realizations do).

exists and is finite, and since

lll. PROOFS —log, P(X]'|Xo) = —log, P(X]") +log, [P(X1)/P(X1]Xo)]
In this section we give the proofs of Theorem 1 and 2 for the
case of first-order Markov chains. Their extension to the geneitlis easy to show that® = o%. Moreover, the first term in (7)
case is straightforward, as discussed in the next section. The prawésmalized by,/n converges in distribution to & (0, ¢%) random
are simple, and they will depend on the following Lemma. It is amariable. Since the second term in (7) is bounded (with probability
unpublished result that appeared in [2], and also, in a more genesak) we conclude tha¥, converges in distribution to & (0, ¢?)
form, in [1]. It is proved in the Appendix. random variable, and this completes the proof. O
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Proof of Theorem 2:We proceed in a similar fashion to the Corollary: Theorems 1 and 2 remain valid if the Markovian
proof of Theorem 1. Since the serigg2 <V 2" 18 1°8 " s finite for assumption foX is replaced by the assumptions tBats stationary,

anye > 0, we can apply the Lemma with(n) = ¢\/2n log log n a(d) = O(d™**%)
to deduce that (d) = O(d™"®)

Dn Sn
2 and the expression for the variane in (3) is replaced by (8).
2n log 1 v2n Tog 1
v2n log log n = /2n log log n Observe that ifX is an irreducible aperiodic Markov chain of
orderm > 1, then~(d) = 0 for all d > m, the «(d) decay to zero
exponentially fast, and the expressions in (3) and (8) coincide, so that

+ e eventually a.s.

Taking thelimsup (respectively lim inf) of both sides and letting
¢ decrease to zero yields

. D, . S, the above Corollary is a genuine generalization of Theorems 1 and
a) hflf;p /2n Tog Tog n 2 hffip /2n Tog Tog 2. In the stationary case, the mixing conditions in the Corollary are
and ) ) satisfied by a rather large class of non-Markov processes. Although
- D, . Sn in practice they may be hard to verify, they require only polynomial
b) lim inf > liminf ——————a.s.

n—oco /2n loglogn = n—oo /2n log log n

Now arguing as in the proof of Theorem 1, we can divide (7) by
v2n log log n and then apply the law of the iterated logarithm for
functions of Markov chains [4] to get

decay of the coefficienta(d) and v(d).

APPENDIX
PROOF OF THE LEMMA

We expand the probability

S P{L.(X]') < —log, P(X]) = c(n)}
! 3 y - n An 73 — Ly (2®)—c(n
) hin_bip 2n log log n 7 as = P{a} € A": P(a}) > 27 tn (D)W}
and = P(ay)
b)  liminf /2 175".1 — = -0 as. o7 1 Play) <2~ T =0
n—0o0 n log log n < 2_Ln(1711)_t(n:)
Combining a) with &) and b) with B) yields i) and ii), respectivel\] o PanycambnGRI=e(m)
Il H .”l?l Z
a—c(n a— L (27
IV. EXTENSIONS <27 Z 2=l
The proofs of Theorems 1 and 2 depend on two simple results: o )ZIGA
The Lemma of the previous section, and the fact that the random <27
walk S, = —log, P(X7') — H(XT") satisfies a CLT and an LIL. where the last inequality is just Kraft's inequality. Since we assume

Since the Lemma is true for any source, the only place in the propi 274" < o, the result follows by the Borel-Cantelli Lemmial

where the Markovian assumption is used is to obtain the asymptotic
properties ofS,.
Higher Order Markov Chains:If X is Markov of general order
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m > 1, we can simply modify our proofs by looking at the chain ments.

X = {sz = ()(n-, AYn+1¢"'eX71+m):, n e Z}

and expandingS, as the sum of the logarithms ofith-order [1]
conditional probabilities to get the required CLT and LIL f68,. 2]
All other parts of the proofs remain the same.

Non-Markov Sources:The question of the exact description of the [3)
asymptotics ofS,, was raised by Kolmogorov in the early 1950's,
and was later studied in detail by Yushkevich [12], Ibragimov [5], and
Philipp and Stout [9, ch. 9], who obtained an almost sure invarianck"
principle for S,, under certain mixing conditions described below. g

For—oo < i < j < oo let B! denote ther-field generated by the
random variables‘{{, and ford > 1 define the mixing coefficients

+(d) = In€a§<E|10g2 P(Xo = s|XZ1) —log, P(Xo = 2|X7)]

(6]
(7]

a(d) = sup{|P(BN A) — P(B)P(A); A € BL., B € BT}
(8]
The coefficientsy(d) are called thestrong mixingcoefficients ofX,

and the coefficients(d) were introduced by Ibragimov in [5]. (See
[3] for the standard properties af(d).)

From [9, Theorem 9.1] it follows immediately that X is a
stationary process such thatd) = O(d3%) and~(d) = O(d™*®),
then S,, satisfies a CLT and LIL, with asymptotic variance

0 =Var (=log, P(Xo|XZL))

El

[10]

(11]

+2) Cov(—log, P(Xo|X_L), —log, P(X¢|XE})).

k=1

®) (2]

Therefore, we get the following corollary:
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