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Second-Order Noiseless Source Coding Theorems

I. Kontoyiannis,Student Member, IEEE

Abstract—Shannon’s celebrated source coding theorem can be viewed
as a “one-sided law of large numbers.” We formulate second-order
noiseless source coding theorems for the deviation of the codeword lengths
from the entropy. For a class of sources that includes Markov chains
we prove a “one-sided central limit theorem” and a law of the iterated
logarithm.

Index Terms—Coding variance, convergence rates, source coding the-
orems.

I. INTRODUCTION

Let XXX = fXn; n 2 g be a stationary ergodic source with finite
alphabetA, and let Ln : An ! be an arbitrary sequence of
fixed-to-variable codeword length assignments. LetXn

1 denote the
block (X1; X2; � � � ; Xn) andH be the entropy rate ofXXX. From the
pointwise converse source coding theorem [2], [6] we know that,
eventually, the per-symbol codeword length will exceedH, along
almost any source realization

lim inf
n!1

Ln(X
n

1 )

n
� H a.s. (1)

We also know that there exists a sequencefL�ng, such that the above
lower bound is actually met with equality

lim inf
n!1

L�n(X
n

1 )

n
= H a.s. (2)

Equation (2) tells us that the average number of bits required to
describeXn

1 converges toH, with probability one. In a formal sense,
this can be thought of as a “strong law of large numbers” for the
codeword lengths, and, similarly, the corresponding asymptotic lower
bound (1) as a “one-sided” law of large numbers.

It is then a natural question to ask whether this relationship can be
refined to a “one-sided” central limit theorem (CLT) or a law of the
iterated logarithm (LIL). In this correspondence we show that when
XXX is a Markov chain, or, more generally, whenXXX satisfies certain
mixing conditions, the answer to this question is affirmative.

In the next section we state and discuss our main results, a one-
sided CLT and a LIL for the codeword lengthsfLng. In Section
III we give their proofs, and Section IV discusses their extensions
to non-Markov sources. In the Appendix we give the proof of an
unpublished result that is used in Section III.

II. RESULTS

Let XXX = fXn; n 2 g be a stationary ergodic Markov chain
with finite alphabetA, distributed according to the measureP . Let
Cn : A

n ! f0; 1g�, n � 1, be an arbitrary sequence of fixed-to-
variable length prefix codes (not necessarily mutually compatible),
and Ln : An ! , n � 1, be the associated sequence of length
functions. LetH = E(� log

2
P (X1jX0)) denote the entropy rate

of XXX. (Here and throughout the paper “log
2
” denotes the logarithm

to base two and “log” denotes the natural logarithm.) For the sake
of simplicity we will assume thatXXX is a first-order Markov chain,
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although this restriction is not necessary and it will be dropped later
on (the extension of our results to Markov chains of any finite order,
as well as to non-Markov sources under mixing conditions is outlined
in Section IV).

We are interested in the asymptotic behavior of the deviation of
the codeword lengthsLn(Xn

1 ) from their “ideal means”H(Xn

1 ) =

E(� log
2
P (Xn

1 )); if we let Dn = [Ln(X
n

1 ) � H(Xn

1 )] then the
converse coding theorem (1) can be restated as

lim inf
n!1

Dn

n
� 0 a.s.

Our first result is a CLT refinement to this. If instead of normalizing
by n we normalize by

p
n then the deviationDn=

p
n is (asymp-

totically) bounded below by a sequence of random variables whose
distribution converges to a Gaussian.

Theorem 1(CLT):Let XXX be a stationary ergodic Markov chain
with alphabetA, and supposefLng is an arbitrary sequence of
codeword-length assignmentsLn:An ! . Define

Dn = Ln(X
n

1 )�H(X
n

1 ):

There exists a sequence of random variablesZn such that

lim inf
n!1

Dnp
n
� Zn � 0 a.s.

Zn
D!N(0; �

2
)

and the variance�2 is given by the limit

�
2
= lim
n!1

1

n
Var (� log

2
P (X

n

1 )): (3)

Our second result is a corresponding law of the iterated logarithm.
Theorem 2 (LIL): Under the assumptions of Theorem 1, and with

�2 defined as in (3)

i) lim sup
n!1

Dnp
2n log log n

� � a.s.

ii) lim inf
n!1

Dnp
2n log log n

� �� a.s.

Suppose�2 > 0. Then part i) of Theorem 2 implies that for
any sequencefLng and any constantK 2 (0; �), along almost
any realization of the source, the codeword lengthsLn(X

n

1 ) will be
greater than

H(X
n

1 ) +K 2n log log n

infinitely often. The interpretation of this bound is discussed in some
more detail in Remark 2 below.

As for the case�2 = 0, a complete characterization is provided
by the following theorem. If was first stated in [12], and a proof was
supplied in [7].

Theorem 3 [12], [7]: SupposeXXX is a stationary ergodic Markov
chain, and let�2 be defined as in Theorem 1. Then�2 = 0 if and
only if all the nonzero transition probabilities of the chain are equal
to 2

�H .
Theorem 3 says that�2 = 0 if and only if, for eachn, there are

2
nH � jAjn sequences of nonzero probability, and they are uniformly

distributed. We can encode them in such a way that they all have
equal-length descriptions (Shannon code), so that the variance of the
codeword lengths is zero. In fact, from the proof of Theorem 1 (see
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(5) and (6)), it is clear that when�2 = 0 a slightly stronger statement
than Theorems 1 and 2 can be made

lim inf
n!1

Dnp
n
� 0 a.s.

In view of the preceding comments we think of�2 as aminimal
coding variance. It is a characteristic quantity of the source which
tells us that, when we encode the source in the most efficient way,
then the asymptotic variance of the codeword lengths will be equal to
�2. If we do not use the most efficient code, then the deviation of our
codeword lengths from the entropy will asymptotically be bounded
below by a Gaussian random variable with variance�2.

Remarks:
1) Achievability:
In traditional information theoretic terms, Theorems 1 and 2 could

be called “second-order converse source coding theorems.” But are
they ever satisfied with equality? As will become obvious from the
proofs (cf. (6) below), equality in all the “almost sure” statements
of Theorems 1 and 2 is achieved by the Shannon code:Ln(X

n

1 ) =

d� log2 P (Xn

1 )e.
2) Dn Versus Pointwise Redundancy:
As remarked earlier, from Part i) of Theorem 2 we can deduce

a lower bound to the rate of convergence ofLn=n to H. If �2 is
positive then for any constantK 2 (0; �)

Ln(X
n

1 )

n
� H +K

p
2n log log n

n
infinitely often a.s. (4)

Since
p
2n log log n increases much faster thanlog n this seems to

disagree with the well-known universal coding results [8], [11], that
exhibit universal procedures achieving convergence rates of order
(log n)=n.

The reason for this discrepancy is that here we are investigating the
asymptotic behavior of the quantityDn, whereas the two main quan-
tities of interest in the universal coding literature are thepointwise
redundancyand its expected value. The pointwise redundancyRn is
defined as the difference between the actual codeword lengthLn and
the ideal Shannon codeword lengthL�n(X

n

1 ) = � log2 P (Xn

1 ):

Rn(X
n

1 ) = Ln(X
n

1 )� (� log2 P (X
n

1 ));

and the rate at whichRn tends to zero tells us at which rate our code
approaches the performance of the Shannon code. The quantityDn,
on the other hand, is the deviation of the codeword lengthLn from
the “ideal mean”H(Xn

1 )

Dn(X
n

1 ) = Ln(X
n

1 )�E(� log2 P (X
n

1 )):

It is, therefore, plausible that the quantitiesRn andDn will decrease
at different rates. As for the expected redundancy,ERn, although it
is of course equal toEDn, the pointwise bound given by (4) does
not necessarily imply a corresponding bound for the expectations
EDn = ERn (it is trivial that the expectations of a sequence
of random variables can converge much faster than the individual
realizations do).

III. PROOFS

In this section we give the proofs of Theorem 1 and 2 for the
case of first-order Markov chains. Their extension to the general
case is straightforward, as discussed in the next section. The proofs
are simple, and they will depend on the following Lemma. It is an
unpublished result that appeared in [2], and also, in a more general
form, in [1]. It is proved in the Appendix.

Lemma [1], [2]: For any sequencefc(n)g of positive constants
with 2�c(n) < 1 then

Ln(X
n

1 ) � � log2 P (X
n

1 )� c(n) eventually a.s.

An elegant application of this Lemma to string matching was given
by Shields in [10], where the Lemma is referred to as “Barron’s
Lemma.”

Proof of Theorem 1:Since the series 2��
p
n is finite for any

� > 0, we can apply the Lemma withc(n) = �
p
n to deduce that

lim inf
n!1

1p
n
[Ln(X

n

1 ) + log2 P (X
n

1 )] � �� a.s.

and since� > 0 is arbitrary

lim inf
n!1

1p
n
[Ln(X

n

1 ) + log2 P (X
n

1 )] � 0 a.s.

or, equivalently,

lim inf
n!1

Dnp
n
� Zn � 0 a.s. (5)

where

Zn =
� log2 P (Xn

1 )�H(Xn

1 )p
n

: (6)

Let Sn = � log2 P (Xn

1 )�H(Xn

1 ) and consider the Markov chain

~XXX = f ~Xn = (Xn; Xn+1); n 2 g

with alphabet

B = f(i; j) 2 A�A : P (Xk+1 = jjXk = i) > 0g:

Using the Markovity ofXXX, we can expandSn as

Sn =

n�1

i=1

(� log2 P (Xi+1jXi)�H) + (� log2 P (X1)�H(X1))

=

n�1

i=1

(f( ~Xi)�Ef( ~Xi)) + (� log2 P (X1)�H(X1)) (7)

wheref : B ! is the map

(i; j) 7! � log2 P (Xn+1 = jjXn = i):

Therefore, the random variablesSn behave (up to a bounded term)
like the partial sums of a centered, bounded function of a Markov
chain. SinceXXX is stationary ergodic so is~XXX, and sinceB is finite ~XXX

is irreducible and aperiodic. By the central limit theorem for functions
of Markov chains (see [4], for example) the limit

�
2
= lim

n!1

1

n
Var (� log2 P (X

n

1 jX0))

exists and is finite, and since

� log2 P (X
n

1 jX0) = � log2 P (X
n

1 ) + log2[P (X1)=P(X1jX0)]

it is easy to show that�2 = �2. Moreover, the first term in (7)
normalized by

p
n converges in distribution to aN(0; �2) random

variable. Since the second term in (7) is bounded (with probability
one) we conclude thatZn converges in distribution to aN(0; �2)

random variable, and this completes the proof.
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Proof of Theorem 2:We proceed in a similar fashion to the

proof of Theorem 1. Since the series2��
p

2n log log n is finite for
any � > 0, we can apply the Lemma withc(n) = �

p
2n log log n

to deduce that
Dnp

2n log log n
� Snp

2n log log n
+ � eventually a.s.

Taking thelim sup (respectively,lim inf) of both sides and letting
� decrease to zero yields

a) lim sup
n!1

Dnp
2n log log n

� lim sup
n!1

Snp
2n log log n

a.s.

and

b) lim inf
n!1

Dnp
2n log log n

� lim inf
n!1

Snp
2n log log n

a.s.

Now arguing as in the proof of Theorem 1, we can divide (7) byp
2n log log n and then apply the law of the iterated logarithm for

functions of Markov chains [4] to get

a0) lim sup
n!1

Snp
2n log log n

= � a.s.

and

b0) lim inf
n!1

Snp
2n log log n

= �� a.s.

Combining a) with a0) and b) with b0) yields i) and ii), respectively.

IV. EXTENSIONS

The proofs of Theorems 1 and 2 depend on two simple results:
The Lemma of the previous section, and the fact that the random
walk Sn = � log2 P (X

n
1 ) � H(Xn

1 ) satisfies a CLT and an LIL.
Since the Lemma is true for any source, the only place in the proof
where the Markovian assumption is used is to obtain the asymptotic
properties ofSn.

Higher Order Markov Chains:If XXX is Markov of general order
m � 1, we can simply modify our proofs by looking at the chain

~XXX = f ~Xn = (Xn; Xn+1; � � � ; Xn+m); n 2 g
and expandingSn as the sum of the logarithms ofmth-order
conditional probabilities to get the required CLT and LIL forSn.
All other parts of the proofs remain the same.

Non-Markov Sources:The question of the exact description of the
asymptotics ofSn was raised by Kolmogorov in the early 1950’s,
and was later studied in detail by Yushkevich [12], Ibragimov [5], and
Philipp and Stout [9, ch. 9], who obtained an almost sure invariance
principle forSn under certain mixing conditions described below.

For�1 � i � j � 1 let Bji denote the�-field generated by the
random variablesXj

i , and ford � 1 define the mixing coefficients


(d) = max
s2S

E log2 P (X0 = sjX�1
�1)� log2 P (X0 = xjX�1

�d)

�(d) = supfjP (B \A)� P (B)P (A)j; A 2 B0
�1; B 2 B1d g:

The coefficients�(d) are called thestrong mixingcoefficients ofXXX,
and the coefficients
(d) were introduced by Ibragimov in [5]. (See
[3] for the standard properties of�(d).)

From [9, Theorem 9.1] it follows immediately that ifXXX is a
stationary process such that�(d) = O(d�336) and
(d) = O(d�48),
thenSn satisfies a CLT and LIL, with asymptotic variance

�
2
=Var (� log2 P (X0jX�1

�1))

+2

1

k=1

Cov(� log2 P (X0jX�1
�1);�log2 P (XkjXk�1

�1 )): (8)

Therefore, we get the following corollary:

Corollary: Theorems 1 and 2 remain valid if the Markovian
assumption forXXX is replaced by the assumptions thatXXX is stationary,

�(d) = O(d
�336

)


(d) = O(d
�48

)

and the expression for the variance�2 in (3) is replaced by (8).
Observe that ifXXX is an irreducible aperiodic Markov chain of

orderm � 1, then
(d) = 0 for all d � m, the�(d) decay to zero
exponentially fast, and the expressions in (3) and (8) coincide, so that
the above Corollary is a genuine generalization of Theorems 1 and
2. In the stationary case, the mixing conditions in the Corollary are
satisfied by a rather large class of non-Markov processes. Although
in practice they may be hard to verify, they require only polynomial
decay of the coefficients�(d) and 
(d).

APPENDIX

PROOF OF THE LEMMA

We expand the probability

PfLn(Xn
1 ) < � log2 P (X

n
1 )� c(n)g

= Pfxn1 2 A
n
: P (x

n
1 ) > 2

�L (x )�c(n)g
=

x : P (x )<2

P (x
n
1 )

�
x : P (x )<2

2
�L (x )�c(n)

� 2
�c(n)

x 2A

2
�L (x )

� 2
�c(n)

where the last inequality is just Kraft’s inequality. Since we assume
2�c(n) <1, the result follows by the Borel–Cantelli Lemma.
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