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Abstract The ordinary least squares estimation is based on minimization of the
squared distance of the response variable to its conditional mean given the predictor
variable. We extend this method by including in the criterion function the distance
of the squared response variable to its second conditional moment. It is shown that
this “second-order” least squares estimator is asymptotically more efficient than the
ordinary least squares estimator if the third moment of the random error is nonzero,
and both estimators have the same asymptotic covariance matrix if the error distri-
bution is symmetric. Simulation studies show that the variance reduction of the new
estimator can be as high as 50% for sample sizes lower than 100. As a by-product,
the joint asymptotic covariance matrix of the ordinary least squares estimators for the
regression parameter and for the random error variance is also derived, which is only
available in the literature for very special cases, e.g. that random error has a normal
distribution. The results apply to both linear and nonlinear regression models, where
the random error distributions are not necessarily known.

Keywords Nonlinear regression · Asymmetric error distribution · Weighted least
squares · Minimum distance estimator · Consistency · Asymptotic normality

1 Introduction

The least squares estimation in (nonlinear) regression models has a long history and
its (asymptotic) statistical properties are well-known. See, e.g., Gallant (1987) and
Seber and Wild (1989). The ordinary least squares (OLS) estimator minimizes the
squared distance of the response variable to its conditional mean given the predic-
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tor variable. This estimator is most efficient, if the random errors in the model are
normally distributed. On the other hand, the OLS estimator may not be optimal if
the random error distribution is not normal or asymmetric. In order to obtain more
efficient estimators in such cases, it is natural to exploit information contained in the
higher moments of the data.

In this paper, we study an estimator which minimizes the distances of the response
variable and the squared response variable to its first and second conditional moments
simultaneously. In particular, we derive the strong consistency and asymptotic nor-
mality for this “second-order” least squares (SLS) estimator under general regularity
conditions. Moreover, we show that this estimator is asymptotically more efficient
than the OLS estimator if the third moment of the random error is nonzero, and both
estimators have the same asymptotic covariance matrix if the error distribution is
symmetric. Monte Carlo simulation studies show that the variance reduction can be
as high as 50% for sample sizes lower than 100. Asymmetric random error distribu-
tions in regression problems arise in many applied fields, e.g., in biology, economics,
engineering, environmetrics and quantitative finance (e.g., Boos 1987, Hutson 2004,
Williams 1997, Theodossiou 1998). They also attract much attention in (Bayesian)
robust statistics (e.g., Azzalini and Capitanio 1999, Marazzi and Yohai 2004, Sahu et
al. 2003).

The proposed estimation method was first used by Wang (2003, 2004) to deal
with the measurement error problems in nonlinear regression models. The theoretical
framework used there requires the measurement error variance to be strictly positive.
Therefore the results obtained do not apply to the traditional nonlinear least squares
setup, which is considered in the present paper. The paper is organized as follows.
In Sect. 2 we introduce the second-order least squares estimator and present its con-
sistency and asymptotic normality under some regularity conditions. In Sect. 3 we
compare the new estimator with the traditional OLS estimator. We also derive the
joint asymptotic covariance matrix of the OLS estimators for θ and σ 2. Section 4
contains Monte Carlo simulations of finite sample performance and comparison of
the estimators. Conclusions and discussion are given in Sect. 5, whereas proofs of the
theorems are given in Sect. 6.

2 Second-order least squares estimator

Consider the general regression model

Y = g(X; θ)+ ε, (1)

where Y ∈ R is the response variable, X ∈ R
k is the predictor variable, θ ∈ R

p is the
unknown regression parameter and ε is the random error satisfying E(ε|X) = 0 and
E(ε2|X) = σ 2. The regression function g(X; θ) can be linear or nonlinear in either
X or θ . In addition, we assume that Y and ε have finite fourth moments.

Under the assumption for model (1), the first two conditional moments of Y given
X are respectively E(Y |X) = g(X; θ) and E(Y 2|X) = g2(X; θ) + σ 2. Through-
out the paper we denote the parameter vector as γ = (θ ′, σ 2)′ and the parameter
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Second-order nonlinear least squares estimation 885

space as � = � × � ⊂ R
p+1. The true parameter value of model (1) is denoted by

γ0 = (θ ′
0, σ

2
0 )

′ ∈ �.
Suppose (Yi , X ′

i )
′, i = 1, 2, . . . , n is an i.i.d. random sample. Then the second-

order least squares estimator (SLSE) γ̂SLS for γ is defined as the measurable function
that minimizes

Qn(γ ) =
n∑

i=1

ρ′
i (γ )Wiρi (γ ), (2)

where ρi (γ ) = (
Yi − g(Xi ; θ), Y 2

i − g2(Xi ; θ)− σ 2
)′

and Wi = W (Xi ) is a 2 × 2
nonnegative definite matrix which may depend on Xi .

Now we consider the asymptotic properties of the SLSE γ̂SLS. For the consistency
of γ̂SLS we make the following assumptions, where µ denotes the Lebesgue measure
and ‖·‖ denotes the Euclidean norm in the real space.

Assumption 1 g(x; θ) is a measurable function of x for every θ ∈ �, and is contin-
uous in θ ∈ � for µ-almost all x .

Assumption 2 E ‖W (X)‖ (
sup� g4(X; θ)+ 1

)
< ∞.

Assumption 3 The parameter space � ⊂ R
p+1 is compact.

Assumption 4 For any γ ∈ �, E[ρ(γ ) − ρ(γ0)]′W (X)[ρ(γ ) − ρ(γ0)] = 0 if and
only if γ = γ0, where ρ(γ ) = (

Y − g(X; θ), Y 2 − g2(X; θ)− σ 2
)′

.

The above regularity conditions are common in the literature of nonlinear regres-
sion. In particular, Assumption 1 is usually used to ensure that the objective function
Qn(γ ) is continuous in γ . Assumption 2 is a moment condition which is sufficient for
the uniform convergence of Qn(γ ). Similarly, the compactness of the parameter space
� is often assumed. Finally, Assumption 4 is the usual condition for identifiability of
parameters, which guarantees that Qn(γ ) has unique minimizer γ0 in � for large n. In
practice, it can be a tedious task to check the identifiability condition directly. Rather,
it is done in an ad hoc way, since a model is usually identified as long as it is well
defined and the parameter space is small enough. In the nonlinear regression literature,
Assumption 2 is sometimes expressed through the existence of a function, say h(x),
such that |g(x; θ)| ≤ h(x) for all θ ∈ � and E ‖W (X)‖ h4(X) < ∞. In practice, this
and other conditions are checked on case by case basis. We demonstrate this through
the following examples.

Example 1 Consider the model Y = θ1eθ2 X + ε, where a ≤ θ1 ≤ b, c ≤ θ2 ≤ d < 0
and a, b, c, d are finite. For notational simplicity suppose ‖W‖ is constant and let
h(x) = max{|a| , |b|}(ecx + edx ). Then |g(x; θ)| ≤ h(x) for all θ in the parameter
space and Eh4(X) ≤ 8 max{|a|4 , |b|4}(Ee4cX + Ee4d X ) which is finite as long as X
has a finite moment generating function. Therefore Assumption 2 is satisfied.

Example 2 Consider another model Y =θ1/[1+exp(θ2 +θ3 X)]+ε, where a ≤θ1 ≤b
and a, b are finite. Now let h(x) = max{|a| , |b|}. Then |g(x; θ)| ≤ |θ1| ≤ h(x) and
E ‖W‖ h4(X) will be finite as long as W is properly chosen. Therefore Assumption 2
is easily satisfied.
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Theorem 1 Under Assumptions 1–4, the SLSE γ̂SLS
a.s.−→ γ0, as n → ∞.

To derive the asymptotic normality for γ̂SLS, further regularity conditions are
needed.

Assumption 5 θ0 is an interior point of � and, for µ-almost all x , g(x; θ) is
twice continuously differentiable in �. Furthermore, the first two derivatives satisfy

E ‖W (X)‖ sup�

∥∥∥ ∂g(X;θ)
∂θ

∥∥∥
4
< ∞, E ‖W (X)‖ sup�

∥∥∥ ∂
2g(X;θ)
∂θ∂θ ′

∥∥∥
4
< ∞.

Assumption 6 The matrix A = E
[
∂ρ′(γ0)
∂γ

W (X) ∂ρ(γ0)
∂γ ′

]
is nonsingular, where

∂ρ′(γ0)

∂γ
= −

(
∂g(X;θ0)
∂θ

2g(X; θ0)
∂g(X;θ0)
∂θ

0 1

)

and ∂g(X; θ0)/∂θ is the partial derivative of g(X; θ)with respect to θ evaluated at θ0.

Again, Assumptions 5 and 6 are commonly seen regularity conditions which are
sufficient for the asymptotic normality of nonlinear estimators. Assumption 5 ensures
that the first derivative of Qn(γ ) admits a first-order Taylor expansion and the sec-
ond derivative of Qn(γ ) converges uniformly. Assumption 6 implies that the second
derivative of Qn(γ ) has a nonsingular limiting matrix. In practice these conditions
can be checked similarly as in Examples 1 and 2. Throughout this paper, we use 0 to
denote the vector of zeros of appropriate dimension.

Theorem 2 Under Assumptions 1–6, as n → ∞,
√

n(γ̂SLS−γ0)
L−→ N (0, A−1 B A−1),

where

B = E

[
∂ρ′(γ0)

∂γ
W (X)ρ(γ0)ρ

′(γ0)W (X)
∂ρ(γ0)

∂γ ′

]
. (3)

Remark 1 Note that A and B in the above asymptotic covariance matrix depend on
the value of γ0. In practice they can be estimated after γ̂SLS is obtained. From the proof
of Theorem 2 in Sect. 6.3 and Lemma 2 in Sect. 6.1, it can be seen that

A = plim
n→∞

1

n

n∑

i=1

[
∂ρ′

i (γ̂SLS)

∂γ
Wi
∂ρi (γ̂SLS)

∂γ ′

]

and

4B = plim
n→∞

1

n

∂Qn(γ̂SLS)

∂γ

∂Qn(γ̂SLS)

∂γ ′ ,

where ∂Qn(γ )
∂γ

= 2
∑n

i=1
∂ρ′

i (γ )

∂γ
Wiρi (γ ).

The asymptotic covariance A−1 B A−1 of γ̂SLS depends on the weighting matrix W .
A natural question is how to choose W to obtain the most efficient estimator. To
answer this question, we first note that, since ∂ρ′(γ0)/∂γ does not depend on Y ,
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Second-order nonlinear least squares estimation 887

matrix B in (3) can be written as B = E
[
∂ρ′(γ0)
∂γ

WU W ∂ρ(γ0)
∂γ ′

]
, where U = U (X) =

E[ρ(γ0)ρ
′(γ0)|X ]. Then, analog to the weighted (nonlinear) least squares estimation,

we have

A−1 B A−1 ≥
(

E

[
∂ρ′(γ0)

∂γ
U−1 ∂ρ(γ0)

∂γ ′

])−1

(4)

(in the sense that the difference of the left-hand and right-hand sides is nonnegative
definite), and the lower bound is attained for W = U−1 in both A and B (e.g., Hansen
1982, Abarin and Wang 2006). By definition, U is nonnegative definite and it will be
shown that its determinant is det U = σ 2

0 (µ4 − σ 4
0 )− µ2

3, where µ3 = E(ε3|X) and
µ4 = E(ε4|X). We have the following results.

Corollary 1 If σ 2
0 (µ4 − σ 4

0 )−µ2
3 
= 0, then the optimal weighting matrix is given by

U−1 = 1

σ 2
0 (µ4 − σ 4

0 )− µ2
3

×
(
µ4 + 4µ3g(X; θ0)+ 4σ 2

0 g2(X; θ0)− σ 4
0 −µ3 − 2σ 2

0 g(X; θ0)

−µ3 − 2σ 2
0 g(X; θ0) σ 2

0

)
(5)

and the asymptotic covariance matrix of the most efficient SLSE is given by

C =
⎛

⎜⎝
V

(
θ̂SLS

)
µ3

µ4−σ 4
0

V
(
σ̂ 2

SLS

)
G−1

2 G1

µ3

µ4−σ 4
0

V
(
σ̂ 2

SLS

)
G ′

1G−1
2 V

(
σ̂ 2

SLS

)

⎞

⎟⎠ , (6)

where

V
(
θ̂SLS

)
=

(
σ 2

0 − µ2
3

µ4 − σ 4
0

)(
G2 − µ2

3

σ 2
0 (µ4 − σ 4

0 )
G1G ′

1

)−1

, (7)

V
(
σ̂ 2

SLS

)
= (µ4 − σ 4

0 )
(
σ 2

0 (µ4 − σ 4
0 )− µ2

3

)

σ 2
0 (µ4 − σ 4

0 )− µ2
3G ′

1G−1
2 G1

(8)

and

G1 = E

[
∂g(X; θ0)

∂θ

]
, G2 = E

[
∂g(X; θ0)

∂θ

∂g(X; θ0)

∂θ ′

]
. (9)

Note that both the identity matrix I2 and the optimal weighting matrix U−1 satisfy
Assumption 6. In practice, however, U−1 involves unknown parameters which need
to be estimated, before the optimal SLSE is computed. This can be done using the fol-
lowing two-stage procedure. First, minimize Qn(γ ) using the identity weight W = I2
to obtain the first-stage estimator γ̂SLS. Secondly, estimate the elements of U−1 using
γ̂SLS and the corresponding moments from the residuals. Finally, minimize Qn(γ )

again with W = Û−1 to obtain the second-stage estimator ˆ̂γSLS. Since Û−1 is clearly
consistent for U−1, the asymptotic covariance matrix of the two-stage estimator ˆ̂γSLS

123



888 L. Wang, A. Leblanc

is the same as the right-hand side of (4) and, therefore, ˆ̂γSLS is asymptotically more
efficient than the first-stage estimator γ̂SLS. The OLS estimator can also be used to
estimate U−1 if it is consistent and available. More discussion about the so-called
feasible weighted least squares estimator can be found in Gallant (1987, Chap. 5).

Remark 2 The calculation of γ̂SLS entails numerical minimization of the quadratic
form Qn(γ ). Like ordinary nonlinear least squares estimation, this can be done using
standard procedures such as Newton-Raphson, which is available in most mathemat-
ical or statistical computer packages. Given the modern computer power, the extra
computational cost of the SLSE over OLSE is minimal.

3 Comparison with OLSE

The OLSE θ̂OLS for θ is defined as the measurable function that minimizes Sn(θ) =∑n
i=1 (Yi − g(Xi ; θ))2 and the OLSE for σ 2 is σ̂ 2

OLS = Sn

(
θ̂OLS

)
/n. The consis-

tency and asymptotic normality of θ̂OLS have been established under various sets of
regularity conditions in the literature, e.g., Jennrich (1969) and Wu (1981). Tradition-
ally, asymptotic properties of θ̂OLS and σ̂ 2

OLS are separately derived and the authors
were unable to find a reference giving the joint asymptotic variance-covariance matrix
of the two estimators except for the special case where ε has a normal distribution.

In this section, we use a framework similar to the one used in Section 2 to derive the

asymptotic covariance matrix of γ̂OLS =
(
θ̂ ′

OLS, σ̂
2
OLS

)′
. Note that Sn(θ) is a special

case of Qn(γ ) in (2), where the weighting matrix is taken as

W =
(

1 0
0 0

)
.

However, this choice of weight violates Assumption 6, because it results in

A =
(

G2 0
0 0

)

which is singular. Therefore, the result of Theorem 2 does not apply to the OLSE.
However, the framework of Section 2 is still applicable with minor modification. In
fact, the regularity conditions needed for the consistency and asymptotic normality of
γ̂OLS are similar but weaker than those for the SLSE γ̂SLS.

Assumption 7 E sup� g2(X; θ) < ∞.

Assumption 8 The parameter space � ⊂ R
p is compact.

Assumption 9 For any θ ∈ �, E[(g(X; θ)− g(X; θ0))
2] = 0 if and only if θ = θ0.

Assumption 10 θ0 is an interior point of � and, for µ-almost all x , g(x; θ) is twice
continuously differentiable in �. Furthermore, the first two derivatives satisfy

E sup
�

∥∥∥∥
∂g(X; θ)
∂θ

∥∥∥∥
2

< ∞, E sup
�

∥∥∥∥
∂2g(X; θ)
∂θ∂θ ′

∥∥∥∥
2

< ∞.
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Assumption 11 The matrix G2 = E
[
∂g(X;θ0)
∂θ

∂g(X;θ0)
∂θ ′

]
is nonsingular.

Theorem 3 1. Under Assumptions 1 and 7–9, as n → ∞, γ̂OLS
a.s.−→ γ0.

2. Under Assumptions 1 and 7–11, as n → ∞,
√

n(γ̂OLS − γ0)
L−→ N (0, D),

where

D =
(
σ 2

0 G−1
2 µ3G−1

2 G1

µ3G ′
1G−1

2 µ4 − σ 4
0

)
. (10)

Now we compare the (optimal) SLSE and OLSE by their asymptotic covariances.
First, it is easy to see from (6)–(8) and (10) that the SLSE and OLSE have the same
asymptotic variance covariance matrix, if µ3 = 0. The following theorem shows that,
however, the SLSE for θ and σ 2 are respectively more efficient than the corresponding
OLSE if µ3 
= 0.

Theorem 4 Suppose µ3 
= 0.
1. V

(
σ̂ 2

OLS

) ≥ V
(
σ̂ 2

SLS

)
, with equality holding if and only if G ′

1G−1
2 G1 = 1.

2. V
(
θ̂OLS

)
− V

(
θ̂SLS

)
is nonnegative definite if G ′

1G−1
2 G1 = 1, and is positive

definite if G ′
1G−1

2 G1 
= 1.

Note that the condition G ′
1G−1

2 G1 = 1 means that G−1
2 is a generalized inverse of

the matrix G1G ′
1.

4 Monte Carlo simulations

In this section, we investigate the finite sample behavior of the SLSE and compare it
with OLSE through some simulation studies. In particular, we consider two models
that are commonly used in nonlinear regression literature. The first is an exponential
model

Y = θ1 exp(θ2 X)+ ε,

with true parameter values θ1 = 10, θ2 = −0.6 and σ 2 = 2; and the second is a
growth model

Y = θ1

1 + exp(θ2 + θ3 X)
+ ε,

with θ1 = 10, θ2 = 1.5, θ3 = −0.8 andσ 2 = 2. In both models X ∼ Uni f orm(0, 20)
and ε = (χ2(3)− 3)/

√
3 follows a (normalized) χ2(3) distribution. All observations

are generated independently, and the Monte Carlo means of the OLSE and the SLSE
with the estimated optimal weight using OLSE, and their variances (VAR) and mean
squared errors (MSE) are computed. For each of the sample sizes n = 30, 50, 100
and 200, 1000 Monte Carlo repetitions are carried out. The computation is done using
the statistical computing language R for Windows XP on an IBM Workstation with
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Table 1 Simulated OLS, SLS, and their variances (VAR) and the mean squared errors (MSE) for
exponential model Y = θ1 exp(θ2 X)+ ε

OLS VAR MSE SLS VAR MSE

n = 30

θ1 = 10 10.0315 2.0245 2.0255 10.2306 1.6380 1.6895

θ2 = −0.6 −0.6139 0.0189 0.0190 −0.6282 0.0141 0.0149

σ 2 = 2 2.0027 0.7656 0.7648 1.7026 0.3093 0.3974

n = 50

θ1 = 10 10.0238 1.4738 1.4743 10.1880 1.1669 1.2011

θ2 = −0.6 −0.6109 0.0141 0.0142 −0.6241 0.0100 0.0105

σ 2 = 2 1.9763 0.5194 0.5194 1.7733 0.2430 0.2941

n = 100

θ1 = 10 9.9802 0.9863 0.9867 10.1146 0.6428 0.6553

θ2 = −0.6 −0.6032 0.0074 0.0074 −0.6133 0.0046 0.0048

σ 2 = 2 2.0061 0.2693 0.2694 1.8891 0.1573 0.1695

n = 200

θ1 = 10 10.0153 0.5467 0.5469 10.0522 0.3361 0.3384

θ2 = −0.6 −0.6028 0.0038 0.0038 −0.6054 0.0023 0.0024

σ 2 = 2 2.0077 0.1129 0.1129 1.9504 0.0774 0.0798

a 2.2 MHz CPU and 4 GB RAM. The CPU time ranges from several to about thirty
minutes, depending on the sample sizes.

The simulation results for the exponential model are presented in Table 1, while
those for the growth model in Table 2. These results show a clear pattern of significant
variance and mean squared error reduction of the SLSE over OLSE. In particular, the
variance reduction for σ 2 in both models can be as high as 40−50% in many instances.
The only exception is the case of growth model with n = 200, where the SLSE has
larger variance and MSE than OLSE. This is probably because that in this case the
asymptotic variances of the two estimators are very close, so that the difference reflects
random sampling or numerical fluctuations only. In addition, finite sample bias can be
seen in the SLSE of σ 2. However, this bias is compensated by variance improvement
because the corresponding overall MSE is always smaller than that of the OLSE.

5 Discussion

The least squares technique is widely used in regression analysis. If the random errors
in the regression model have a normal distribution, then the ordinary least squares
estimator is most efficient. However, if the random errors are not normally distributed,
then information in the higher moments of the data can be used to construct more
efficient estimator.

We have studied a SLSE for a general nonlinear model, where no distributional
assumption for the random error is made. It has been shown that the SLSE using the
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Table 2 Simulated OLS, SLS, and their variances (VAR) and the mean squared errors (MSE) for growth
model Y = θ1/[1 + exp(θ2 + θ3 X)] + ε

OLS VAR MSE SLS VAR MSE

n = 30

θ1 = 10 10.0102 0.1064 0.1065 9.9380 0.0740 0.0778

θ2 = 1.5 1.5601 0.2481 0.2514 1.5221 0.2041 0.2044

θ3 = −0.8 −0.8374 0.0464 0.0478 −0.8285 0.0370 0.0378

σ 2 = 2 1.9747 0.8045 0.8052 1.6269 0.2988 0.4377

n = 50

θ1 = 10 10.0137 0.0605 0.0606 9.9598 0.0437 0.0453

θ2 = 1.5 1.5516 0.1922 0.1947 1.5271 0.1293 0.1299

θ3 = −0.8 −0.8282 0.0350 0.0358 −0.8233 0.0242 0.0247

σ 2 = 2 2.0084 0.5521 0.5522 1.7566 0.2895 0.3485

n = 100

θ1 = 10 9.9978 0.0348 0.0348 9.9701 0.0291 0.0299

θ2 = 1.5 1.5318 0.0914 0.0923 1.5132 0.0630 0.0631

θ3 = −0.8 −0.8132 0.0175 0.0177 −0.8077 0.0115 0.0115

σ 2 = 2 1.9690 0.2474 0.2481 1.8281 0.1950 0.2244

n = 200

θ1 = 10 9.9997 0.0161 0.0161 9.9903 0.0167 0.0168

θ2 = 1.5 1.5123 0.0501 0.0502 1.5110 0.0334 0.0335

θ3 = −0.8 −0.8095 0.0095 0.0096 −0.8080 0.0064 0.0065

σ 2 = 2 2.0065 0.1255 0.1255 1.9326 0.1318 0.1363

optimal weight is asymptotically more efficient than the OLSE, if the random error
in the model has a nonzero third moment. In the case of a symmetric error distri-
bution, both estimators have the same asymptotic variance covariance matrix. It is
also worthwhile to note that in the case of µ3 = 0 both the SLSE and OLSE for θ
and σ 2 are asymptotically orthogonal, even without the normality assumption for the
random error. Simulation studies show that the efficiency gain of SLSE over OLSE
can be as high as 50% for the variance parameter for sample sizes lower than 100.
Given the modern techniques of numerical computation and computer power, the extra
computational cost of the SLSE over OLSE is ignorable in practice. Questions that
deserve future investigation include finite sample properties, higher order efficiencies
and comparisons of the SLSE with other existing estimators.

6 Proofs

6.1 Preliminary

For ease of reading we first restate some existing results which are used in the proofs.
For this purpose, let Z = (Z1, Z2, . . . ., Zn) be an i.i.d. random sample and ψ ∈ �
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a vector of unknown parameters, where the parameter space � ⊂ R
d is compact.

Further, suppose Qn(Z , ψ) is a measurable function for each ψ ∈ � and is continu-
ous in ψ ∈ � for µ–almost all Z . Then Lemmas 3 and 4 of Amemiya (1973) can be
stated as follows.

Lemma 1 If, as n → ∞, Qn(Z , ψ) converges a.s. to a nonstochastic function Q(ψ)
uniformly for all ψ ∈ � and Q(ψ) attains a unique minimum at ψ0 ∈ �, then

ψ̂n = argminψ∈� Qn(Z , ψ)
a.s.−→ ψ0.

Lemma 2 If, as n → ∞, Qn(Z , ψ) converges a.s. to a nonstochastic function Q(ψ)
uniformly for allψ in an open neighborhood ofψ0, then for any sequence of estimators

ψ̂n
a.s.−→ ψ0 it holds Qn(Z , ψ̂n)

a.s.−→ Q(ψ0).

Throughout the proofs, we use the following notations. For any matrix M , its Euclid-
ean norm is denoted as ‖M‖ = √

trace(M ′M), and vecM denotes the column vector
consisting of the stacked up columns of M . Further, ⊗ denotes the Kronecker product
operator.

6.2 Proof of Theorem 1

We show that Assumptions 1–4 are sufficient for all conditions of Lemma 1. First, it
is easy to see that Assumption 1 implies that Qn(γ ) is measurable and continuous in
γ ∈ � with probability one. Further, by Cauchy-Schwarz inequality and Assumptions
2 and 3 we have

E

[
‖W1‖ sup

�

(Y1 − g(X1; θ))2
]

≤ 2E ‖W1‖ Y 2
1 + 2E ‖W1‖ sup

�

g2(X1; θ) < ∞

and

E

[
‖W1‖ sup

�

(
Y 2

1 − g2(X1; θ)− σ 2
)2

]
≤ 3E ‖W1‖ Y 4

1 + 3E ‖W1‖ sup
�

g4(X1; θ)

+3E ‖W1‖ sup
�

σ 4 < ∞,

which imply

E sup
�

ρ′
1(γ )W1ρ1(γ ) ≤ E ‖W1‖ sup

�

‖ρ1(γ )‖2 < ∞. (11)

It follows from the uniform law of large numbers (ULLN) (Jennrich 1969) that 1
n Qn(γ )

converges almost surely (a.s.) to Q(γ ) = Eρ′
1(γ )W (Z1)ρ1(γ ) uniformly for all

γ ∈ �. Since ρ1(γ )− ρ1(γ0) does not depend on Y1 we have

E[ρ′
1(γ0)W1 (ρ1(γ )− ρ1(γ0))] = E[E(ρ′

1(γ0)|X1)W1 (ρ1(γ )− ρ1(γ0))] = 0,
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which implies Q(γ ) = Q(γ0)+ E[(ρ1(γ )−ρ1(γ0))
′W1(ρ1(γ )−ρ1(γ0))]. It follows

that Q(γ ) ≥ Q(γ0) and, by Assumption 4, equality holds if and only if γ = γ0. Thus
all conditions of Lemma 1 hold and, therefore, γ̂SLS

a.s.−→ γ0 follows.

6.3 Proof of Theorem 2

By Assumption 5 the first derivative ∂Qn(γ )/∂γ exists and has a first-order Taylor
expansion in �. Since γ̂n

a.s.−→ γ0, for sufficiently large n it holds with probability one

∂Qn(γ0)

∂γ
+ ∂2 Qn(γ̃n)

∂γ ∂γ ′ (γ̂SLS − γ0) = ∂Qn(γ̂SLS)

∂γ
= 0, (12)

where ‖γ̃n −γ0‖ ≤ ‖γ̂SLS−γ0‖ and 0 is the (p+1)-vector of zeros. The first derivative
of Qn(γ ) in (12) is given by

∂Qn(γ )

∂γ
= 2

n∑

i=1

∂ρ′
i (γ )

∂γ
Wiρi (γ ),

where

∂ρ′
i (γ )

∂γ
= −

(
∂g(Xi ;θ)
∂θ

2g(Xi ; θ) ∂g(Xi ;θ)
∂θ

0 1

)
.

The second derivative of Qn(γ ) in (12) is given by

∂2 Qn(γ )

∂γ ∂γ ′ = 2
n∑

i=1

[
∂ρ′

i (γ )

∂γ
Wi
∂ρi (γ )

∂γ ′ + (ρ′
i (γ )Wi ⊗ Ip+1)

∂vec(∂ρ′
i (γ )/∂γ )

∂γ ′

]
,

where

∂vec(∂ρ′
i (γ )/∂γ )

∂γ ′ = −

⎛

⎜⎜⎜⎜⎜⎝

∂2g(Xi ;θ)
∂θ∂θ ′ 0

0 0

2g(Xi ; θ) ∂2g(Xi ;θ)
∂θ∂θ ′ + 2 ∂g(Xi ;θ)

∂θ
∂g(Xi ;θ)
∂θ ′ 0

0 0

⎞

⎟⎟⎟⎟⎟⎠
.

By Assumption 5 and Cauchy–Schwarz inequality, we have

E sup
�

∥∥∥∥
∂ρ′

1(γ )

∂γ
W1
∂ρ1(γ )

∂γ ′

∥∥∥∥ ≤ E ‖W1‖ sup
�

∥∥∥∥
∂ρ′

1(γ )

∂γ

∥∥∥∥
2
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≤ E ‖W1‖ sup
�

(∥∥∥∥
∂g(X1; θ)

∂θ

∥∥∥∥
2

+ 4

∥∥∥∥g(X1; θ)∂g(X1; θ)
∂θ

∥∥∥∥
2

+ 1

)

≤ E ‖W1‖ sup
�

∥∥∥∥
∂g(X1; θ)

∂θ

∥∥∥∥
2

+ E ‖W1‖

+4

[
E

(
‖W1‖ sup

�

‖g(X1; θ)‖4
)

E

(
‖W1‖ sup

�

∥∥∥∥
∂g(X1; θ)

∂θ

∥∥∥∥
4
)]1/2

< ∞.

(13)

Similarly, because of (11) and

E

(
‖W1‖ sup

�

∥∥∥∥
∂vec(∂ρ′

1(γ )/∂γ )

∂γ ′

∥∥∥∥
2
)

≤ E ‖W1‖ sup
�

(∥∥∥∥
∂2g(X1; θ)
∂θ∂θ ′

∥∥∥∥
2

+4

∥∥∥∥
∂g(X1; θ)

∂θ

∥∥∥∥
4

+4

∥∥∥∥g(X1; θ)∂
2g(X1; θ)
∂θ∂θ ′

∥∥∥∥
2
)

≤ E

(
‖W1‖ sup

�

∥∥∥∥
∂2g(X1; θ)
∂θ∂θ ′

∥∥∥∥
2
)

+ 4E

(
‖W1‖ sup

�

∥∥∥∥
∂g(X1; θ)

∂θ

∥∥∥∥
4
)

+ 4

[
E

(
‖W1‖ sup

�

‖g(X1; θ)‖4
)

E

(
‖W1‖ sup

�

∥∥∥∥
∂2g(X1; θ)
∂θ∂θ ′

∥∥∥∥
4
)]1/2

< ∞,

we have

E sup
�

∥∥∥∥
(
ρ′

1(γ )W1 ⊗ Ip+1
) ∂vec(∂ρ′

1(γ )/∂γ )

∂γ ′

∥∥∥∥

≤ (p + 1)E ‖W1‖ sup
�

‖ρ1(γ )‖
∥∥∥∥
∂vec(∂ρ′

1(γ )/∂γ )

∂γ ′

∥∥∥∥

≤ (p + 1)

[
E

(
‖W1‖ sup

�

‖ρ1(γ )‖2
)

E

×
(

‖W1‖ sup
�

∥∥∥∥
∂vec(∂ρ′

1(γ )/∂γ )

∂γ ′

∥∥∥∥
2
)]1/2

< ∞. (14)

It follows from (13), (14) and the ULLN that

1

n

∂2 Qn(γ )

∂γ ∂γ ′
a.s.−→ ∂2 Q(γ )

∂γ ∂γ ′

= 2E

[
∂ρ′

1(γ )

∂γ
W1
∂ρ1(γ )

∂γ ′ + (ρ′
1(γ )W1 ⊗ Ip+1)

∂vec(∂ρ′
1(γ )/∂γ )

∂γ ′

]
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uniformly for all γ ∈ �. Therefore by Lemma 2 we have

1

n

∂2 Qn(γ̃n)

∂γ ∂γ ′
a.s.−→ ∂2 Q(γ0)

∂γ ∂γ ′ = 2A, (15)

where the second equality holds, because

E

[
(ρ′

1(γ0)W1 ⊗ Ip+1)
∂vec(∂ρ′

1(γ0)/∂γ )

∂γ ′

]

= E

[
(E(ρ′

1(γ0)|X1)W1 ⊗ Ip+1)
∂vec(∂ρ′

1(γ0)/∂γ )

∂γ ′

]
= 0.

Furthermore, since
∂ρ′

i (γ )

∂γ
Wiρi (γ ) are i.i.d. with zero mean, the Central Limit Theo-

rem (CLT) implies that
1√
n

∂Qn(γ0)

∂γ

L−→ N (0, 4B), (16)

where B is given in (3). It follows from (12), (15), (16) and Assumption 6, that√
n(γ̂SLS − γ0) converges in distribution to N (0, A−1 B A−1).

6.4 Proof of Corollary 1

First, by definition the elements of U are u11 = E
[
(Y − g(X; θ0))

2 |X] = σ 2
0 ,

u22 = E

[(
Y 2 − g2(X; θ0)− σ 2

0

)2 |X
]

= µ4 + 4µ3g(X; θ0)+ 4σ 2
0 g2(X; θ0)− σ 4

0

and

u12 = E
[
(Y − g(X; θ0))

(
Y 2 − g2(X; θ0)− σ 2

0

)
|X

]

= µ3 + 2σ 2
0 g(X; θ0).

It follows that the determinant of U is det U = σ 2
0

(
µ4 − σ 4

0

) − µ2
3 which is nonzero

by assumption. Then it is straightforward to calculate the inverse of U which is given
by (5). Furthermore, since

∂ρ′(γ0)

∂γ
= −

(
∂g(X;θ0)
∂θ

2g(X; θ0)
∂g(X;θ0)
∂θ

0 1

)
,

it is also straightforward to show that the lower bound in (4) is given by

(
E

[
∂ρ′(γ0)

∂γ
U−1 ∂ρ(γ0)

∂γ ′

])−1

=
(
σ 2

0 (µ4 − σ 4
0 )− µ2

3

) (
(µ4 − σ 4

0 )G2 −µ3G1

−µ3G ′
1 σ 2

0

)−1

.
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Finally, the result follows by using the inversion formula for block partitioned matrices
(Magnus and Neudecker 1988, p. 11).

6.5 Proof of Theorem 3

The proof of the consistency of γ̂OLS follows the same line as that for Theorem 1.
First, Assumption 1 implies that Sn(θ) is measurable and continuous in θ . Further,
Assumption 7 implies

E

[
sup
�

(Y1 − g(X1; θ))2
]

≤ 2EY 2
1 + 2E sup

�

g2(X1; θ) < ∞.

Hence by the ULLN 1
n Sn(θ) converges a.s. to S(θ) = E

[
(Y1 − g(X1; θ))2

]
uni-

formly for all θ ∈ �. Since

S(θ) = E
[
(Y1 − g(X1; θ0)

2
]

+ E
[
(g(X1; θ)− g(X1; θ0))

2
]

+ 2E [(Y1 − g(X1; θ0))(g(X1; θ0)− g(X1; θ))]
= S(θ0)+ E

[
(g(X1; θ0)− g(X1; θ))2

]
,

it follows from Assumption 9 that S(θ) ≥ S(θ0) and equality holds if and only if
θ = θ0. Therefore, θ̂OLS

a.s.−→ θ0 follows from Lemma 1. Moreover, by Lemma 2,
σ̂ 2

OLS = 1
n Sn(θ̂OLS) converges a.s. to S(θ0) = σ 2

0 .
The proof of the asymptotic normality of γ̂OLS is similar to that for Theorem 2.

First, by Assumption 10, for sufficiently large n, the first derivative ∂Sn(θ)/∂θ admits
the first order Taylor expansion

∂Sn(θ0)

∂θ
+ ∂2Sn(θ̃n)

∂θ∂θ ′ (θ̂OLS − θ0) = ∂Sn(θ̂OLS)

∂θ
= 0 (17)

with probability 1, where
∥∥∥θ̃n − θ0

∥∥∥ ≤
∥∥∥θ̂OLS − θ0

∥∥∥,

∂Sn(θ)

∂θ
= −2

n∑

i=1

(Yi − g(Xi ; θ))∂g(Xi ; θ)
∂θ

and

∂2Sn(θ)

∂θ∂θ ′ = 2
n∑

i=1

[
∂g(Xi ; θ)

∂θ

∂g(Xi ; θ)
∂θ ′ − (Yi − g(Xi ; θ))∂

2g(Xi ; θ)
∂θ∂θ ′

]
.
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Similarly, for σ̂ 2
OLS we have

σ̂ 2
OLS = 1

n
Sn(θ̂OLS)

= 1

n
Sn(θ0)+ 1

n

∂Sn(θ̃n)

∂θ ′ (θ̂OLS − θ0), (18)

where
∥∥∥θ̃n − θ0

∥∥∥ ≤
∥∥∥θ̂OLS − θ0

∥∥∥. Here θ̃n may be different from that in (17), but this

will not cause confusion subsequently. Combining (17) and (18) we have

Mn
(
γ̂OLS − γ0

) = 1

n

n∑

i=1

Zi , (19)

where

Mn =
⎛

⎝
1
n
∂2 Sn(θ̃n)
∂θ∂θ ′ 0

− 1
n
∂Sn(θ̃n)
∂θ ′ 1

⎞

⎠

and

Zi =
(

2(Yi − g(Xi ; θ0))
∂g(Xi ;θ0)

∂θ

(Yi − g(Xi ; θ0))
2 − σ 2

0

)
.

By Assumption 10 and Cauchy–Schwarz inequality we have

E sup
�

∥∥∥∥
∂g(X1; θ)

∂θ

∂g(X1; θ)
∂θ ′

∥∥∥∥ = E sup
�

∥∥∥∥
∂g(X1; θ)

∂θ

∥∥∥∥
2

< ∞

and

(
E sup

�

∥∥∥∥(Y1 − g(X1; θ))∂
2g(X1; θ)
∂θ∂θ ′

∥∥∥∥

)2

≤ E sup
�

‖Y1 − g(X1; θ)‖2 E sup
�

∥∥∥∥
∂2g(X1; θ)
∂θ∂θ ′

∥∥∥∥
2

≤
(

2E ‖Y1‖2 + 2E sup
�

g2(X1; θ)
)

E sup
�

∥∥∥∥
∂2g(X1; θ)
∂θ∂θ ′

∥∥∥∥
2

< ∞.

It follow from the ULLN that 1
n
∂2 Sn(θ)
∂θ∂θ ′

a.s.−→ ∂2 S(θ)
∂θ∂θ ′ uniformly for all θ ∈ �. Therefore

by Lemma 2

1

n

∂2Sn(θ̃n)

∂θ∂θ ′
a.s.−→ ∂2S(θ0)

∂θ∂θ ′ = 2E

[
∂g(X1; θ0)

∂θ

∂g(X1; θ0)

∂θ ′

]
, (20)
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where the second equality holds because E
[
(Y1 − g(X1; θ0))

∂2g(X1;θ0)
∂θ∂θ ′

]
= 0.

Similarly, since

(
E sup

�

∥∥∥∥(Y1 − g(X1; θ))∂g(X1; θ)
∂θ

∥∥∥∥

)2

≤ E sup
�

‖Y1 − g(X1; θ)‖2 E sup
�

∥∥∥∥
∂g(X1; θ)

∂θ

∥∥∥∥
2

≤
(

2E ‖Y1‖2 + 2E sup
�

g2(X1; θ)
)

E sup
�

∥∥∥∥
∂g(X1; θ)

∂θ

∥∥∥∥
2

< ∞,

we have, by the ULLN and Lemma 2

−1

n

∂Sn(θ̃n)

∂θ ′
a.s.−→ 2E

[
(Y1 − g(X1; θ0))

∂g(X1; θ0)

∂θ

]
= 0. (21)

Equations (20) and (21) imply that

Mn
a.s.−→ M =

(
2G2 0

0 1

)
. (22)

Further, since {Zi } are i.i.d. with zero mean, the CLT implies

1√
n

n∑

i=1

Zi
L−→ N (0, H), (23)

where

H =
⎛

⎜⎝
4E

[
(Y1 − g(X1; θ0))

2 ∂g(X1;θ0)
∂θ

∂g(X1;θ0)
∂θ ′

]
2E

[
(Y1 − g(X1; θ0))

3 ∂g(X1;θ0)
∂θ

]

2E
[
(Y1 − g(X1; θ0))

3 ∂g(X1;θ0)
∂θ ′

]
E

[
(Y1 − g(X1; θ0))

4
] − σ 4

0

⎞

⎟⎠

=
(

4σ 2
0 G2 2µ3G1

2µ3G ′
1 µ4 − σ 4

0

)
.

Finally by (19), (22) and (23) we have
√

n(γ̂OLS −γ0)
L−→ N (0,M−1 H M−1), where

M−1 H M−1 = D is given in (10).

6.6 Proof of Theorem 4

First, since

1 − G ′
1G−1

2 G1 = E

[(
1 − G ′

1G−1
2
∂g(X; θ0)

∂θ

)2
]

≥ 0,
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it is easy to see from (8) that V
(
σ̂ 2

SLS

) ≤ µ4 −σ 4
0 = V

(
σ̂ 2

OLS

)
, and the equality holds

if and only if G ′
1G−1

2 G1 = 1. To show that V
(
θ̂OLS

)
− V

(
θ̂SLS

)
is nonnegative def-

inite, we use the inverse formula for block partitioned matrices to rewrite V
(
θ̂SLS

)

as

V
(
θ̂SLS

)
=

(
σ 2

0 − µ2
3

µ4 − σ 4
0

)
G−1

2 + µ2
3

(µ4 − σ 4
0 )

2
V

(
σ̂ 2

SLS

)
G−1

2 G1G ′
1G−1

2

= σ 2
0 G−1

2 − µ2
3

µ4 − σ 4
0

(
G−1

2 − 1

µ4 − σ 4
0

V
(
σ̂ 2

SLS

)
G−1

2 G1G ′
1G−1

2

)

= V
(
θ̂OLS

)
− µ2

3

µ4 − σ 4
0

G−1/2
2 (Ip − M)G−1/2

2 , (24)

where Ip is the p-dimensional identity matrix and M = V
(
σ̂ 2

SLS

)

µ4−σ 4
0

G−1/2
2 G1G ′

1G−1/2
2 .

Because M has the same nonzero eigenvalue as
V

(
σ̂ 2

SLS

)

µ4−σ 4
0

G ′
1G−1

2 G1 ≤ 1, Ip − M is

nonnegative definite. It follows from (24) that V
(
θ̂OLS

)
− V

(
θ̂SLS

)
is nonnegative

definite. Moreover, Ip − M , and therefore V
(
θ̂OLS

)
− V

(
θ̂SLS

)
, is positive definite

if and only if G ′
1G−1

2 G1 
= 1.
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