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Second-order odd-harmonic repetitive control and its application to active

filter control

Ramon Costa-Castelló, Germán A. Ramos, Josep M. Olm, Maarten Steinbuch

Abstract— High order repetitive control has been introduced
to overcome performance decay of repetitive control systems
under varying frequency of the signals to be tracked/rejected
or improving the interhamonic behavior. However, most high
order repetitive internal models used to improve frequency
uncertainty are unstable, as a consequence practical imple-
mentations are more difficult. In this work a stable, second
order odd-harmonic repetitive control system is presented and
studied.

The proposed internal model has been implemented and
validated in a shunt active filter current controller. This
high order controller allows dealing with the grid frequency
variations without using adaptive schemes.

I. INTRODUCTION

Repetitive Control [1], [2] is a well established, Internal

Model Principle [3] based technique which allows track-

ing/rejecting periodic signals of known frequency. Unfortu-

nately, its performance decays dramatically when the signal

frequency varies [4]. In order to overcome this problem two

major approaches have been proposed. The first one is based

on the adaptation of the sampling period in accordance with

the signal frequency variation. Although this approach offers

good results [5], [6], [7] it implies introducing frequency

observers and moving the stability analysis from a Linear

Time Invariant framework into a Linear Time Varying one.

The second approach is based on the introduction of higher

order internal models [8], [4]. The parameters of these high

order controllers can be tuned according to different criteria:

most of them are related with making the internal model

robust in front frequency variations [9], [4], or with a trade-

off between this robustness issue and amplification of non-

harmonic frequencies [9], [10], [11], [12]. However, most

of the reported higher order internal models are unstable

and, although this does not make the closed-loop unstable,

it clearly limits its performance and yields well-know linear

control limitations play an important role in the controller

implementation and design [13], [14]. In summary, the
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instability complicates the implementation and restricts the

use of this control scheme in practical situations.

There exist many applications, like the ones related with

power electronics, that do not usually deal with generic

periodic signals but with odd-harmonic periodic signals.

In order to take advantage of this fact, an odd-harmonic

digital repetitive internal model was introduced in [15]

and later extended to continuous-time implementations in

[16]. Similarly, other specific internal models like the ones

for 6l ± 1 harmonic signals have also been reported [17].

This paper propounds a second-order odd-harmonic internal

model which is proven to be stable and improves robustness

to frequency variations. Its experimental validation is carried

out in an Active Filter (AF).

AFs are power electronics devices intended to overcome

the power quality problems caused by nonlinear loads. In

this context, the control objective is to achieve a power

factor close to 1, as well as load current harmonics and

reactive power compensation [18], [19]. Most AF controllers

are based on two hierarchical control loops, an inner one

in charge of assuring the desired current and an outer one

in charge of determining the required shape as well as the

appropriate power balance. Repetitive control has proved

to be an efficient control technique for the inner controller

[20]; however, the frequency variations undergone by most

distribution grids can degrade its performance, as mentioned

above. In order to avoid this problems the proposed second-

order odd-harmonic internal model has been introduced in

the inner control loop, this yielding very good performance

and robustness under network frequency variations.

II. ODD-HARMONIC REPETITIVE CONTROL

Repetitive control bases its performance on the introduc-

tion of a generator of periodic signal to be tracked/rejected

inside the controller. Figure 1 shows the scheme of these

generators, which are usually constructed by the feedback

connection (either positive or negative, i.e. σ = 1 or σ =−1,

respectively), of a time delay W (z), in series with a low-

pass filter H(z) that reduces the gain at high frequency and

improves closed-loop robustness, this yielding the generic

internal model

I(z) =
σW (z)H(z)

1−σW(z)H(z)
. (1)

It is worth mentioning that the original internal model was

constructed using W (z) = z−N , N being the discrete time

period of the signal to be tracked/rejected, H(z) = 1 and

σ = 1.
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Fig. 1. Generic repetitive control internal model scheme, where W(z) is a
delay function, H(z) a null-phase low pass filter, and σ ∈ {−1,1}.

Odd-harmonic repetitive control uses an internal model

which introduces infinite gain only at a certain frequency and

its odd harmonics [15]. This internal model is constructed

using W (z) = z−N/2 and σ =−1 in (1):

Io(z) =
−H(z)

z
N
2 +H(z)

. (2)

With H(z) = 1, (2) has the poles in z = exp(2(2k−1)π j/N),
which are uniformly distributed over the unit circle1. As a

consequence (2) provides infinite gain at the odd-harmonic

frequencies ωk = 2(2k− 1)π/N, with k = 1,2, . . . ,N/2.

Besides the internal model, which assures steady state

performance, repetitive controllers include a stabilizing con-

troller, Gx (z), which assures closed-loop stability. Tradition-

ally, repetitive controllers are implemented in a “plug-in”

fashion, i.e. the repetitive compensator is used to augment

an existing nominal controller Gc (z), as depicted in Figure 2.

This nominal compensator is designed to stabilize the plant,

Gp (z), and provides disturbance attenuation across a broad

frequency spectrum.

Theorem 1: [15] The closed-loop system of Figure 2 is

stable if the following sufficient conditions are fulfilled:

1) The closed loop system without the repetitive con-

troller is stable, i.e.

To (z) =
Gc (z)Gp (z)

1+Gc (z)Gp (z)

is stable.

2) ‖W (z)H (z)(1−To (z)Gx (z)) ‖∞< 1, where H(z) and

Gx(z) must be selected to meet this condition.

Remark 1: It is advisable to design the controller Gc(z)
with a high enough robustness margin. Moreover, H(z) is

usually selected according to the desired bandwidth and the

required robustness, while Gx(z) is designed using phase can-

cellation techniques [21], which for minimum-phase systems

results in2: Gx (z) = kr (To (z))
−1

. Finally, as argued in [22], kr

must be designed looking for a trade-off between robustness

and transient response.

For the generic internal model (1), the sensitivity transfer

function of the control loop shown in Figure 2 can be written

1Note that, as there is no pole in z = 1, there is no infinite gain in dc-
frequency, i.e. no integrator

2There is no problem with the improperness of Gx(z) because the internal
model provides the repetitive controller with a high positive relative degree.

R(z) E(z) U(z) Y (z)++ ++
−

−

+

+
σW (z) Gx(z)

Gp(z)

H(z)

I(z)

Gc(z)

D(z)

Repetitive controller

Fig. 2. Block-diagram of the repetitive controller plug-in approach.

as

S(z) =
E(z)

R(z)
= So(z)SMod(z) (3)

where

So(z) =
1

1+Gc (z)Gp (z)
(4)

stands for the sensitivity function of the system without

repetitive controller and SMod(z) is the modifying sensitivity

function

SMod(z) =
1−σW(z)H(z)

1−σW(z)H(z)(1−Gx(z)To(z))
. (5)

The poles of the closed-loop system are given by the poles

of So, i.e the poles of the closed-loop without repetitive

controller, and the ones of SMod . For the case in which

Gx(z) = kr(To(z))
−1, σ = −1, W (z) = z−

N
2 and H(z) = 1,

the poles of SMod are

z = N/2
√

|1− kr|e
2(2k−1)π j

N , k = 1, . . . ,
N

2
. (6)

These poles are uniformly distributed over a circle of radius
N/2
√

|1− kr| which, for stability requirements, should be

within the unit circle, i.e. kr ∈ (0,2).

III. ODD-HARMONIC HIGH ORDER REPETITIVE CONTROL

High-Order Repetitive Control (HORC) was mainly

introduced either to improve robustness against perfor-

mance reduction under uncertainty/variation of the refer-

ence/disturbance frequency or to reduce the amplification

of interharmonic frequencies. HORC uses an internal model

equivalent to the one in Figure 1, but replacing the delay by

a weighted addition of several delays, namely:

W (z) =
M

∑
k=1

wkz−kN . (7)

Similarly, the controller architecture uses the plug-in ap-

proach of Figure 2, which is stable if the previously intro-

duced conditions are fulfilled.

According to the desired performance, several criteria have

been introduced to select the weights wk in (7). In order

to assure high gain at harmonic frequencies, the following

constraint is usually demanded:

M

∑
k=1

wk = 1 (8)

In [8], HORC was introduced to improve the interharmonic

amplification, and this was done through minwk
‖SMod (z)‖2.
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Fig. 3. Magnitude response of SMod(z): comparison of [8], [9], [4] and
[11] for Gx = 1/(To(z))

−1, H(z) = 1 and M = 3.

The analytical solution of this problem is wk = 1/M, ∀k. In

[9], a trade-off between the harmonic and the interhamonic

behavior was formulated via minwk
‖SMod(z)‖∞. In [4], in

order to minimize sensitivity against frequency variations,

W (z) is selected maximally flat at harmonic frequencies,

and an analytical solution is obtained. In [10], the results in

[9] are generalized by solving minwk
‖G(z)SMod(z)‖∞, G(z)

being a weight function which defines the frequency interval

in which SMod(z) will be minimized; results in [4] and [9]

are particular cases of this generic formulation.

In [11], the constraint (8) is eliminated. This reduces

the gain obtained at harmonic frequencies, i.e. it yields a

performance reduction, but allows a better control of the

interharmonic behavior.

Figure 3 compares the results obtained for Gx =
1/(To(z))

−1, H(z) = 1 and M = 3 when using the different

tuning techniques previously introduced. It is important to

state that the results from [4] obtain perfect tracking, i.e. zero

gain, at the harmonic frequencies while their neighborhoods

are flat, this meaning robustness against small variation in the

signal frequency. Unfortunately, interharmonic frequencies

are notoriously amplified. On the contrary, results from [8]

and [9] do not amplify much interharmonic frequencies, but

they do not improve robustness against frequency variations.

Finally, [11] offers an interesting trade-off between both

issues: it has no perfect tracking (no zero gain) at harmonic

frequencies, but the gain is maintained small in a 20% of

the frequency region while the interharmonic amplification

in kept bounded, below the values obtained from [4].

Proposition 2: The weights obtained in [4] yield

W (z) = 1− (1− z−N)M

and, as a consequence, the internal model resulting from (1)

with σ = 1 and H(z) = 1 is

I(z) =
1− (1− z−N)M

(1− z−N)M
, (9)

its poles being z = N
√

1 with multiplicity M.
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Fig. 4. Nyquist plot of −W(z) for traditional repetitive control (M = 1)
and the high order repetitive control (M = 3) tuned according to [8], [9],
[4] and [11].

Proof: By straightforward calculation.

From Proposition 2 it is immediate that the poles coincide

with those of the traditional repetitive controller (M = 1).

The pole multiplicity increase improves robustness against

frequency variations [4] (i.e. with M > 1) but implies internal

models which are not BIBO stable.

Figure 4 shows the Nyquist plot of −σW (z)H(z) with

σ = 1, H(z) = 1 and N = 400 for the options previously

analyzed3. The Nyquist plot of the standard repetitive con-

troller, i.e. with M = 1, is over the unit circle and, therefore,

it is marginally stable. As a consequence, the tuning obtained

with those methods which do not improve robustness under

frequency uncertainty [8], [9] generate a Nyquist plot which

is contained inside the unit circle, except at tangential points

corresponding to the harmonic frequencies poles. Differently,

those methods which improve robustness [4] encircle the -1

point many times. Although, as shown in Proposition 2, the

internal model for H(z) = 1 does not contain poles outside

the unit circle, with the introduction of a low pass H(z) inside

the internal model the Nyquist plot will vary slightly. This

variation will change the number of the encirclements of

z =−1 and, consequently, poles outside the unit circle may

appear in most cases.

The optimization based tuning [11] generates internal

models with poles outside the unit circle depending on the

selected filter H(z) and weight function. It is important to

note that these internal models do not contain integrators

or poles at the harmonic frequencies for the specific tuning

shown in Figure 3, which generates an internal model without

poles outside the unit circle.

From the theoretical point of view, the existence of poles

outside the unit circle in the internal model does not com-

3Note that, as the internal model is composed of a positive feedback, the
Nyquist criterium has to be applied to −W(z)H(z).
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Fig. 6. Single-phase shunt active filter connected to the network-load
system.

promise the closed-loop stability, but it complicates the im-

plementation of this internal models in practical applications.

As an example, sophisticated anti-windup schemes must be

included in order to avoid problems with saturated control

actions.

All previous works have been formulated for generic

internal models. However, they can be transformed into odd-

harmonic internal models changing σ = 1 by σ =−1, N by

N/2 and reformulating wk.

From now on, assume that σ =−1 and set M = 2. Then,

the internal model is:

Ihodd(z) =−

(

2z−
N
2 + z−N

)

H(z)

1+
(

2z−
N
2 + z−N

)

H(z)
. (10)

Proposition 3: The second-order, odd-harmonic internal

model (10), H(z) being a null-phase filter with ‖H(z)‖∞ < 1,

is stable.

IV. THE ACTIVE FILTER

A. The boost converter

The system architecture is depicted in Figure 6. A load

is connected to the power source, while an active filter is

applied in parallel in order to fulfill the desired behavior, i.e.

to guarantee unity power factor at the network side. A boost

converter with the ac neutral wire connected directly to the

midpoint of the dc bus is used as active filter. The averaged

(at the switching frequency) model of the boost converter is

given by

L
di f

dt
= −rLi f − v1

d + 1

2
− v2

d− 1

2
+ vn (11)

C1
dv1

dt
= − v1

rC,1
+ i f

d + 1

2
(12)

C2
dv2

dt
= − v2

rC,2
+ i f

d − 1

2
(13)

where d is the duty ratio, i f is the inductor current and v1,

v2 are the dc capacitor voltages; vn = Vn

√
2sin(ωnt) is the

voltage source,4 L is the converter inductor, rL is the inductor

parasitic resistance, C1,C2 are the converter capacitors and

rC,1, rC,2 are the parasitic resistances of the capacitors. The

control variable, d, takes its value in the closed real interval

[−1,1] and represents the averaged value of the Pulse-Width

Modulation (PWM) control signal injected to the actual

system.

Due to the nature of the voltage source, the steady-state

load current is usually a periodic signal with only odd-

harmonics in its Fourier series expansion, so it can be written

as il = ∑∞
k=0 ak sin(ωn (2k+ 1)t)+ bk cos(ωn (2k+ 1)t).

B. Control objectives and control architecture

The active filter goal is to assure that the load is seen as a

resistive one. This can be stated as i∗n = I∗d sin(ωnt), i.e. the

source current must have a sinusoidal shape in phase with

the network voltage5. Another collateral goal, necessary for

a correct operation of the converter, is to assure constant

average value of the dc bus voltage6, i.e. < v1 + v2 >
∗
0= vd ,

where vd must fulfill the boost condition (vd > 2
√

2vn). It is

also desirable for this voltage to be almost equally distributed

among both capacitors (v1 ≈ v2).

This paper uses the control architecture presented in [20],

changing the regular odd-harmonic internal model by the

here proposed second-order odd-harmonic model.

The controller is designed using a two level approach, as

portrayed in Figure 7: first, an inner current controller forces

the sine wave shape for the network current and, second, an

outer control loop yields the appropriate active power balance

for the whole system. The output of this loop is the amplitude

of the sinusoidal reference for the current control loop. The

active power balance is achieved if the energy stored in the

active filter capacitors, EC = v2
1 + v2

2, is equal to a reference

value, Ed
C.

4ωn = 2π/Tp rad/s is the network frequency.
5x∗ represents the steady-state value of signal x(t).
6< x >0 means the dc value, or mean value, of the signal x(t).
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C. The current-loop controller

A linear controller is designed to force a sinusoidal shape

in in. This controller consists of two parts, as pictured in

Figure 8:

• A feedforward control action corresponding to the nom-

inal control action that may keep the system tracking the

desired trajectory [20].

• A feedback controller which compensates uncertainties

and assures closed-loop stability. This controller uses

second-order odd-harmonic repetitive control under a

plug-in scheme. As the nominal period of the signal

to be tracked/rejected is Tp = 1/50 s and the sampling

period is selected to be Ts = 5 · 10−5s (the PWM

switching period), then N = Tp/Ts = 400.

The plant discrete-time model of (11), once filtered by

an anti-aliasing device with time constant τ , answers to:

Gp(z) = Z

[ −1

Ls+ rL

· 1

τs+ 1
· 1− e−Ts

s

]

Ts

(14)

which gives a minimum-phase system. The inner loop

uses the lag controller

Gc(z) =−0.6305z− 0.629

z− 0.9985
,

which provides a phase margin of 140o. Also,

H(z) =
1

4
z+

1

2
+

1

4
z−1,

while kr = 1 has been selected. This value allows to

reach the steady state in the fastest manner. It is very

v1

vn

in

il

Fig. 9. Nonlinear load and the active filter connected to source (50Hz).
(top) vn , in, il and v1 vs time; (bottom) PF, cosφ and THD for in.

important that the inner-loop is fast so it can be time-

decoupled from the outer one.

D. The energy shaping controller

The outer controller assures the mean value of the energy

stored in the capacitors, 〈Ec(t)〉Tp
, to be close to the desired

reference value, Ed
c , and is made up of two parts:

• A feedforward term which makes I
f f
d = a0. This assures

the energy balance in the ideal case (rL = 0 and rC = 0)

and takes into account il characteristics and changes

instantaneously.

• A feedback term which compensates dissipative effects

and system uncertainties.

The dynamics of the plant can be modelled by an

integrator and the losses in the inductor and capacitors

parasitic resistances can be considered as an additive

disturbance [20]. So, the PI controller

I
f b

d = ki
Ts (z+ 1)

2(z− 1)
∆E + kp∆E, (15)

where ∆E = Ed
c −〈Ec (t)〉Tp

, will regulate 〈Ec (t)〉Tp
to

the desired value Ed
c with null steady-state error.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental setup

The experimental setup is composed of a full-bridge diode

rectifier (nonlinear load), the previously described single-

phase active filter and ac power source (PACIFIC Smart-

source, 140-AMX-UPC12) that acts as a variable frequency
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vn

in

il

Fig. 10. Nonlinear load and the active filter connected to source (50.5Hz).
(top) vn , in, il and v1 vs time; (bottom) PF, cosφ and THD for in.

ac source. The active filter is connected in a shunt manner

with the rectifier to compensate its distorted current.

The active filter controller has been implemented on a DSP

based hardware, i.e. within a digital framework, with a nom-

inal sampling frequency equal to the switching frequency of

20 kHz.

B. Experimental results

In the first experiment a rectifier is connected to the 50Hz

ac source, vs. The rectifier current, il , has a total harmonic

distortion(THD) of 62.6% and an RMS value of 19.56A. As

Figure 9 shows, when the active filter is connected in parallel

with the rectifier the shape of the current at the source port is

nearly sinusoidal, in, with a THD of 0.6%, while the power

factor (PF) and cosφ at the port are unitary. The figure shows

that the mean value of v1 is maintained almost constant7.

In the next experiment the same nonlinear load is con-

nected to a 50.5Hz ac source, vs. As it can be shown in

Figure 10 the PF and the cosφ return to unitary values and

the THD for in is 2.2%.

VI. CONCLUSIONS

A new stable second order internal model for repetitive

controllers has been proposed and studied. This controller

has been validated experimentally in the current loop of a

shunt active filter. This repetitive controller allows the active

filter to operate in a wide frequency range without reducing

its performance and without the need of a frequency observer.

7v2 is not show due the limited number of channels in the instrumentation.
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