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1 Introduction

In this section we present the main notions used in the paper, with a strong accent
on the necessary tools for obtain the results from the second section.

1.1 The tangent bundle of k1-velocities of a manifold M

An almost tangent structure J on a 2n-dimensional manifold M is tensor field of
type (1, 1) of constant rank n such that J2 = 0. The manifold M is then called an
almost tangent manifold. Almost tangent structures were introduced by Clark and
Bruckheimer [5] and Eliopoulos [6] around 1960 and have been studied by numerous
authors (see [10, 11, 12, 13, 14, 15, 16, 17, 18]).

The canonical model of these structures is the tangent bundle τM : TM → M of
an arbitrary manifold M . Recall that for a vector Xx at a point x ∈ M its vertical
lift is the vector on TM given by

XV
x (vx) =

d

dt
(vx + tXx)|t=0 ∈ Tvx(TM)

for all points vx ∈ TM .
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The canonical tangent structure J on TM is defined by

Jvx
(Zvx

) = ((τM )∗(vx)Zvx
)V
vx

for all vectors Zvx
∈ Tvx

(TM), and it is locally given by

J =
∂

∂vi
⊗ dxi(1.1)

with respect the bundle coordinates on TM . This tensor J can be regarded as the
vertical lift of the identity tensor on M to TM [19].

The almost k-tangent structures were introduced as generalization of the almost
tangent structures [7, 8].

Definition 1.1 An almost k-tangent structure J on a manifold M of dimension n+
kn is a family (J1, . . . , Jk) of tensor fields of type (1, 1) such that

JA ◦ JB = JB ◦ JA = 0, rank JA = n, Im JA ∩ (⊕B 6=AImJB) = 0,(1.2)

for 1 ≤ A,B ≤ k. In this case the manifold M is then called an almost k-tangent
manifold.

The canonical model of these structures is the k-tangent vector bundle T 1
k M =

J1
0 (Rk,M) of an arbitrary manifold M , that is the vector bundle with total space the

manifold of 1-jets of maps with source at 0 ∈ Rk and with projection map τ : T 1
k M →

M , τ(j1
0σ) = σ(0). This bundle is also known as the tangent bundle of k1-velocities

of M [19].
The manifold T 1

k M can be canonically identified with the Whitney sum of k copies
of TM , that is

T 1
k M ≡ TM ⊕ · · · ⊕ TM,
j1
0σ ≡ (j1

0σ1 = v1, . . . , j
1
0σk = vk)

where σA = σ(0, . . . , t, . . . , 0) with t ∈ R at position A and vA = (σA)∗(0)( d
dt 0

).
If (xi) are local coordinates on U ⊆ M then the induced local coordinates (xi, vi

A),
1 ≤ i ≤ n, 1 ≤ A ≤ k, on τ−1(U) ≡ T 1

k U are given by

xi(j1
0σ) = xi(σ(0)), vi

A(j1
0σ) =

d

dt
(xi ◦ σA)|t=0 = vA(xi) .

A local change of coordinates on T 1
k M , (xi, vi

A) → (x̃i, ṽi
A), is given by the rule:





x̃i = x̃i(x1, . . . , xn) , rank

(
∂x̃i

∂xj

)
= n ,

ṽi
A =

∂x̃i

∂xj
vj

A , 1 ≤ A ≤ k, 1 ≤ i ≤ n.

(1.3)

If TuT 1
k M is the tangent space to T 1

k M in u, then
{

∂

∂xi
(u),

∂

∂vi
A

(u)
}

is its local

basis and
{
dxi(u), dvi

A(u)
}

is its dual local basis (local cobasis). With respect to (1.3)
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the basis and the cobasis have the following rules of changing:




∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
+

∂ṽj
A

∂xi

∂

∂ṽj
A

,

∂

∂vi
A

=
∂x̃j

∂xi

∂

∂ṽj
A

,

(1.4)

and




dxi =
∂x̃i

∂xj
dx̃j ,

dvi
A =

∂vi
A

∂x̃j
dx̃j +

∂xi

∂x̃j
dṽj

A .

(1.5)

It is observe that
∂x̃j

∂xi
=

∂ṽj
A

∂vi
A

.

Definition 1.2 For a vector Xx at M we define its vertical A-lift (Xx)A as the
vector on T 1

k M given by

(Xx)A(j1
0σ) =

d

dt
((v1)x, . . . , (vA−1)x, (vA)x+tXx, (vA+1)x . . . , (vk)x)|t=0 ∈ Tj1

0σ(T 1
k M)

for all points j1
0σ ≡ ((v1)x, . . . , (vk)x)) ∈ T 1

k M .

In local coordinates we have

(Xx)A =
n∑

i=1

ai ∂

∂vi
A

(1.6)

for a vector Xx = ai ∂/∂xi.
The canonical vertical vector fields CA

B on T 1
k M are defined by

CA
B (x, X1, X2, . . . , Xk) = (XB)A(1.7)

and are locally given by CA
B = vi

B
∂

∂vi
A

.

The canonical k-tangent structure (J1, . . . , Jk) on T 1
k M is defined by

JA(Zj1
0σ) = (τ∗(Zj1

0σ))A

for all vectors Zj1
0σ ∈ Tj1

0σ(T 1
k M). In local coordinates we have

JA =
∂

∂vi
A

⊗ dxi(1.8)

The tensors JA can be regarded as the (0, . . . , 1A, . . . , 0)-lift of the identity tensor
on M to T 1

k M defined in [19].
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1.2 The cotangent bundle of k1-covelocities of M and (T 1
k )∗M

Almost cotangent structures were introduced by Bruckheimer [4]. An almost cotan-
gent structure on a 2m-dimensional manifold M consists of a pair (ω, V ) where ω is
a symplectic form and V is a distribution such that

(i) ωcV×V = 0, (ii) kerω = {0}

The canonical model of this structure is the cotangent bundle τ∗M : T ∗M → M
of an arbitrary manifold M , where ω is the canonical symplectic form ω0 = −dθ0 on
T ∗M and V is the vertical distribution. Let us recall the definition of the Liouville
form θ0 in T ∗M :

θ0(α)(X̃α) = α((τ∗M )∗(α)(X̃α)),

for all vectors X̃α ∈ Tα(T ∗M) . In local coordinates (xi, pi) on T ∗M

θ0 = pidxi, ω0 = dxi ∧ dpi, V = 〈 ∂

∂p1
, . . . ,

∂

∂pk
〉.(1.9)

Definition 1.3 [1, 2] A k-symplectic structure on a manifold M of dimension N =
n + kn is a family (ωA, V ; 1 ≤ A ≤ k), where each ωA is a closed 2-form and V is an
nk-dimensional distribution on M such that

(i) ωAcV×V
= 0, (ii) ∩k

A=1 kerωA = {0}.
In this case (M,ωA, V ) is called a k-symplectic manifold.

The canonical model of this structure is the k-cotangent bundle (T 1
k )∗M = J1(M,Rk)0

of an arbitrary manifold M , that is the vector bundle with total space the manifold
of 1-jets of maps with target at 0 ∈ Rk, and projection τ∗(j1

x,oσ) = x.
The manifold (T 1

k )∗M can be canonically identified with the Whitney sum of k
copies of T ∗M , say

(T 1
k )∗M ≡ T ∗M ⊕ · · · ⊕ T ∗M,
jx,0σ ≡ (j1

x,0σ
1, . . . , jk

x,0σ
k)

where σA = πA ◦ σ : M −→ R is the A-th component of σ.
The canonical k-symplectic structure (ω0)A, V ; 1 ≤ A ≤ k), on (T 1

k )∗M is defined
by

(ω0)A = (τ∗A)∗(ω0)

V (j1
x,0σ) = ker(τ∗)∗(j1

x,0σ)

where τ∗A = (T 1
k )∗M → T ∗M is the projection on the Ath-copy T ∗M of (T 1

k )∗M , and
ω0 is the canonical symplectic structure of T ∗M .

One can also define the 2-forms ωA by ωA = −dθA where (θ0)A = (τ∗A)∗θ0

If (xi) are local coordinates on U ⊆ M then the induced local coordinates (xi, pA
i ), 1 ≤

i ≤ n, 1 ≤ A ≤ k on (T 1
k )∗U = (τ∗)−1(U) are given by

xi(j1
x,0σ) = xi(x), pA

i (j1
x,0σ) = dxσA(

∂

∂xi

∣∣∣∣
x

) .
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Then the canonical k-symplectic structure is locally given by

(ω0)A =
n∑

i=1

dxi ∧ dpA
i , V = 〈 ∂

∂p1
i

, . . . ,
∂

∂pk
i

〉 1 ≤ A ≤ k .(1.10)

and (θ0)A = pA
i dxi.

1.3 Second Order Partial Differential Equations on T 1
k M

Let M be an arbitrary manifold and τ : T 1
k M −→ M its tangent bundle of k1-

velocities.

Definition 1.4 A section X : M −→ T 1
k M of the projection τ will be called a k-

vector field on M .

Since T 1
k M can be canonically identified with the Whitney sum T 1

k M ≡ TM ⊕
· · · ⊕ TM of k copies of TM , we deduce that a k-vector field X defines a family of
vector fields X1, . . . , Xk on M . Günther in [3] introduce the following definition.

Definition 1.5 An integral section of the k-vector field X = (X1, . . . , Xk) pass-
ing through a point x ∈ M on M is a map φ : U0 ⊂ Rk → M , defined on some
neighborhood U0 of 0 ∈ Rk, such that

φ(0) = x, φ∗(t)(
∂

∂tA
) = XA(φ(t)) ∀t ∈ U, 1 ≤ A ≤ k,

or equivalently, φ satisfies

X ◦ φ = φ(1),(1.11)

where φ(1) is the first prolongation of φ defined by

φ(1) : U0 ⊂ Rk −→ T 1
k M

t −→ φ(1)(t) = j1
0φt

where φt(s) = φ(s + t) for all t, s ∈ Rk such that s + t ∈ U0.

In local coordinates,

φ(1)(t1, . . . , tk) = (φi(t1, . . . , tk),
∂φi

∂tA
(t1, . . . , tk)), 1 ≤ A ≤ k , 1 ≤ i ≤ n .(1.12)

We say that a k-vector field X = (X1, . . . , Xk) on M is integrable if there is an
integral section passing through each point of M .

Remark If φ is an integral section of a k-vector field (X1, . . . , Xk) then each
curve on M defined by φA = φ ◦ hA, where hA : R → Rk is the natural inclusion
hA(t) = (0, . . . , t, . . . , 0), is an integral curve of the vector field XA on M , with
1 ≤ A ≤ k. We refer to [20, 21] for a discussion on the existence of integral sections.
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Definition 1.6 A k-vector field on T 1
k M , that is, a section ξ ≡ (ξ1, . . . , ξk) : T 1

k M →
T 1

k (T 1
k M) of the projection τT 1

k M : T 1
k (T 1

k M) → T 1
k M , is a Second Order Partial

Differential Equation (SOPDE) if and only if it is also a section of the vector
bundle T 1

k (τ) : T 1
k (T 1

k M) → T 1
k M , where T 1

k (τ) is defined by T 1
k (τ)(j1

0σ) = j1
0(τ ◦ σ).

Let (xi) be a coordinate system on M and (xi, vi
A) the induced coordinate system

on T 1
k M . From the definition we deduce that the local expression of a SOPDE ξ is

ξA(xi, vi
A) = vi

A

∂

∂xi
+ (ξA)i

B

∂

∂vi
B

, 1 ≤ A ≤ k.(1.13)

We recall that the first prolongation φ(1) of φ : U ⊂ Rk → M is defined by

φ(1) : U ⊂ Rk −→ T 1
k M)

t −→ φ(1)(t) = j1
0φt

where φt(s) = φ(s + t) for all t, s ∈ R.

Proposition 1.7 Let ξ an integrable k-vector field on T 1
k M . The necessary and

sufficient condition for ξ to be a Second Order Partial Differential Equation (SOPDE)
is that its integral sections are first prolongations φ(1) of maps φ : Rk → M . That is

ξA(φ(1)(t)) = (φ(1))∗(t)(
∂

∂tA
)(t)

for all A = 1, . . . , k. These maps φ will be called solutions of the SOPDE ξ.

From (1.12) and (1.13) we have

Proposition 1.8 φ : Rk → M is a solution of the SOPDE ξ = (ξ1, . . . , ξk), locally
given by (1.13), if and only if

∂φi

∂tA
(t) = vi

A(φ(1)(t)),
∂2φi

∂tA∂tB
(t) = (ξA)i

B(φ(1)(t)).

If ξ : T 1
k M → T 1

k T 1
k M is an integrable SOPDE then for all integral sections

σ : U ⊂ Rk → T 1
k M we have (τM ◦ σ)(1) = σ, where τ : T 1

k M → M is the canonical
projection.

Now we show how to characterize the SOPDEs using the canonical k-tangent
structure of T 1

k M .

Definition 1.9 The Liouville vector field C on T 1
k M is the infinitesimal generator

of the one parameter group

R× (T 1
k M) −→ T 1

k M

(s, (xi, vi
B)) −→ (xi, es vi

B) .

Thus C is locally expressed as follows:

C =
∑

B

CB =
∑

i,B

vi
B

∂

∂vi
B

,(1.14)

where each CB corresponds with the canonical vector field on the B-th copy of TM
on T 1

k M .
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Let us remark that each vector field CA on T 1
k M can also be defined using the

A-lifts of vectors as follows: CA((v1)q, . . . , (vk)q) = ((vA)q)A(v)) .
From (1.8), (1.13) and (1.14) we deduce the following

Proposition 1.10 A k-vector field ξ = (ξ1, . . . , ξk) on T 1
k M is a SOPDE if and only

if
JA(ξA) = CA, ∀ 1 ≤ A ≤ k,

where (J1, . . . , Jk) is the canonical k-tangent structure on T 1
k M .

Proposition 1.11 a) With respect to a local changing of coordinates (1.3) the com-
ponents (ξA)i

B of the SOPDE ξ change as follows

(ξ̃A)i
B = (ξA)j

B

∂xi

∂xj
+

∂2xi

∂xj∂xk
vj

Avk
B(1.15)

b) Conversely, if the function (ξA)i
B(xj , vk

C) are given on every domain of local
chart on T 1

k M so that (1.15) holds for a local change (1.3), then the k-vector field ξ
given by (1.13) is a SOPDE.

Next we will denote T̃ 1
k M = T 1

k M \{0}, where 0 is the null section of the projection
τ : T 1

k M → M .

Definition 1.12 A function f : T 1
k M → R differentiable of class C∞ on T̃ 1

k M and
continuous on the null section of the projection τ is called homogeneous of degree
r ∈ Z on the fibres on T 1

k M (briefly r-homogeneous) if

f(xi, λvi
A) = λrf(xi, vi

A) , ∀λ > 0.(1.16)

Equivalently, a function f : T 1
k M → R, differentiable on T̃ kM and continuous on the

null section of τ is r−homogeneous if and only if

LCf = rf,(1.17)

LCf being the Lie operator of derivation with respect to the canonical vector field C.

Definition 1.13 A SOPDE ξ is called homogeneous SOPDE, or spray on T 1
k M if

the components (ξA)i
B are 2-homogeneous functions on the fibres of T 1

k M , that is

(ξA)i
B(xj , λ vj

C) = λ2(ξA)i
B(xj , vj

C) for all λ > 0.

From (1.16) we deduce the following proposition.

Proposition 1.14 A SOPDE ξ ≡ (ξ1, . . . , ξk) is a homogeneous SOPDE, or spray,
if and only if we have

vh
C

∂(ξA)i
B

∂vh
C

= 2(ξA)i
B .(1.18)

which is equivalent to [C, ξA] = ξA, A = 1, . . . , k.
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1.4 Hamiltonian and Lagrangian formalisms

The role played by symplectic manifolds in classical mechanics is here played by
the k-symplectic manifolds (see Günther, ([3])). Let (M, ωA, V ; 1 ≤ A ≤ k) be a k–
symplectic manifold. Let us consider the vector bundle morphism defined by Günther
([3]):

Ω] : T 1
k M −→ T ∗M

(X1, . . . , Xk) −→ Ω](X1, . . . , Xk) =
k∑

A=1

XA ωA .
(1.19)

Definition 1.15 Let H : M −→ R be a function on M . Any k-vector field (X1, . . . , Xk)
on M such that

Ω](X1, . . . , Xk) = dH

will be called an evolution k-vector field on M associated with the Hamiltonian func-
tion H.

It should be noticed that in general the solution to the above equation is not
unique. Nevertheless, it can be proved [9] that there always exists an evolution k-
vector field associated with a Hamiltonian function H.

Let (xi, pA
i ) be a local coordinate system on M . Then we have

Proposition 1.16 If (X1, . . . , Xk) is an integrable evolution k-vector field associated
to H then its integral sections

σ : Rk −→ M

(tB) −→ (σi(tB), σA
i (tB)),

are solutions of the classical local Hamilton equations associated with a regular multiple
integral variational problem [22]:

∂H

∂xi
= −

k∑

A=1

∂σA
i

∂tA
,

∂H

∂pA
i

=
∂σi

∂tA
, 1 ≤ i ≤ n, 1 ≤ A ≤ k .(1.20)

Given a Lagrangian function of the form L = L(xi, vi
A) one obtains, by using a

variational principle, the generalized Euler-Lagrange equations for L:

k∑

A=1

d

dtA
(

∂L

∂vi
A

)− ∂L

∂xi
= 0, vi

A =
∂xi

∂tA
.(1.21)

Following the ideas of Günther [3], we will describe the above equations (1.21) in
terms of the geometry of k-tangent structures. In classical mechanics the symplectic
structure of Hamiltonian theory and the tangent structure of Lagrangian theory play
complementary roles [13, 14, 15, 16, 17]. Also, that the k-symplectic structures and
the k-tangent structures play similarly complementary roles.
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First of all, we note that such a L can be considered as a function L : T 1
k M → R

with M a manifold with local coordinates (xi). Next, we construct a k–symplectic
structure on the manifold T 1

k M , using its canonical k–tangent structure for each
1 ≤ A ≤ k.

Let us consider the 1–forms (βL)A = dL ◦ JA , 1 ≤ A ≤ k. In a local coordinate
system (xi, vi

A) we have

(θL)A =
∂L

∂vi
A

dxi, 1 ≤ A ≤ k.(1.22)

Definition 1.17 A Lagrangian L is called regular if and only if

det(
∂2L

∂vi
A∂vj

B

) 6= 0, 1 ≤ i, j,≤ n, 1 ≤ A,B ≤ k .(1.23)

By introducing the following 2–forms (ωL)A = −d(θL)A , 1 ≤ A ≤ k, one can
easily prove the following.

Proposition 1.18 L : T 1
k M −→ R is a regular Lagrangian if and only if ((ωL)1, . . . , (ωL)k, V )

is a k-symplectic structure on T 1
k M , where V denotes the vertical distribution of

τ : T 1
k M → M .

Let L : T 1
k M −→ R be a regular Lagrangian and let us consider the k–symplectic

structure
((ωL)1, . . . , (ωL)k, V ) on T 1

k M defined by L. Let Ω]
L be the morphism defined by this

k–symplectic structure
Ω]

L : T 1
k (T 1

k M) −→ T ∗(T 1
k M).

Thus, we can set the following equation:

Ω]
L(X1, . . . , Xk) = dEL,(1.24)

where EL = C(L)−L, and where C is the canonical vector field of the vector bundle
τ : T 1

k M → M .

Proposition 1.19 Let L be a regular Lagrangian. If ξ = (ξ1, · · · , ξk) is a solution of
(1.24) then it is a SOPDE. In addition if ξ is integrable then the solutions of ξ are
solutions of the Euler-Lagrange equations (1.21).

Proof It is a direct computation in local coordinates using (1.13), (1.14) , (1.22) and
(1.23). .

2 SOPDEs and nonlinear connections on T 1
k M

A nonlinear connection on the vector fiber bundle τ : T 1
k M → M is a distribution

H : u → HuE on E = T 1
k M which is supplementary to the vertical distribution

V : u → VuE, where V E = Ker(τ)∗. The horizontal distribution u → HuE may be
given by n local vector fields

δ

δxi
=

∂

∂xi
−N j

Ai

∂

∂vj
A

, i = 1, . . . , n.(2.1)
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Functions N j
Ai are called the local coefficients (or components) of the nonlinear

connection, which, for this reason, will be denoted by N .
{

δ

δxi
(u),

∂

δvi
A

(u)
}

is an

adapted (local) basis to the decomposition TuE = HuE ⊕ VuE, called the adapted
basis of the nonlinear connection. Its dual basis is

{
dxi, δvi

A = dvi
A + N i

A,jdxj
}

.(2.2)

Follow [24] we have [δ/δxj , δ/δxk] = Ri
Ajk∂/∂vi

A and so, the distribution horizon-
tal H is integrable if and only if Ri

Ajk = 0.
From the general theory we have ([23], [24]):

Theorem 2.1 a) The transformation rule, with respect to a change of coordinates,
of the components N i

Aj(x
k, vk

B) of a nonlinear connection N are

∂x̃k

∂xi
Ñ j

Ak = Nh
Ai

∂x̃j

∂xh
− ∂2x̃j

∂xi∂xh
vh

A(2.3)

b) Conversely, if the functions N i
Aj(x

k, vk
B) are given on every domain of local

chart on T 1
k M , so that (2.3) holds with respect to (1.3), then there exists a unique

nonlinear connection N on whose coefficients are the given functions N i
Aj(x

k, vk
B).

Using this theorem, we obtain the following results:

Theorem 2.2 Let ξ ≡ (ξ1, . . . , ξk) be a SOPDE. Then the local functions on T 1
k M

defined by

N i
Aj = − 1

k + 1

k∑

B=1

∂(ξA)i
B

∂vj
B

(2.4)

are the local components of a nonlinear connection.

Next, the nonlinear connection N given by (2.4) is called the nonlinear connection
associated to the SOPDE ξ.

Let us denote
1

ξ= ξ and

1

N
i

Aj= − 1
k + 1

k∑

B=1

∂(
1

ξA)i
B

∂vj
B

.(2.5)

Then
1

N is the nonlinear connection associated to the SOPDE
1

ξ.
Let us consider the functions

(
2

ξA)i
B =

1
2
C((

1

ξA)i
B =

1
2

k∑

C=1

n∑

j=1

∂(
1

ξA)i
B

∂vj
C

vj
C(2.6)

on every domain of a local chart. These functions change following (1.15) and therefore
2

ξ is a SOPDE. Using (2.4) it obtain the nonlinear connection
2

N associated to the

SOPDE
2

ξ.
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So, starting with a SOPDE on T 1
k M we obtain a sequence of SOPDE

(
m

ξ

)

m≥1

and a sequence of nonlinear connection
( m

N
)

m≥1
, for which we obtain the next results.

Theorem 2.3 The following assertions are equivalent:

i) the SOPDE
1

ξ is homogeneous (spray).

ii)
1

ξ=
2

ξ.

Theorem 2.4 If
1

ξ is a homogeneous SOPDE then the components N i
Aj of the asso-

ciated nonlinear connection N are 1-homogeneous functions on the fibres of T 1
k M .

We remark that the converse of this theorem is not true, in generally (see [25] for
the case k = 1).

Theorem 2.5
1

N=
2

N if and only if the components N i
Aj are 1-homogeneous functions

on the fibres of T 1
k M .

Corollary 2.6 If
1

N
i

Aj are 1-homogeneous functions on the fibres of T 1
k M , then the

sequence
( m

N
)

m≥1
is constant, but we can not deduce that

(
m

ξ

)

m≥1

is constant.

Corollary 2.7 If
1

ξ is a homogeneous SOPDE, then the sequences
(

m

ξ

)

m≥1

and
( m

N
)

m≥1
are constants.

2.1 SOPDEs and nonlinear connections associated to a regular
Lagrangian on T 1

k M

Using the previously notations, if we have a regular Lagrangian on T 1
k M , following

the proposition 1.19 and the generalized Euler-Lagrange equations (1.21), we deduce
the next results.

Proposition 2.8 Let L be a regular Lagrangian. The k-vector field ((ξL)1, . . . , (ξL)k)
locally given by

((ξL)A)j
B

= −1
2
gji

AB

(
∂2L

∂vi
C∂xh

vh
C −

∂L

∂xi

)
, gAB

ij =
1
2

∂2L

∂vi
A∂vj

B

,(2.7)

where gji
AB is the inverse of the matrix gAB

ji , is a SOPDE and it is a solution of (1.24).
Moreover, if ξL is integrable, then its solutions are solutions of the generalized Euler-
Lagrange equations (1.21).

Definition 2.9 The SOPDE ((ξL)1, . . . , (ξL)k) from the above proposition will be
called the canonical SOPDE associated to the regular Lagrangian L.
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From (2.4) it results that there exists a nonlinear connection NL on T 1
k M associ-

ated to ((ξL)1, . . . , (ξL)k) which depends only by L. NL will be called the canonical
nonlinear connection of regular Lagrangian L.

Now we consider the particular case of a regular Lagrangian, L = F 2, where F is
a Finslerian function on T 1

k M which is defined below.

Definition 2.10 A function F : T 1
k M → R, F = F (xi, vi

A), which is differentiable

on T̃ 1
k M and continuous on null section of the projection τ is called Finslerian on

T 1
k M if

i) F > 0 on T 1
k M ,

ii) F is 1-homogeneous on the fibres of T 1
k M ,

iii) the matrix with the elements

gAB
ij =

1
2

∂2F 2

∂vi
A∂vj

B

(2.8)

is positively defined on T̃ 1
k M .

From Proposition 1.14, (1.17), (2.7) and ii), iii) we deduce that if L = F 2, then
the canonical SOPDE ξF 2 is homogeneous (spray).

Theorem 2.11 If the Lagrangian is the square of a Finslerian on T 1
k M then

a) the sequence
(

m

ξ

)

m≥1

is constant,
1

ξ= ξF 2 ,

b) the sequence
( m

N
)

m≥1
is constant,

1

N= NF 2 .

Example: Let L(xh, vh
D) =

1
3
αABC

ijk (xh)vi
Avj

Bvk
C , where αABC

ijk (x1, . . . , xn) is to-

tally symmetric and the matrix with the elements gAB
ij =

1
2

∂2L

∂vi
A∂vj

B

= αABC
ijk vk

C is of

rank nk on T 1
k M . Then L is a regular Lagrangian with gAB

ij 1-homogeneous functions,
gij

AB homogeneous functions of degree −1, according with (1.17). Using the relation
(2.5) and Theorem 2.4, the components of the canonical nonlinear connection NL are

homogeneous of degree 1. So, the sequence
( m

N
)

m≥1
is constant, but we dont tell

that the sequence
(

m

ξ

)

m≥1

has the same property. This is an example of a regular

Lagrangian on T 1
k M which in not equal with the square of a Finslerian.

2.2 Other type of relationship between SOPDEs and nonlinear
connections on T 1

k M

Let ξ ≡ (ξ1, . . . , ξk) be a SOPDE on T 1
k M . Then the functions given by

N j
Al = −1

2
∂(ξA)j

A

∂vl
A

(2.9)
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are the components of a nonlinear connection N on T 1
k M , determined by ξ. Indeed

N j
Al verify (2.3), under (1.3).

From (2.9) and (1.15), we deduce that the functions

(
∗

ξB)j
A = −N j

Alv
l
B(2.10)

are the components of a SOPDE
∗
ξ on T 1

k M .

We can continue and we will obtain a nonlinear connection
∗
N from

∗
ξ and so on.

By this procedure one can obtain again a sequence of SOPDEs and a sequence of
nonlinear connection on T 1

k M , starting with a given SOPDE (or starting with a given
nonlinear connection). But, now we have other results about this sequences.

Proposition 2.12 i)
∗
ξ= ξ if and only if CA

B

(
(ξA)j

A

)
= 2(ξB)j

A for all j = 1, . . . , n,
A,B = 1, . . . , k;

ii)
∗
N= N if and only if CA(N j

Al) = N j
Al for all j, l = 1, . . . , n, A = 1, . . . , k.

Remark
∗
ξ= ξ implies

∗
N= N , but the converse is not true. Only

∗
N= N implies

∗
∗
ξ=

∗
ξ.
Now, if we done the next definition, then we get an interesting result.

Definition 2.13 A map Φ : Rk 7→ M is said to be horizontal for a nonlinear con-
nection N on T 1

k M if and only if

(Φ(1))∗(t)
(

∂

∂tA
(t)

)
∈ H

(
TΦ(1)(t)(T

1
k M)

)
, ∀A = 1, . . . , k.(2.11)

Theorem 2.14 If the SOPDE ξ associated to the nonlinear connection N , (ξA)j
B =

−N j
Blv

l
A is integrable, then the solutions of ξ are horizontals with respect to N .

Proof Since, for all A = 1, . . . , k,

(Φ(1))∗(t)
(

∂

∂tA
(t)

)
=

∂Φi

∂tA
(t)

δ

δxi
+

(
∂2Φj

∂tA∂tB
(t) + N j

Bi

∂Φi

∂tA
(t)

)
∂

∂vj
B

and taking into account the relationship between ξ and N , we obtain that Φ is a
solution of ξ iff (2.11) holds, that is Φ is horizontal of N .

Remark Beginning with a SOPDE ξ we can construct directly a sequence of
SOPDEs:

( ∗
ξA

)j

B

=
1
2
CB

A

(
(ξB)j

B

)
=

1
2

∂(ξB)j
B

∂vh
B

vh
A .(2.12)

After this, we can obtain for each SOPDE of sequence a nonlinear connection by (2.9).
It is the same construction as that presented above in (2.9) and (2.10).



Second order partial differential equations 179

Finally, starting with a SOPDE ξ we can construct two sequence of SOPDEs.
The first sequence by the method from (2.6) and the second by the method presented
above (2.12). For each sequence of SOPDE we can obtain two sequences of nonlinear
connections. The first sequence is obtained by the method from (2.4) and the second
by the above method (2.9).
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[3] Ch. Günther, The polysymplectic Hamiltonian formalism in field theory and cal-
culus of variations I: The local case, J. Diff. Geom. 25 (1987), 23-53.

[4] M. Bruckheimer, Ph.D. dissertation, University of Southampton, 1960

[5] R.S. Clark, M. Bruckheimer, Sur les structures presque tangents, C. R. Acad.
Sci. Paris Sér . I Math. 251 (1960), 627-629.

[6] H.A. Eliopoulos, Structures presque tangents sur les variétés différentiables, C.
R. Acad. Sci. Paris Sér . I Math. 255 (1962), 1563-1565.

[7] M. de León, I. Méndez, M. Salgado, p-almost tangent structures, Rend. Circ.
Mat. Palermo Serie II XXXVII (1988), 282-294.

[8] M. de León, I. Méndez, M. Salgado, Integrable p–almost tangent structures and
tangent bundles of p1-velocities, Acta Math. Hungar. Vol. 58 (1-2) (1991), 45-54.

[9] M. de León, E. Merino, J. Oubina, P. Rodriguez, M. Salgado, Hamiltonian sys-
tems on k–cosymplectic manifolds, J. Math. Phys. 39 (1998), 876-893.

[10] F. Brickell, R.S. Clark, Integrable almost tangent structures, J. Diff. Geom. 9
(1974), 557-563.

[11] R. S. Clark, D.S. Goel, On the geometry of an almost tangent structure, Tensor
(N. S.) 24 (1972), 243-252.

[12] M. Crampin, G. Thompson, Affine bundles and integrable almost tangent struc-
tures, Math. Proc. Cambridge Philos. Soc. 101 (1987), 61-67.

[13] M. Crampin, Tangent bundle geometry for Lagrangian dynamics, J. Phys. A:
Math. Gen. 16 (1983), 3755–3772.

[14] M. Crampin, Defining Euler-Lagrange fields in terms of almost tangent struc-
tures, Phys. Lett. A 95 (1983), 466-468.

[15] J. Grifone, Structure presque-tangente et connexions, I, Ann. Inst. Fourier 22
(1972), 287-334.



180 Florian Munteanu

[16] J. Grifone, Structure presque-tangente et connexions, II, Ann. Inst. Fourier 22
(1972), 291-338.
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[21] A. Echevarŕıa-Enŕıquez, M.C. Muñoz-Lecanda, N. Román-Roy, Multivector field
formulation of Hamiltonian field theories: equations and symmetries, J. Phys. A:
Math. Gen. 32 (1999), 8461-8484.

[22] H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Reprinted
Edition, Robert E. Krieger Publishing Co. Inc., Huntington, New York, 1973.

[23] R. Miron, M.S. Kirkovits, M. Anastasiei, A Geometrical Model for Variational
Problems of Multiple Integrals, Proceedings of the Conference on Differential
Geometry and Applications, June 26 - July 3, 1988, Dubrovnik, Yugoslavia, pp.
209-216.

[24] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Appli-
cations, FTPH, no. 59, Kluwer Academic Publishers, 1994.
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