Second order partial differential equations (SOPDESs)
and nonlinear connections on the tangent bundle
of kl-velocities of a manifold
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Abstract. In this paper I will describe two distinct ways by which it
obtain a sequence of SOPDEs and a sequences of nonlinear connections
on the tangent bundle of k!-velocties T}} M, starting from a given SOPDE,
follows the ideas of papers [25], [26], [27], [28]. Some properties about this
sequences is also presented. Interesting cases appear in the presence of a
regular Lagrangian on TklM .
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1 Introduction

In this section we present the main notions used in the paper, with a strong accent
on the necessary tools for obtain the results from the second section.

1.1 The tangent bundle of k!-velocities of a manifold M

An almost tangent structure J on a 2n-dimensional manifold M is tensor field of
type (1,1) of constant rank n such that J? = 0. The manifold M is then called an
almost tangent manifold. Almost tangent structures were introduced by Clark and
Bruckheimer [5] and Eliopoulos [6] around 1960 and have been studied by numerous
authors (see [10, 11, 12, 13, 14, 15, 16, 17, 18)]).

The canonical model of these structures is the tangent bundle 75, : TM — M of
an arbitrary manifold M. Recall that for a vector X, at a point x € M its vertical
lift is the vector on T'M given by

d
XY (vy) = %(vm +tX2)|,_ € Tv, (TM)

for all points v, € TM.
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The canonical tangent structure J on T'M is defined by

Jo, (Zy,) = ((TM)*(Uz)va)L/m

for all vectors Z,, € Ty, (TM), and it is locally given by

a@dxi

1.1 J=
(1.1) 30?

with respect the bundle coordinates on T'M. This tensor J can be regarded as the
vertical lift of the identity tensor on M to T'M [19].

The almost k-tangent structures were introduced as generalization of the almost
tangent structures [7, 8].

Definition 1.1 An almost k-tangent structure J on a manifold M of dimension n+
kn is a family (J1,...,J*) of tensor fields of type (1,1) such that

(1.2) JA%JB=JB0J=0, rankJ*=n, ImJ*N(®pralmJ®) =0,

for 1 < A B < k. In this case the manifold M is then called an almost k-tangent
manifold.

The canonical model of these structures is the k-tangent vector bundle T} M =
J&(RF, M) of an arbitrary manifold M, that is the vector bundle with total space the
manifold of 1-jets of maps with source at 0 € R¥ and with projection map 7 : TklM —
M, 7(jio) = ¢(0). This bundle is also known as the tangent bundle of k'-velocities
of M [19].

The manifold TklM can be canonically identified with the Whitney sum of k copies
of TM, that is

TIM
Joo

TM & &TM,
(joor =v1,...,j50K = vk)

where 04 = 0 (0,...,¢t,...,0) with ¢t € R at position A and v4 = (0,4)*(0)(%0).
If (%) are local coordinates on U C M then the induced local coordinates (z?,v%),
1<i<n,1<A<k,on7 YU)=TLU are given by

P (iho) =7 (0(0), (o) = (0 aa)lims = vala).

A local change of coordinates on T} M, (z*,v"y) — (&%,0Y), is given by the rule:

, , oz’
ot S N | n —
x—z(x‘,...,x) ,T(mk<amj)—n,

~i ,] .
U‘Z“i@xij J1<A<E 1<i<n.

(1.3)

0 0
If TuT,iM is the tangent space to TklM in u, then {

p (u), (‘31}34(“)} is its local

basis and {dxz’(u),dv’)(u)} is its dual local basis (local cobasis). With respect to (1.3)
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the basis and the cobasis have the following rules of changing:

0 0¥ 9 o) 0
drt Ozt 9% Ozt vy’

(1.4) o @ P
oYy Oxt aqjil ’
and
~i
dwi = 9% gz
(1.5) A,
aviy = 22450 4 07 gy
AT op oz A
”j ...j
It is observe that 830. = 81}’,4 .
ort  ovy

Definition 1.2 For a vector X, at M we define its vertical A-lift (X,)* as the
vector on TklM given by

d

(X2)*(joo) = &((Ul)ma s (Wa1)as (Va)eHtXs, (Vas1)e -5 (Vk)a) =0 € Tjga(TklM)
for all points joo = ((v1)a, ..., (Vk)z)) € TEM.

In local coordinates we have

(1.6) (XA =3 a2

o
i=1 9 A

for a vector X, = a'9/0x".
The canonical vertical vector fields C on Tt M are defined by

(1.7) Ch(x, X1, Xo,...,Xp) = (Xp)4
le]

.
ov'y

The canonical k-tangent structure (J*,..., J*) on T M is defined by

and are locally given by C4 = vl

TN Zj0) = (1(Z530))"

J J

for all vectors Zj1, € Tj1, (7] L M). In local coordinates we have

(1.8) J4 = a,. ® dx’
ovYy

The tensors J# can be regarded as the 0,...,14,...,0)-lift of the identity tensor
on M to T} M defined in [19].
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1.2 The cotangent bundle of k'-covelocities of M and (T} )*M

Almost cotangent structures were introduced by Bruckheimer [4]. An almost cotan-
gent structure on a 2m-dimensional manifold M consists of a pair (w, V') where w is
a symplectic form and V is a distribution such that

() wlvxy =0, (i) kerw= {0}

The canonical model of this structure is the cotangent bundle 74, : T*M — M
of an arbitrary manifold M, where w is the canonical symplectic form wy = —dfy on
T*M and V is the vertical distribution. Let us recall the definition of the Liouville
form 6y in T*M: } ~

0o(2)(Xa) = a((Tar)+(a)(Xa)),

for all vectors X, € T,(T*M). In local coordinates (z*,p;) on T*M

0 0

aim’...,aim>.

(1.9) 0y = p;dz’, wo = dz* A dp;, V=
Definition 1.3 [1, 2] A k-symplectic structure on a manifold M of dimension N =
n+kn is a family (wa,V;1 < A < k), where each wa is a closed 2-form and V is an
nk-dimensional distribution on M such that

(i) way, =0, (i) NE_ kerwy = {0}.
In this case (M,wa,V) is called a k-symplectic manifold.

The canonical model of this structure is the k-cotangent bundle (T})*M = J' (M, RF),
of an arbitrary manifold M, that is the vector bundle with total space the manifold
of 1-jets of maps with target at 0 € R*, and projection T*(Ji.00) = .

The manifold (7}})*M can be canonically identified with the Whitney sum of k
copies of T*M, say

(Tkl)*M = T"M®---aT*M,
jz,OJ = (ji,oalv s vj]mc,oak)
where 04 = 74 00 : M — R is the A-th component of o.

The canonical k-symplectic structure (wp)a,V;1 < A <k), on (T})*M is defined
by

(wo)a = (71)" (wo)
V(j;,og) = ker(T*)*(j;,oU)

where 74 = (T})*M — T*M is the projection on the A*-copy T*M of (T})* M, and
wp is the canonical symplectic structure of T*M.

One can also define the 2-forms w4 by wa = —df4 where (69)” = (7)o

If (2%) are local coordinates on U C M then the induced local coordinates (2%, p!), 1 <
i<n,1<A<kon (T})*U = (r*)"Y(U) are given by

0
ozt I)

xi(j;,og) = 551(93)7 pf‘(j;,og) = d:z:UA(
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Then the canonical k-symplectic structure is locally given by

0 0
-y 1< A<k.

1.10 A=N"dat Adp?, V=(—. .., —
(1.10) (wo) Z;x p; <%g ot

and (6p)* = p da’.

1.3 Second Order Partial Differential Equations on 7} M

Let M be an arbitrary manifold and 7 : TAM — M its tangent bundle of k!-
velocities.

Definition 1.4 A section X : M — TLM of the projection T will be called a k-
vector field on M.

Since T} M can be canonically identified with the Whitney sum T M = TM &
-+ @®TM of k copies of TM, we deduce that a k-vector field X defines a family of
vector fields Xy, ..., Xy on M. Glnther in [3] introduce the following definition.

Definition 1.5 An integral section of the k-vector field X = (Xi,...,Xk) pass-
ing through a point x € M on M is a map ¢ : Uy C R* — M, defined on some
neighborhood Uy of 0 € R¥, such that

8):XMﬂm VieU, 1<A<Ek,

$(0) = =, @(ﬂ(atﬁ

or equivalently, ¢ satisfies
(1.11) Xog=o¢WM,
where ¢V is the first prolongation of ¢ defined by

oM UycRF — TIM
t — oW (t) =G

where ¢(s) = ¢(s +t) for all t,s € R* such that s+t € Uy.

In local coordinates,

¢!

’atiA(tl"“’tk))’ 1§A§k,1§i§n_

(1.12) oM@t .. tF) = (¢, ..., tF)
We say that a k-vector field X = (Xi,...,X) on M is integrable if there is an
integral section passing through each point of M.

Remark If ¢ is an integral section of a k-vector field (Xi,..., X)) then each
curve on M defined by ¢4 = ¢ o hy, where hy : R — R” is the natural inclusion
ha(t) = (0,...,t,...,0), is an integral curve of the vector field X4 on M, with
1 < A <E. We refer to [20, 21] for a discussion on the existence of integral sections.
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Definition 1.6 A k-vector field on T} M, that is, a section & = (&1, ..., &) : TEM —
THTEM) of the projection Trin THTIM) — TIM, is a Second Order Partial
Differential Equation (SOPDE) if and only if it is also a section of the vector
bundle T} (1) : TH(TEM) — TEM, where T (1) is defined by T}t (1) (jio) = ji(T o).

Let (2') be a coordinate system on M and (z*,v%)) the induced coordinate system
on T} M. From the definition we deduce that the local expression of a SOPDE ¢ is
i i 0 i 0
(1.13) Ealz',vly) = vy— + (Ea) =,
8I aUB

We recall that the first prolongation ¢(!) of ¢ : U ¢ R¥ — M is defined by

1< A<LE.

oM UcRF — T!M)
t — ¢W(t) = jou

where ¢:(s) = ¢(s +t) for all t,s € R.

Proposition 1.7 Let £ an integrable k-vector field on TEM. The necessary and
sufficient condition for € to be a Second Order Partial Differential Equation (SOPDE)
is that its integral sections are first prolongations ¢V of maps ¢ : R* — M. That is

0

€0 1) = (@) (050

forall A=1,... k. These maps ¢ will be called solutions of the SOPDE &.
From (1.12) and (1.13) we have

Proposition 1.8 ¢ : R¥ — M is a solution of the SOPDE ¢ = (&1, &), locally
given by (1.13), if and only if
= (t) = vy (6P (1)), t) = (£4)5 (6P (1)).
D0 =6V W), () = (€D )
If £ : T!M — T!TEM is an integrable SOPDE then for all integral sections
c:UcCRF— T M we have (17 0 0)Y) = o, where 7 : T} M — M is the canonical
projection.

Now we show how to characterize the SOPDEs using the canonical k-tangent
structure of T} M.

Definition 1.9 The Liouville vector field C on TEM s the infinitesimal generator
of the one parameter group

Rx (I}M) —  T'M
(Sa(xi7viB)) - (xi7esv%).

Thus C' s locally expressed as follows:
.0
(1.14) C=> Cp=)Y vh—r,
B i.B dvp

where each Cp corresponds with the canonical vector field on the B-th copy of T M
on TEM.
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Let us remark that each vector field Cy on T} M can also be defined using the
A-lifts of vectors as follows: Ca((v1)g, -, (V)g) = ((va)g) (V).
From (1.8), (1.13) and (1.14) we deduce the following

Proposition 1.10 A k-vector field £ = (&1,...,&) on TEM is a SOPDE if and only
if
J4(€a) = Ca, V1<A<E,

where (J*, ..., J*) is the canonical k-tangent structure on TIM.

Proposition 1.11 a) With respect to a local changing of coordinates (1.3) the com-
ponents (£a)% of the SOPDE ¢ change as follows

7 2.7

e —y
zwidzk ATB

b) Conversely, if the function (£4)%(27,vE) are given on every domain of local
chart on TEM so that (1.15) holds for a local change (1.3), then the k-vector field &
given by (1.13) is a SOPDE.

Next we will denote fkl\]\//[ = T}' M\ {0}, where 0 is the null section of the projection
T:TEM — M.

Definition 1.12 A function f : T} M — R differentiable of class C*° on T} M and
continuous on the null section of the projection T is called homogeneous of degree
r € Z on the fibres on T M (briefly r-homogeneous) if

(1.16) b hy) = X" f(2',vY) , YA > 0.

——

Equivalently, a function f : T} M — R, differentiable on T%M and continuous on the
null section of 7 is r—homogeneous if and only if

(1.17) Lof=rf,
Lc f being the Lie operator of derivation with respect to the canonical vector field C.

Definition 1.13 A SOPDE ¢ is called homogeneous SOPDE, or spray on TIM if
the components (£4)’; are 2-homogeneous functions on the fibres of TR M, that is

(Ea)(a?, Avl) = N (Ea)g(a? k) forall XA >0.
From (1.16) we deduce the following proposition.

Proposition 1.14 A SOPDE ¢ = (&,... ,&k) is a homogeneous SOPDE, or spray,
if and only if we have

0(€a)l
avg

(1.18) v =2(6a)5 -

which is equivalent to [C,€a] = €4, A=1,... k.
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1.4 Hamiltonian and Lagrangian formalisms

The role played by symplectic manifolds in classical mechanics is here played by
the k-symplectic manifolds (see Giinther, ([3])). Let (M,w4,V;1 < A < k) be a k-
symplectic manifold. Let us consider the vector bundle morphism defined by Gilinther

(131):
0 TP M — T*M
(1.19)

k
(X1, Xk) — QF(Xp,. Xk =) Xad wa.
A=1

Definition 1.15 Let H : M — R be a function on M. Any k-vector field (Xq, ..., Xk)
on M such that
OXy,..., X)) =dH

will be called an evolution k-vector field on M associated with the Hamiltonian func-
tion H.

It should be noticed that in general the solution to the above equation is not
unique. Nevertheless, it can be proved [9] that there always exists an evolution k-
vector field associated with a Hamiltonian function H.

Let (xi,pf‘) be a local coordinate system on M. Then we have

Proposition 1.16 If (X1,...,Xk) is an integrable evolution k-vector field associated
to H then its integral sections

c: R* — M
(t?) — (@'(t?),0{(t")),
are solutions of the classical local Hamilton equations associated with a reqular multiple
integral variational problem [22]:

oOH "L oocA  9H 9o ‘
7= A0 a A= A LS4
ox oottt opt ot

(1.20) n1< A<k.

Given a Lagrangian function of the form L = L(x% v%) one obtains, by using a
variational principle, the generalized Euler-Lagrange equations for L:
ox'
ot

d 9L, dL

— e g =
th(avil) ’ va

1.21
( ) oz’

)=

b
Il

1

Following the ideas of Giinther [3], we will describe the above equations (1.21) in
terms of the geometry of k-tangent structures. In classical mechanics the symplectic
structure of Hamiltonian theory and the tangent structure of Lagrangian theory play
complementary roles [13, 14, 15, 16, 17]. Also, that the k-symplectic structures and
the k-tangent structures play similarly complementary roles.
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First of all, we note that such a L can be considered as a function L : TklM — R
with M a manifold with local coordinates (z%). Next, we construct a k-symplectic
structure on the manifold 7! M, using its canonical k-tangent structure for each
1<A<LE.

Let us consider the 1-forms (81)a = dL o JA, 1< A <E. In alocal coordinate
system (%, v%) we have
(1.22) (0r)a = 6—L.dxi, 1<A<k

oYy

Definition 1.17 A Lagrangian L is called regular if and only if

2
L
(1.23) det(—2L Y20 1<ij<n 1<AB<k.
Iy Ovly
By introducing the following 2—forms (wr)a = —d(0r)a, 1 < A < k, one can

easily prove the following.

Proposition 1.18 L : T} M — R is a reqular Lagrangian if and only if (wp)1,- - ., (wr)k, V)
is a k-symplectic structure on T M, where V denotes the vertical distribution of
T: TklM — M.

Let L: TklM — R be a regular Lagrangian and let us consider the k—symplectic
structure
(wr)1s- -+, (wr)k, V) on T{ M defined by L. Let QﬁL be the morphism defined by this
k—symplectic structure
Q4 THTEM) — T*(T}M).
Thus, we can set the following equation:
(1.24) Q4 (Xy,..., Xp) = dEy,

where E7, = C(L) — L, and where C is the canonical vector field of the vector bundle
T:TEM — M.

Proposition 1.19 Let L be a regular Lagrangian. If £ = (&1, ,&k) is a solution of
(1.24) then it is a SOPDE. In addition if £ is integrable then the solutions of & are
solutions of the Euler-Lagrange equations (1.21).

Proof It is a direct computation in local coordinates using (1.13), (1.14) , (1.22) and
(1.23). W

2 SOPDEs and nonlinear connections on TklM

A nonlinear connection on the vector fiber bundle 7 : T,&M — M is a distribution
H :u — H,E on E = T}M which is supplementary to the vertical distribution
V:u— V,E, where VE = Ker(7).. The horizontal distribution v — H, E may be
given by n local vector fields

) 0

.0
2.1 — = — - N, — ,=1,...,n.
(2.1) oxt Ozt Aoy ! ’ o
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Functions NV ﬁ“. are called the local coefficients (or components) of the nonlinear

0

connection, which, for this reason, will be denoted by N. @(u) (u)} is an

) E
adapted (local) basis to the decomposition T, F = H,FE @ V, E, called the adapted
basis of the nonlinear connection. Its dual basis is

(2.2) {da', vy = dv'y + Nﬁxyjdxj} .

Follow [24] we have [6/6z7,6/6x%] = Z'Ajka/(%ix and so, the distribution horizon-
tal H is integrable if and only if Riljk =0.
From the general theory we have ([23], [24]):

Theorem 2.1 a) The transformation rule, with respect to a change of coordinates,
of the components NA (2%, v%) of a nonlinear connection N are

oxk ~; , 0% 0237
ozt Bt Var = ALgah  dridzh vA

b) Conversely, if the functions Nlﬁ,j (zF,v%) are given on every domain of local

chart on TEM, so that (2.3) holds with respect to (1.3), then there exists a unique
nonlinear connection N on whose coefficients are the given functions Ny, (xk,v%).

(2.3)

Using this theorem, we obtain the following results:

Theorem 2.2 Let £ = (&1,...,&) be a SOPDE. Then the local functions on T M
defined by

k .

; 1 (éa)'s
(2.4) N, = — yo A
J k+1 — v

are the local components of a nonlinear connection.

Next, the nonlinear connection N given by (2.4) is called the nonlinear connection
associated to the SOPDE &.

1
Let us denote £= ¢ and

‘ 1
(2.5) JifAjz—k+1Bz:1 (51‘)“;

1 1
Then N is the nonlinear connection associated to the SOPDE &.
Let us consider the functions

1

k n a(
(2.6) ==Y o=
Cc=1j=1 UC

—~
782"
hS
N—
oo

I
\
N)\ —

on every domain of a local chart. These functions change following (1.15) and therefore

2 2

¢ is a SOPDE. Using (2.4) it obtain the nonlinear connection N associated to the
2

SOPDE ¢&.
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So, starting with a SOPDE on T} M we obtain a sequence of SOPDE (f)
m>1

m
and a sequence of nonlinear connection ( N ) , for which we obtain the next results.
m>1

Theorem 2.3 The following assertions are equivalent:

1
i) the SOPDE ¢ is homogeneous (spray).
12
i) £=€.

1 ,
Theorem 2.4 If { is a homogeneous SOPDE then the components Ny, of the asso-
ciated nonlinear connection N are 1-homogeneous functions on the fibres of T,iM.

We remark that the converse of this theorem is not true, in generally (see [25] for
the case k = 1).

12 A
Theorem 2.5 N=N if and only if the components N}, ; are 1-homogeneous functions
on the fibres of TEM.

1i
Corollary 2.6 If N 4; are 1-homogeneous functions on the fibres of TIM, then the

m m
sequence (N) N is constant, but we can not deduce that <§> s constant.
m>1 m>1

m

1
Corollary 2.7 If £ is a homogeneous SOPDE, then the sequences (5) and
m>1

( ﬁ ) are constants.
m2>1

2.1 SOPDEs and nonlinear connections associated to a regular
Lagrangian on T} M

Using the previously notations, if we have a regular Lagrangian on T,iM , following
the proposition 1.19 and the generalized Euler-Lagrange equations (1.21), we deduce
the next results.

Proposition 2.8 Let L be a reqular Lagrangian. The k-vector field ((€¢)1,--- , (§L)k)
locally given by

: Iy 9*L OL 1 6°L
2.7 ]:_7.77/ R h—i ABZ* - -
( ) ((fL)A)B 29AB (avlc(i)xhvc axl) ) gzg 28’1}26’(}% )
where g%B is the inverse of the matrix gﬁB, is a SOPDE and it is a solution of (1.24).
Moreover, if &1, is integrable, then its solutions are solutions of the generalized Fuler-
Lagrange equations (1.21).

Definition 2.9 The SOPDE (((1)1,.--,(EL)k) from the above proposition will be
called the canonical SOPDE associated to the reqular Lagrangian L.
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From (2.4) it results that there exists a nonlinear connection Ny, on T} M associ-
ated to ((££)1,-.,(£1)x) which depends only by L. Ny, will be called the canonical
nonlinear connection of regular Lagrangian L.

Now we consider the particular case of a regular Lagrangian, L = F?, where F is
a Finslerian function on T} M which is defined below.

Definition 2.10 A function F : T,iM — R, F = F(xi,v%), which is differentiable
on T'M and continuous on null section of the projection T is called Finslerian on
TIM if

i) F >0 onTM,

ii) F is 1-homogeneous on the fibres of TE M,

i11) the matriz with the elements

(2.8) gAp L O
Y 200k 0v)

is positively defined on T M.

From Proposition 1.14, (1.17), (2.7) and ii), iii) we deduce that if L = F?2, then
the canonical SOPDE {2 is homogeneous (spray).

Theorem 2.11 If the Lagrangian is the square of a Finslerian on T M then
m 1
a) the sequence | & is constant, {= Ep2,
m>1
m

1
b) the sequence (N) is constant, N= Np2.
m>1

Example: Let L(z",v}) = gaf}fc(xh)vilvgvé, where af}fc(xl, .o.,x™) s to-
1 0%L
tally symmetric and the matrix with the elements g;‘]‘B = = af}fcvé is of
2 vt vy,

rank nk on T M. Then L is a regular Lagrangian with g;;‘-B 1-homogeneous functions,

giljB homogeneous functions of degree —1, according with (1.17). Using the relation

(2.5) and Theorem 2.4, the components of the canonical nonlinear connection Ny, are
m
homogeneous of degree 1. So, the sequence (N ) N is constant, but we dont tell
m>1
m

that the sequence (f > has the same property. This is an example of a regular
m>1

Lagrangian on TklM which in not equal with the square of a Finslerian.

2.2 Other type of relationship between SOPDEs and nonlinear
connections on T} M

Let £ = (&1,...,&) be a SOPDE on T} M. Then the functions given by

C10(€a)s
2 oWy

(2.9) Ny, =
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are the components of a nonlinear connection N on TklM , determined by &. Indeed
N, verify (2.3), under (1.3).
From (2.9) and (1.15), we deduce that the functions

(2.10) (€p)) = —N%ly

are the components of a SOPDE & on T} M.

* *
We can continue and we will obtain a nonlinear connection N from £ and so on.
By this procedure one can obtain again a sequence of SOPDEs and a sequence of
nonlinear connection on T} M, starting with a given SOPDE (or starting with a given
nonlinear connection). But, now we have other results about this sequences.

Proposition 2.12 i) {= ¢ if and only if Ch ((5,4)%) = 2(53){4 forallj=1,... ,n,
AB=1,... k:
ii) N=N if and only z'fCA(NﬁU) = Niu forall jyl=1,...,n, A=1,... k.

* % *
Remark &= ¢ implies N= N, but the converse is not true. Only N= N implies
M
§=¢.
Now, if we done the next definition, then we get an interesting result.

Definition 2.13 A map ® : R* — M is said to be horizontal for a nonlinear con-
nection N on T} M if and only if

(2.11) (@MW), (1) <£A(t)) € H (Tooyy(TEM)) ,VA=1,... k.

Theorem 2.14 If the SOPDFE & associated to the nonlinear connection N, (§A)?3 =
fNjBlvféx 1s integrable, then the solutions of & are horizontals with respect to N.

Proof Since, forall A=1,... ,k,

0 o%" 6 foR ;0" 0
(1) 9 ) = e i 9

and taking into account the relationship between £ and N, we obtain that ® is a
solution of ¢ iff (2.11) holds, that is ® is horizontal of N.

Remark  Beginning with a SOPDE £ we can construct directly a sequence of
SOPDEs:

“\’ 1 ; 10(&p)
(2.12) (éA)B =308 (k) =5 gf],;%g.

After this, we can obtain for each SOPDE of sequence a nonlinear connection by (2.9).
It is the same construction as that presented above in (2.9) and (2.10).
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Finally, starting with a SOPDE £ we can construct two sequence of SOPDEs.

The first sequence by the method from (2.6) and the second by the method presented
above (2.12). For each sequence of SOPDE we can obtain two sequences of nonlinear
connections. The first sequence is obtained by the method from (2.4) and the second
by the above method (2.9).
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