Second Order Partial Differential Equations in Hilbert Spaces

Giuseppe Da Prato
Scuola Normale Superiore di Pisa

Jerzy Zabczyk
Polish Academy of Sciences, Warsaw

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
(C) Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Computer Modern 10/12pt System LATEX 2_{ε} [TB]
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data
Da Prato, Giuseppe.
Second order partial differential equations in Hilbert spaces / Giuseppe Da Prato \& Jerzy Zabczyk.
p. cm. - (London Mathematical Society lecture note series; 293)

Includes bibliographical references and index.
ISBN 0521777291 (pbk.)

1. Differential equations, Partial. 2. Hilbert space. I. Zabczyk, Jerzy. II. Title. III. Series.

QA374 .D27 2002
$515^{\prime} .353-\mathrm{dc} 21 \quad 2002022269$
ISBN 0521777291 paperback

Contents

Preface X
I THEORY IN SPACES OF CONTINUOUS FUNCTIONS 1
1 Gaussian measures 3
1.1 Introduction and preliminaries 3
1.2 Definition and first properties of Gaussian measures 7
1.2.1 Measures in metric spaces 7
1.2.2 Gaussian measures 8
1.2.3 Computation of some Gaussian integrals 11
1.2.4 The reproducing kernel 12
1.3 Absolute continuity of Gaussian measures 17
1.3.1 Equivalence of product measures in \mathbb{R}^{∞} 18
1.3.2 The Cameron-Martin formula 22
1.3.3 The Feldman-Hajek theorem 24
1.4 Brownian motion 27
2 Spaces of continuous functions 30
2.1 Preliminary results 30
2.2 Approximation of continuous functions 33
2.3 Interpolation spaces 36
2.3.1 Interpolation between $U C_{b}(H)$ and $U C_{b}^{1}(H)$ 36
2.3.2 Interpolatory estimates 39
2.3.3 Additional interpolation results 42
3 The heat equation 44
3.1 Preliminaries 44
3.2 Strict solutions 48
3.3 Regularity of generalized solutions 54
3.3.1 Q-derivatives 54
3.3.2 $\quad Q$-derivatives of generalized solutions 57
3.4 Comments on the Gross Laplacian 67
3.5 The heat semigroup and its generator 69
4 Poisson's equation 76
4.1 Existence and uniqueness results 76
4.2 Regularity of solutions 78
4.3 The equation $\Delta_{Q} u=g$ 83
4.3.1 The Liouville theorem 87
5 Elliptic equations with variable coefficients 90
5.1 Small perturbations 90
5.2 Large perturbations 93
6 Ornstein-Uhlenbeck equations 99
6.1 Existence and uniqueness of strict solutions 100
6.2 Classical solutions 103
6.3 The Ornstein-Uhlenbeck semigroup 111
6.3.1 π-Convergence 112
6.3.2 Properties of the π-semigroup $\left(R_{t}\right)$ 113
6.3.3 The infinitesimal generator 114
6.4 Elliptic equations 116
6.4.1 Schauder estimates 119
6.4.2 The Liouville theorem 121
6.5 Perturbation results for parabolic equations 122
6.6 Perturbation results for elliptic equations 124
7 General parabolic equations 127
7.1 Implicit function theorems 128
7.2 Wiener processes and stochastic equations 131
7.2.1 Infinite dimensional Wiener processes 131
7.2.2 Stochastic integration 132
7.3 Dependence of the solutions to stochastic equations on initial data 133
7.3.1 Convolution and evaluation maps 133
7.3.2 Solutions of stochastic equations 138
7.4 Space and time regularity of the generalized solutions 139
7.5 Existence 142
7.6 Uniqueness 144
7.6.1 Uniqueness for the heat equation 145
7.6.2 Uniqueness in the general case 146
7.7 Strong Feller property 150
8 Parabolic equations in open sets 156
8.1 Introduction 156
8.2 Regularity of the generalized solution 158
8.3 Existence theorems 165
8.4 Uniqueness of the solutions 178
II THEORY IN SOBOLEV SPACES 185
$9 \quad L^{2}$ and Sobolev spaces 187
9.1 Itô-Wiener decomposition 188
9.1.1 Real Hermite polynomials 188
9.1.2 Chaos expansions 190
9.1.3 The space $L^{2}(H, \mu ; H)$ 193
9.2 Sobolev spaces 194
9.2.1 The space $W^{1,2}(H, \mu)$ 196
9.2.2 Some additional summability results 197
9.2.3 Compactness of the embedding $W^{1,2}(H, \mu) \subset L^{2}(H, \mu)$ 198
9.2.4 The space $W^{2,2}(H, \mu)$ 201
9.3 The Malliavin derivative 203
10 Ornstein-Uhlenbeck semigroups on $L^{p}(H, \mu)$ 205
10.1 Extension of $\left(R_{t}\right)$ to $L^{p}(H, \mu)$ 206
10.1.1 The adjoint of $\left(R_{t}\right)$ in $L^{2}(H, \mu)$ 211
10.2 The infinitesimal generator of $\left(R_{t}\right)$ 212
10.2.1 Characterization of the domain of L_{2} 215
10.3 The case when $\left(R_{t}\right)$ is strong Feller 217
10.3.1 Additional regularity properties of $\left(R_{t}\right)$ 221
10.3.2 Hypercontractivity of $\left(R_{t}\right)$ 224
10.4 A representation formula for $\left(R_{t}\right)$ in terms of the second quan- tization operator 228
10.4.1 The second quantization operator 228
10.4.2 The adjoint of $\left(R_{t}\right)$ 230
10.5 Poincaré and log-Sobolev inequalities 230
10.5.1 The case when $M=1$ and $Q=I$ 232
10.5.2 A generalization 235
10.6 Some additional regularity results when Q and A commute 236
11 Perturbations of Ornstein-Uhlenbeck semigroups 238
11.1 Bounded perturbations 239
11.2 Lipschitz perturbations 245
11.2.1 Some additional results on the Ornstein-Uhlenbeck semigroup 251
11.2.2 The semigroup $\left(P_{t}\right)$ in $L^{p}(H, \nu)$ 256
11.2.3 The integration by parts formula 260
11.2.4 Existence of a density 263
12 Gradient systems 267
12.1 General results 268
12.1.1 Assumptions and setting of the problem 268
12.1.2 The Sobolev space $W^{1,2}(H, \nu)$ 271
12.1.3 Symmetry of the operator N_{0} 272
12.1.4 The m-dissipativity of N_{1} on $L^{1}(H, \nu)$ 274
12.2 The m-dissipativity of N_{2} on $L^{2}(H, \nu)$ 277
12.3 The case when U is convex 281
12.3.1 Poincaré and log-Sobolev inequalities 288
III APPLICATIONS TO CONTROL THEORY 291
13 Second order Hamilton-Jacobi equations 293
13.1 Assumptions and setting of the problem 296
13.2 Hamilton-Jacobi equations with a Lipschitz Hamiltonian 300
13.2.1 Stationary Hamilton-Jacobi equations 302
13.3 Hamilton-Jacobi equation with a quadratic Hamiltonian 305
13.3.1 Stationary equation 308
13.4 Solution of the control problem 310
13.4.1 Finite horizon 310
13.4.2 Infinite horizon 312
13.4.3 The limit as $\varepsilon \rightarrow 0$ 314
14 Hamilton-Jacobi inclusions 316
14.1 Introduction 316
14.2 Excessive weights and an existence result 317
14.3 Weak solutions as value functions 324
14.4 Excessive measures for Wiener processes 328
IV APPENDICES 333
A Interpolation spaces 335
A. 1 The interpolation theorem 335
A. 2 Interpolation between a Banach space X and the domain of a linear operator in X 336
B Null controllability 338
B. 1 Definition of null controllability 338
B. 2 Main results 339
B. 3 Minimal energy 340
C Semiconcave functions and Hamilton-Jacobi semigroups 347
C. 1 Continuity modulus 347
C. 2 Semiconcave and semiconvex functions 348
C. 3 The Hamilton-Jacobi semigroups 351
Bibliography 358
Index 376

Chapter 1

Gaussian measures

This chapter is devoted to some basic results on Gaussian measures on separable Hilbert spaces, including the Cameron-Martin and Feldman-Hajek formulae. The greater part of the results are presented with complete proofs.

1.1 Introduction and preliminaries

We are given a real separable Hilbert space H (with norm $|\cdot|$ and inner product $\langle\cdot, \cdot\rangle)$. The space of all linear bounded operators from H into H, equipped with the operator norm $\|\cdot\|$, will be denoted by $L(H)$. If $T \in L(H)$, then T^{*} is the adjoint of T. Moreover, by $L^{+}(H)$ we shall denote the subset of $L(H)$ consisting of all nonnegative symmetric operators. Finally, we shall denote by $\mathcal{B}(H)$ the σ-algebra of all Borel subsets of H.

Before introducing Gaussian measures we need some results about trace class and Hilbert-Schmidt operators.

A linear bounded operator $R \in L(H)$ is said to be of trace class if there exist two sequences $\left(a_{k}\right),\left(b_{k}\right)$ in H such that

$$
\begin{equation*}
R y=\sum_{k=1}^{\infty}\left\langle y, a_{k}\right\rangle b_{k}, \quad y \in H \tag{1.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{k}\right|\left|b_{k}\right|<+\infty \tag{1.1.2}
\end{equation*}
$$

Notice that if (1.1.2) holds then the series in (1.1.1) is norm convergent. Moreover, it is not difficult to show that R is compact.

We shall denote by $L_{1}(H)$ the set of all operators of $L(H)$ of trace class. $L_{1}(H)$, endowed with the usual linear operations, is a Banach space with the norm

$$
\|R\|_{L_{1}(H)}=\inf \left\{\sum_{k=1}^{\infty}\left|a_{k}\right|\left|b_{k}\right|: R y=\sum_{k=1}^{\infty}\left\langle y, a_{k}\right\rangle b_{k}, \quad y \in H,\left(a_{k}\right),\left(b_{k}\right) \subset H\right\}
$$

We set $L_{1}^{+}(H)=L^{+}(H) \cap L_{1}(H)$. If an operator R is of trace class then its trace, $\operatorname{Tr} R$, is defined by the formula

$$
\operatorname{Tr} R=\sum_{j=1}^{\infty}\left\langle R e_{j}, e_{j}\right\rangle
$$

where $\left(e_{j}\right)$ is an orthonormal and complete basis on H. Notice that, if R is given by (1.1.1), we have

$$
\operatorname{Tr} R=\sum_{j=1}^{\infty}\left\langle a_{j}, b_{j}\right\rangle
$$

Thus the definition of the trace is independent on the choice of the basis and

$$
|\operatorname{Tr} R| \leq\|R\|_{L_{1}(H)}
$$

Proposition 1.1.1 Let $S \in L_{1}(H)$ and $T \in L(H)$. Then
(i) $S T, T S \in L_{1}(H)$ and

$$
\|T S\|_{L_{1}(H)} \leq\|S\|_{L_{1}(H)}\|T\|,\|S T\|_{L_{1}(H)} \leq\|S\|_{L_{1}(H)}\|T\|
$$

(ii) $\operatorname{Tr}(S T)=\operatorname{Tr}(T S)$.

Proof. (i) Assume that $S y=\sum_{k=1}^{\infty}\left\langle y, a_{k}\right\rangle b_{k}, y \in H$, where $\sum_{k=1}^{\infty}\left|a_{k}\right|\left|b_{k}\right|<+\infty$. Then

$$
S T y=\sum_{k=1}^{\infty}\left\langle y, T^{*} a_{k}\right\rangle b_{k}, y \in H
$$

and

$$
\sum_{k=1}^{\infty}\left|T^{*} a_{k}\right|\left|b_{k}\right| \leq\|T\| \sum_{k=1}^{\infty}\left|a_{k}\right|\left|b_{k}\right|
$$

It is therefore clear that $S T \in L_{1}(H)$ and $\|S T\|_{L_{1}(H)} \leq\|S\|_{L_{1}(H)}\|T\|$. Similarly we can prove that $\|T S\|_{L_{1}(H)} \leq\|S\|_{L_{1}(H)}\|T\|$.
(ii) From part (i) it follows that

$$
\operatorname{Tr}(S T)=\sum_{k=1}^{\infty}\left\langle b_{k}, T^{*} a_{k}\right\rangle=\sum_{k=1}^{\infty}\left\langle T b_{k}, a_{k}\right\rangle .
$$

In the same way $\operatorname{Tr}(T S)=\sum_{k=1}^{\infty}\left\langle a_{k}, T b_{k}\right\rangle$, and the conclusion follows.
We say that $R \in L(H)$ is of Hilbert-Schmidt class if there exists an orthonormal and complete basis $\left(e_{k}\right)$ in H such that

$$
\begin{equation*}
\sum_{k, j=1}^{\infty}\left|\left\langle S e_{k}, e_{j}\right\rangle\right|^{2}<+\infty \tag{1.1.3}
\end{equation*}
$$

If (1.1.3) holds then we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|S e_{k}\right|^{2}=\sum_{k, j=1}^{\infty}\left|\left\langle S e_{k}, e_{j}\right\rangle\right|^{2}=\sum_{k, j=1}^{\infty}\left|\left\langle e_{k}, S^{*} e_{j}\right\rangle\right|^{2}=\sum_{j=1}^{\infty}\left|S^{*} e_{j}\right|^{2} \tag{1.1.4}
\end{equation*}
$$

Now if $\left(f_{k}\right)$ is another complete orthonormal basis in H, we have

$$
\sum_{m=1}^{\infty}\left|S f_{m}\right|^{2}=\sum_{m, n=1}^{\infty}\left|\left\langle S f_{m}, e_{n}\right\rangle\right|^{2}=\sum_{m, n=1}^{\infty}\left|\left\langle f_{m}, S^{*} e_{n}\right\rangle\right|^{2}=\sum_{n=1}^{\infty}\left|S^{*} e_{n}\right|^{2}
$$

Thus, by (1.1.4) we see that the assertion (1.1.3) is independent of the choice of the complete orthonormal basis $\left(e_{k}\right)$. We shall denote by $L_{2}(H)$ the space of all Hilbert-Schmidt operators on $H . L_{2}(H)$, endowed with the norm

$$
\|S\|_{L_{2}(H)}^{2}=\sum_{k, j=1}^{\infty}\left|\left\langle S e_{k}, e_{j}\right\rangle\right|^{2}=\sum_{k=1}^{\infty}\left|S e_{k}\right|^{2}
$$

is a Banach space.

Proposition 1.1.2 Let $S, T \in L_{2}(H)$. Then $S T \in L_{1}(H)$ and

$$
\begin{equation*}
\|S T\|_{L_{1}(H)} \leq\|S\|_{L_{2}(H)}\|T\|_{L_{2}(H)} \tag{1.1.5}
\end{equation*}
$$

Proof. Let $\left(e_{k}\right)$ be a complete and orthonormal basis in H, then

$$
\begin{aligned}
T y & =\sum_{k=1}^{\infty}\left\langle T y, e_{k}\right\rangle e_{k}=\sum_{k=1}^{\infty}\left\langle y, T^{*} e_{k}\right\rangle e_{k} \\
S T y & =\sum_{k=1}^{\infty}\left\langle y, T^{*} e_{k}\right\rangle S e_{k}
\end{aligned}
$$

Consequently $S T \in L_{1}(H)$ and

$$
\begin{aligned}
\|S T\|_{L_{1}(H)} & \leq \sum_{k=1}^{\infty}\left|T^{*} e_{k}\right|\left|S e_{k}\right| \leq\left(\sum_{k=1}^{\infty}\left|T^{*} e_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{\infty}\left|S e_{k}\right|^{2}\right)^{1 / 2} \\
& =\|T\|_{L_{2}(H)}\|S\|_{L_{2}(H)}
\end{aligned}
$$

Therefore the conclusion follows.
Warning. If S and T are bounded operators, and $S T$ is of trace class then in general $T S$ is not, as the following example, provided by S. Peszat [183], shows.

Define two linear operators S and T on the product space $H \times H$, by

$$
S=\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right)
$$

Then

$$
S T=\left(\begin{array}{cc}
0 & 0 \\
B & 0
\end{array}\right), \quad T S=\left(\begin{array}{cc}
0 & A \\
0 & 0
\end{array}\right)
$$

and it is enough to take B of trace class and A not of trace class.
We have also the following result, see e.g. A. Pietsch [187].
Proposition 1.1.3 Assume that S is a compact self-adjoint operator, and that $\left(\lambda_{k}\right)$ are its eigenvalues (repeated according to their multiplicity).
(i) $S \in L_{1}(H)$ if and only if $\sum_{k=1}^{\infty}\left|\lambda_{k}\right|<+\infty$. Moreover $\|S\|_{L_{1}(H)}=\sum_{k=1}^{\infty}\left|\lambda_{k}\right|$, and $\operatorname{Tr} S=\sum_{k=1}^{\infty} \lambda_{k}$.
(ii) $S \in L_{2}(H)$ if and only if $\sum_{k=1}^{\infty}\left|\lambda_{k}\right|^{2}<+\infty$. Moreover

$$
\|S\|_{L_{2}(H)}=\left(\sum_{k=1}^{\infty}\left|\lambda_{k}\right|^{2}\right)^{1 / 2}
$$

More generally let S be a compact operator on H. Denote by $\left(\lambda_{k}\right)$ the sequence of all positive eigenvalues of the operator $\left(S^{*} S\right)^{1 / 2}$, repeated according to their multiplicity. Denote by $L_{p}(H), p>0$, the set of all operators S such that

$$
\begin{equation*}
\|S\|_{L_{p}(H)}=\left(\sum_{k=1}^{\infty} \lambda_{k}^{p}\right)^{1 / p}<+\infty \tag{1.1.6}
\end{equation*}
$$

Operators belonging to $L_{1}(H)$ and $L_{2}(H)$ are precisely the trace class and the Hilbert-Schmidt operators.

The following result holds, see N. Dunford and J. T. Schwartz [107].
Proposition 1.1.4 Let $S \in L_{p}(H), T \in L_{q}(H)$ with $p>0, q>0$. Then $S T \in L_{r}(H)$ with $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, and

$$
\begin{equation*}
\|T S\|_{L_{r}(H)} \leq 2^{1 / r}\|S\|_{L_{p}(H)}\|T\|_{L_{q}(H)} \tag{1.1.7}
\end{equation*}
$$

1.2 Definition and first properties of Gaussian measures

1.2.1 Measures in metric spaces

If E is a metric space, then $\mathcal{B}(E)$ will denote the Borel σ-algebra, that is the smallest σ-algebra of subsets of E which contains all closed (open) subsets of E.

Let metric spaces E_{1}, E_{2} be equipped with σ-fields $\mathcal{E}_{1}, \mathcal{E}_{2}$ respectively. Measurable mappings $X: E_{1} \rightarrow E_{2}$ will often be called random variables. If μ is a measure on $\left(E_{1}, \mathcal{E}_{1}\right)$, then its image by the transformation X will be denoted by $X \circ \mu$:

$$
X \circ \mu(A)=\mu\left(X^{-1}(A)\right), \quad A \in \mathcal{E}_{2}
$$

We call $X \circ \mu$ the law or the distribution of X, and we set $X \circ \mu=\mathcal{L}(X)$.
If ν and μ are two finite measures on (E, \mathcal{E}) such that $\Gamma \in \mathcal{E}, \mu(\Gamma)=0$ implies $\nu(\Gamma)=0$ then one writes $\nu \ll \mu$ and one says that ν is absolutely continuous with respect to μ. If there exist $A, B \in \mathcal{E}$ such that $A \cap B=\emptyset$, $\mu(A)=\nu(B)=1$, one says that μ and ν are singular.

If $\nu \ll \mu$ then by the Radon-Nikodým theorem there exists $g \in L^{1}(E, \mathcal{E}, \mu)$ nonnegative such that

$$
\nu(\Gamma)=\int_{\Gamma} g(x) \mu(d x), \quad \Gamma \in \mathcal{E}
$$

The function g is denoted by $\frac{d \nu}{d \mu}$.
If $\nu \ll \mu$ and $\mu \ll \nu$ then one says that μ and ν are equivalent and writes $\mu \sim \nu$.

We have the following change of variable formula. If φ is a nonnegative measurable real function on E_{2}, then

$$
\begin{equation*}
\int_{E_{1}} \varphi(X(x)) \mu(d x)=\int_{E_{2}} \varphi(y) X \circ \mu(d y) \tag{1.2.1}
\end{equation*}
$$

Let μ and ν be two measures on a separable Hilbert space H; if $T \circ \mu=T \circ \nu$ for any linear operator $T: H \rightarrow \mathbb{R}^{n}, n \in \mathbb{N}$, then $\mu=\nu$.

Random variables X_{1}, \ldots, X_{n} are said to be independent if

$$
\mathcal{L}\left(X_{1}, \ldots, X_{n}\right)=\mathcal{L}\left(X_{1}\right) \times \cdots \times \mathcal{L}\left(X_{n}\right)
$$

A family of random variables $\left(X_{\alpha}\right)_{\alpha \in A}$ is said to be independent, if any finite subset of the family is independent.

Probability measures on a separable Hilbert space H will always be regarded as defined on $\mathcal{B}(H)$. If μ is a probability measure on H, then its Fourier transform is defined by

$$
\hat{\mu}(\lambda)=\int_{H} e^{i\langle\lambda, x\rangle} \mu(d x), \lambda \in H
$$

$\hat{\mu}$ is called the characteristic function of μ. One can show that if the characteristic functions of two measures are identical, then the measures are identical as well.

1.2.2 Gaussian measures

We first define Gaussian measures on \mathbb{R}. If $a \in \mathbb{R}$ we set

$$
N_{a, 0}(d x)=\delta_{a}(d x)
$$

where δ_{a} is the Dirac measure at a. If moreover $\lambda>0$ we set

$$
N_{a, \lambda}(d x)=\frac{1}{\sqrt{2 \pi \lambda}} e^{-\frac{(x-a)^{2}}{2 \lambda}} d x
$$

The Fourier transform of $N_{a, \lambda}$ is given by

$$
\widehat{N_{a, \lambda}}(h)=\int_{\mathbb{R}} e^{i h x} N_{a, \lambda}(d x)=e^{i a h-\frac{1}{2} \lambda h^{2}}, h \in \mathbb{R}
$$

More generally we show now that in an arbitrary separable Hilbert space and for arbitrary $Q \in L_{1}^{+}(H)$ there exists a unique measure $N_{a, Q}$ such that

$$
\widehat{N_{a, \lambda}}(h)=\int_{H} e^{i\langle h, x\rangle} N_{a, Q}(d x)=e^{i\langle h, x\rangle-\frac{1}{2}\langle Q h, h\rangle}, h \in H .
$$

Let in fact $Q \in L_{1}^{+}(H)$. Then there exist a complete orthonormal system $\left(e_{k}\right)$ on H and a sequence of nonnegative numbers $\left(\lambda_{k}\right)$ such that $Q e_{k}=$ $\lambda_{k} e_{k}, k \in \mathbb{N}$. We set $x_{h}=\left\langle x, e_{h}\right\rangle, h \in \mathbb{N}$, and $P_{n} x=\sum_{k=1}^{n} x_{k} e_{k}, x \in H, n \in$ \mathbb{N}. Let us introduce an isomorphism γ from H into $\ell^{2}:\left({ }^{1}\right)$

$$
x \in H \rightarrow \gamma(x)=\left(x_{k}\right) \in \ell^{2} .
$$

In the following we shall always identify H with ℓ^{2}. In particular we shall write $P_{n} x=\left(x_{1}, \ldots, x_{n}\right), x \in \ell^{2}$.

A subset I of H of the form $I=\left\{x \in H:\left(x_{1}, \ldots, x_{n}\right) \in B\right\}$, where $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$, is said to be cylindrical. It is easy to see that the σ-algebra generated by all cylindrical subsets of H coincides with $\mathcal{B}(H)$.

Theorem 1.2.1 Let $a \in H, Q \in L_{1}^{+}(H)$. Then there exists a unique probability measure μ on $(H, \mathcal{B}(H))$ such that

$$
\begin{equation*}
\int_{H} e^{i\langle h, x\rangle} \mu(d x)=e^{i\langle a, h\rangle} e^{-\frac{1}{2}\langle Q h, h\rangle}, h \in H . \tag{1.2.2}
\end{equation*}
$$

Moreover μ is the restriction to H (identified with ℓ^{2}) of the product measure

$$
{\underset{k=1}{\times}}_{\infty} \mu_{k}=\stackrel{\infty}{k=1}_{\times} N_{a_{k}, \lambda_{k}},
$$

defined on $\left(\mathbb{R}^{\infty}, \mathcal{B}\left(\mathbb{R}^{\infty}\right)\right)$. $\left.{ }^{2}\right)$
We set $\mu=N_{a, Q}$, and call a the mean and Q the covariance operator of μ. Moreover $N_{0, Q}$ will be denoted by N_{Q}.
Proof of Theorem 1.2.1. Since a characteristic function uniquely determines the measure, we have only to prove existence.

Let us consider the sequence of Gaussian measures (μ_{k}) on \mathbb{R} defined as $\mu_{k}=N_{a_{k}, \lambda_{k}}, k \in \mathbb{N}$, and the product measure $\mu=\underset{k=1}{\times} \mu_{k}$ in \mathbb{R}^{∞}, see e.g

[^0]P. R. Halmos [141, $\S 38 . \mathrm{B}]$. We want to prove that μ is concentrated on ℓ^{2}, (that it is clearly a Borel subset of \mathbb{R}^{∞}). For this it is enough to show that
\[

$$
\begin{equation*}
\int_{\ell \infty}|x|_{\ell^{2}}^{2} \mu(d x)<+\infty \tag{1.2.3}
\end{equation*}
$$

\]

We have in fact, by the monotone convergence theorem,

$$
\begin{aligned}
\int_{\mathbb{R}^{\infty}}|x|_{\ell^{2}}^{2} \mu(d x) & =\sum_{k=1}^{\infty} \int_{\mathbb{R}^{\infty}} x_{k}^{2} \mu(d x)=\sum_{k=1}^{\infty}\left(\int_{\mathbb{R}}\left(x_{k}-a_{k}\right)^{2} \mu_{k}(d x)+a_{k}^{2}\right) \\
& =\sum_{k=1}^{\infty}\left(\lambda_{k}+a_{k}^{2}\right)=\operatorname{Tr} Q+|a|^{2}<+\infty .
\end{aligned}
$$

Now we consider the restriction of μ to ℓ^{2}, which we still denote by μ. We have to prove that (1.2.2) holds. Setting $\nu_{n}=\prod_{k=1}^{n} \mu_{k}$, we have

$$
\begin{aligned}
& \int_{\ell^{2}} e^{i\langle x, h\rangle} \mu(d x)=\lim _{n \rightarrow \infty} \int_{\ell^{2}} e^{i\left\langle P_{n} h, P_{n} x\right\rangle} \mu(d x) \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{n}} e^{i\left\langle P_{n} h, P_{n} x\right\rangle} \nu_{n}(d x)=\lim _{n \rightarrow \infty} e^{i\left\langle P_{n} h, P_{n} a\right\rangle-\frac{1}{2}\left\langle Q P_{n} h, P_{n} h\right\rangle} \\
& =e^{i\langle h, a\rangle-\frac{1}{2}\langle Q h, h\rangle} \cdot \square
\end{aligned}
$$

If the law of a random variable is a Gaussian measure, then the random variable is called Gaussian. It easily follows from Theorem 1.2.1 that a random variable X with values in H is Gaussian if and only if for any $h \in H$ the real valued random variable $\langle h, X\rangle$ is Gaussian.

Remark 1.2.2 From the proof of Theorem 1.2.1 it follows that

$$
\begin{equation*}
\int_{H}|x|^{2} N_{a, Q}(d x)=\operatorname{Tr} Q+|a|^{2} \tag{1.2.4}
\end{equation*}
$$

Proposition 1.2.3 Let $T \in L(H)$, and $a \in H$, and let $\Gamma x=T x+a, x \in H$. Then $\Gamma \circ N_{m, Q}=N_{T m+a, T Q T^{*}}$.

Proof. Notice that, by the change of variables formula (1.2.1), we have

$$
\begin{aligned}
& \int_{H} e^{i\langle\lambda, y\rangle} \Gamma \circ N_{m, Q}(d y)=\int_{H} e^{i\langle\lambda, \Gamma x\rangle} N_{m, Q}(d y) \\
& =\int_{H} e^{i\langle\lambda, T x+a\rangle} N_{m, Q}(d y)=e^{i\langle\lambda, a\rangle} e^{i\left\langle T^{*} \lambda, m\right\rangle-\frac{1}{2}\left\langle Q T^{*} \lambda, T^{*} \lambda\right\rangle} .
\end{aligned}
$$

This shows the result.

1.2.3 Computation of some Gaussian integrals

We are here given a Gaussian measure $N_{a, Q}$. We set

$$
L^{2}\left(H, N_{a, Q}\right)=L^{2}\left(H, \mathcal{B}(H), N_{a, Q}\right)
$$

The following identities can be easily proved, using (1.2.2).
Proposition 1.2.4 We have

$$
\begin{align*}
\int_{H} x N_{a, Q}(d x) & =a \tag{1.2.5}\\
\int_{H}\langle x-a, y\rangle\langle x-a, z\rangle N_{a, Q}(d x) & =\langle Q y, z\rangle . \tag{1.2.6}\\
\int_{H}|x-a|^{2} N_{a, Q}(d x) & =\operatorname{Tr} Q \tag{1.2.7}
\end{align*}
$$

Proof. We prove as instance (1.2.6). We have

$$
\int_{H} x N_{a, Q}(d x)=\lim _{n \rightarrow \infty} \int_{H} P_{n} x N_{a, Q}(d x)
$$

But

$$
\int_{H} P_{n} x N_{a, Q}(d x)=(2 \pi)^{-n / 2} \prod_{k=1}^{n} \int_{\mathbb{R}} x_{k} \lambda_{k}^{-1 / 2} e^{-\frac{\left(x_{k}-a_{k}\right)^{2}}{2 \lambda_{k}}} d x_{k}=a_{k}
$$

and the conclusion follows.
Proposition 1.2.5 For any $h \in H$, the exponential function E_{h}, defined as

$$
E_{h}(x)=e^{\langle h, x\rangle}, \quad x \in H
$$

belongs to $L^{p}\left(H, N_{a, Q}\right), p \geq 1$, and

$$
\begin{equation*}
\int_{H} e^{\langle h, x\rangle} N_{a, Q}(d x)=e^{\langle a, h\rangle} e^{\frac{1}{2}\langle Q h, h\rangle} \tag{1.2.8}
\end{equation*}
$$

Moreover the subspace of $L^{2}\left(H, N_{a, Q}\right)$ spanned by all $E_{h}, h \in H$, is dense on $L^{2}\left(H, N_{a, Q}\right)$.

Proof. We have

$$
\int_{H} e^{\left\langle P_{n} h, P_{n} x\right\rangle} N_{a, Q}(d x)=e^{\left\langle P_{n} a, P_{n} h\right\rangle} e^{\frac{1}{2}\left\langle Q P_{n} h, P_{n} h\right\rangle}
$$

Letting n tend to 0 this gives (1.2.8).
Let us prove the last statement. Let $\varphi \in L^{2}\left(H, N_{a, Q}\right)$ be such that

$$
\int_{H} e^{\langle h, x\rangle} \varphi(x) N_{a, Q}(d x)=0, \quad h \in H
$$

Denote by φ^{+}and φ^{-}the positive and negative parts of φ. Then

$$
\int_{H} e^{\langle h, x\rangle} \varphi^{+}(x) N_{a, Q}(d x)=\int_{H} e^{\langle h, x\rangle} \varphi^{-}(x) N_{a, Q}(d x), \quad h \in H
$$

Let us define two measures

$$
\mu(d x)=\varphi^{+}(x) N_{a, Q}(d x), \quad \nu(d x)=\varphi^{-}(x) N_{a, Q}(d x)
$$

Then μ and ν are finite measures such that

$$
\int_{H} e^{\langle h, x\rangle} \mu(d x)=\int_{H} e^{\langle h, x\rangle} \nu(d x), h \in H
$$

Let T be any linear transformation from H into $\mathbb{R}^{n}, n \in \mathbb{N}$. Then for any $\lambda \in \mathbb{R}^{n}$

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{\langle\lambda, z\rangle} T \circ \mu(d z) & =\int_{H} e^{\langle\lambda, T x\rangle} \mu(d x)=\int_{H} e^{\left.\left\langle T^{*} \lambda,\right\rangle\right\rangle} \mu(d x) \\
& =\int_{H} e^{\left\langle T^{*} \lambda, x\right\rangle} \nu(d x)=\int_{\mathbb{R}^{n}} e^{\langle\lambda, z\rangle} T \circ \nu(d z)
\end{aligned}
$$

By a well known finite dimensional result $T \circ \mu=T \circ \nu$. Consequently measures μ and ν are identical and so $\varphi=0$.

1.2.4 The reproducing kernel

Here we are given an operator $Q \in L_{1}^{+}(H)$. We denote as before by $\left(e_{k}\right)$ a complete orthonormal system in H and by $\left(\lambda_{k}\right)$ a sequence of positive numbers such that $Q e_{k}=\lambda_{k} e_{k}, k \in \mathbb{N}$.

The subspace $Q^{1 / 2}(H)$ is called the reproducing kernel of the measure N_{Q}. If Ker $Q=\{0\}, Q^{1 / 2}(H)$ is dense on H. In fact, if $x_{0} \in H$ is such that $\left\langle Q^{1 / 2} h, x_{0}\right\rangle=0$ for all $h \in H$, we have $Q^{1 / 2} x_{0}=0$ and so $Q x_{0}=0$, which yields $x_{0}=0$.

Let Ker $Q=\{0\}$. We are now going to introduce an isomorphism W from H into $L^{2}\left(H, N_{Q}\right)$ that will play an important rôle in the following. The isomorphism W is defined by

$$
f \in Q^{1 / 2}(H) \rightarrow W_{f} \in L^{2}\left(H, N_{Q}\right), \quad W_{f}(x)=\left\langle Q^{-1 / 2} f, x\right\rangle, x \in H
$$

By (1.2.7) it follows that

$$
\int_{H} W_{f}(x) W_{g}(x) N_{Q}(d x)=\langle f, g\rangle, f, g \in H
$$

Thus W is an isometry and it can be uniquely extended to all of H. It will be denoted by the same symbol. For any $f \in H, W_{f}$ is a real Gaussian random variable $N_{|f|^{2}}$.

More generally, for arbitrary elements $f_{1}, \ldots, f_{n},\left(W_{f_{1}}, \ldots, W_{f_{n}}\right)$ is a Gaussian vector with mean 0 and covariance matrix $\left(\left\langle f_{i}, f_{j}\right\rangle\right)$. If $\operatorname{Ker} Q \neq\{0\}$ then the trasformation $f \rightarrow W_{f}$ can be defined in exactly the same way but only for $f \in H_{0}=\overline{Q^{1 / 2}(H)}$. We will write in some cases $\left\langle Q^{-1 / 2} y, f\right\rangle$ instead of $W_{f}(y)$.

The proof of the following proposition is left as an exercise to the reader.
Proposition 1.2.6 For any orthonormal sequence $\left(f_{n}\right)$ in H, the family

$$
1, W_{f_{n}}, W_{f_{k}} W_{f_{l}}, 2^{-1 / 2}\left(W_{f_{m}}^{2}-1\right), m, n, k, l \in \mathbb{N}, k \neq l
$$

is orthonormal in $L^{2}\left(H, N_{Q}\right)$.
Next we consider the function $f \rightarrow e^{W_{f}}$.
Proposition 1.2.7 The transformation $f \rightarrow e^{W_{f}}$ acts continuously from H into $L^{2}\left(H, N_{Q}\right)$, and

$$
\begin{align*}
\int_{H} e^{W_{f}(x)} N_{Q}(d x) & =e^{\frac{1}{2}|f|^{2}} \\
\int_{H} e^{i \lambda W_{f}(x)} N_{Q}(d x) & =e^{-\frac{1}{2} \lambda^{2}|f|^{2}}, \lambda \in \mathbb{R} \tag{1.2.9}
\end{align*}
$$

Proof. Since W_{f} is Gaussian with law $N_{0,|f|^{2}}$, (1.2.9) follows. Moreover, taking into account (1.2.8) it follows that

$$
\begin{aligned}
& \int_{H}\left[e^{W_{f}}-e^{W_{g}}\right]^{2} d N_{Q}=\int_{H}\left[e^{2 W_{f}}-2 e^{W_{f+g}}+e^{2 W_{g}}\right] d N_{Q} \\
& =e^{2|f|^{2}}-2 e^{\frac{1}{2}|f+g|^{2}}+e^{2|g|^{2}}=\left[e^{|f|^{2}}-e^{|g|^{2}}\right]^{2}+2 e^{|f|^{2}+|g|^{2}}\left[1-e^{-\frac{1}{2}|f-g|^{2}}\right]
\end{aligned}
$$

which shows that W_{f} is locally uniformly continuous on H.
Let us define the determinant of $1+S$ where S is a compact self-adjoint operator in $L_{1}(H)$:

$$
\operatorname{det}(1+S)=\prod_{k=1}^{\infty}\left(1+s_{k}\right)
$$

where $\left(s_{k}\right)$ is the sequence of eigenvalues of S (repeated according to their multiplicity).

Proposition 1.2.8 Assume that M is a symmetric operator such that $Q^{1 / 2} M Q^{1 / 2}<1,\left({ }^{3}\right)$ and let $b \in H$. Then

$$
\begin{align*}
& \int_{H} \exp \left\{\frac{1}{2}\langle M y, y\rangle+\langle b, y\rangle\right\} N_{Q}(d y) \\
& =\left[\operatorname{det}\left(1-Q^{1 / 2} M Q^{1 / 2}\right)\right]^{-1 / 2} \exp \left\{\frac{1}{2}\left|\left(1-Q^{1 / 2} M Q^{1 / 2}\right)^{-1 / 2} Q^{1 / 2} b\right|^{2}\right\} \tag{1.2.10}
\end{align*}
$$

Proof. Let $\left(g_{n}\right)$ be an orthonormal basis for the operator $Q^{1 / 2} M Q^{1 / 2}$, and let $\left(\gamma_{n}\right)$ be the sequence of the corresponding eigenvalues.

Claim 1. We have

$$
\langle b, x\rangle=\sum_{k=1}^{\infty}\left\langle Q^{1 / 2} b, g_{n}\right\rangle W_{g_{n}}(x), N_{Q^{-}} \text {-a.e. }
$$

Claim 2. We have

$$
\langle M x, x\rangle=\sum_{n=1}^{\infty} \gamma_{n}\left|W_{g_{n}}(x)\right|^{2}, \quad N_{Q^{-a}} \text { a.e }
$$

the series being convergent in $L^{1}\left(H, N_{Q}\right)$.
We shall only prove the more difficult second claim.
Let $P_{N}=\sum_{k=1}^{N} e_{k} \otimes e_{k} .\left({ }^{4}\right)$ Then for any $x \in H$ we have

$$
\begin{aligned}
\left\langle M P_{N} x, P_{N} x\right\rangle & =\left\langle\left(Q^{1 / 2} M Q^{1 / 2}\right) Q^{-1 / 2} P_{N} x, Q^{-1 / 2} P_{N} x\right\rangle \\
& =\sum_{n=1}^{\infty}\left\langle\left(Q^{1 / 2} M Q^{1 / 2}\right) Q^{-1 / 2} P_{N} x, g_{n}\right\rangle\left\langle Q^{-1 / 2} P_{N} x, g_{n}\right\rangle \\
& =\sum_{n=1}^{\infty} \gamma_{n}\left|\left\langle Q^{-1 / 2} P_{N} x, g_{n}\right\rangle\right|^{2}
\end{aligned}
$$

Consequently, for each fixed x

$$
\left\langle M P_{N} x, P_{N} x\right\rangle=\sum_{n=1}^{\infty} \gamma_{n}\left|W_{P_{N} g_{n}}\right|^{2}, N \in \mathbb{N} .
$$

[^1]Moreover for each $L \in \mathbb{N}$

$$
\begin{aligned}
& \left.\int_{H}\left|\left\langle M P_{N} x, P_{N} x\right\rangle-\sum_{n=1}^{L} \gamma_{n}\right| W_{P_{N} g_{n}}\right|^{2} \mid N_{Q}(d x) \\
\leq & \sum_{n=L+1}^{\infty}\left|\gamma_{n}\right| \int_{H}\left|W_{P_{N} g_{n}}\right|^{2} N_{Q}(d x) \\
= & \sum_{n=L+1}^{\infty}\left|\gamma_{n}\right|\left|P_{N} g_{n}\right|^{2} \leq \sum_{n=L+1}^{\infty}\left|\gamma_{n}\right| .
\end{aligned}
$$

As $N \rightarrow \infty$ then $P_{N} x \rightarrow x$ and $W_{P_{N} g_{n}} \rightarrow W_{g_{n}}$ in $L^{2}\left(H, N_{Q}\right)$. Passing to subsequences if needed, and using the Fatou lemma, we see that

$$
\left.\int_{H}\left|\langle M x, x\rangle-\sum_{n=1}^{L} \gamma_{n}\right| W_{g_{n}}\right|^{2}\left|N_{Q}(d x) \leq \sum_{n=L+1}^{\infty}\right| \gamma_{n} \mid .
$$

Therefore the claim is proved.
By the claims it follows that

$$
\begin{aligned}
& \exp \left\{\frac{1}{2}\langle M x, x\rangle+\langle b, x\rangle\right\} \\
& =\lim _{L \rightarrow \infty} \exp \left\{\sum_{n=1}^{L} \frac{1}{2} \gamma_{n}\left|W_{g_{n}}(x)\right|^{2}+\left\langle Q^{1 / 2} b, g_{n}\right\rangle W g_{n}(x)\right\}
\end{aligned}
$$

with a.e. convergence with respect to N_{Q} for a suitable subsequence. Using the fact that $\left(W g_{n}\right)$ are independent Gaussian random variables, we obtain, by a direct calculation, for $p \geq 1$,

$$
\begin{aligned}
& \int_{H} \exp \left\{p \sum_{n=1}^{L} \frac{1}{2} \gamma_{n}\left|W_{g_{n}}(x)\right|^{2}+p\left\langle Q^{1 / 2} b, g_{n}\right\rangle W g_{n}(x)\right\} N_{Q}(d x) \\
= & {\left[\prod_{n=1}^{L}\left(1-p \gamma_{n}\right)\right]^{-1 / 2} \exp \left\{\frac{1}{2} \sum_{n=1}^{\infty} \frac{\left|\left\langle Q^{1 / 2} b, g_{n}\right\rangle\right|^{2}}{1-p \gamma_{n}}\right\} . }
\end{aligned}
$$

Since $\gamma_{n}<1$, and $\sum_{n=1}^{\infty}\left|\gamma_{n}\right|<\infty$, there exists $p>1$ such that $p \gamma_{n}<1$, for all $n \in \mathbb{N}$. Therefore

$$
\begin{aligned}
& \lim _{L \rightarrow \infty} \prod_{n=1}^{L}\left(1-p \gamma_{n}\right)^{-1 / 2} \exp \left\{\frac{1}{2} \frac{\left|\left\langle Q^{1 / 2} b, g_{n}\right\rangle\right|^{2}}{1-p \gamma_{n}}\right\} \\
& =\left[\prod_{n=1}^{\infty}\left(1-p \gamma_{n}\right)\right]^{-1 / 2} \exp \left\{\frac{1}{2} \sum_{n=1}^{\infty} \frac{\left|\left\langle Q^{1 / 2} b, g_{n}\right\rangle\right|^{2}}{1-p \gamma_{n}}\right\} .
\end{aligned}
$$

So the sequence $\left(\exp \left\{\sum_{n=1}^{L}\left[\frac{1}{2} \gamma_{n}\left|W_{g_{n}}(x)\right|^{2}+\left\langle Q^{1 / 2} b, g_{n}\right\rangle W_{g_{n}}(x)\right]\right\}\right)$ is uniformly integrable. Consequently, passing to the limit, we find

$$
\begin{aligned}
& \int_{H} \exp \{1 / 2\langle M y, y\rangle+\langle b, y\rangle\} N_{Q}(d y) \\
& =\lim _{L \rightarrow \infty} \int_{H} \exp \left\{\sum_{n=1}^{L}\left[1 / 2 \gamma_{n}\left|W_{g_{n}}(x)\right|^{2}+\left\langle Q^{1 / 2} b, g_{n}\right\rangle W_{g_{n}}(x)\right]\right\} N_{Q}(d x) \\
& =\lim _{L \rightarrow \infty} \prod_{n=1}^{L}\left(1-\gamma_{n}\right)^{-1 / 2} \exp \left\{\frac{1}{2} \frac{\left|\left\langle Q^{1 / 2} b, g_{n}\right\rangle\right|^{2}}{1-\gamma_{n}}\right\} \\
& =\prod_{n=1}^{\infty}\left(1-\gamma_{n}\right)^{-1 / 2} \exp \left\{\frac{1}{2} \frac{\left|\left\langle Q^{1 / 2} b, g_{n}\right\rangle\right|^{2}}{1-\gamma_{n}}\right\} \\
& =\left(\operatorname{det}\left(1-Q^{1 / 2} M Q^{1 / 2}\right)\right)^{-1 / 2} \exp \left\{\frac{1}{2}\left|\left(1-Q^{1 / 2} M Q^{1 / 2}\right)^{-1 / 2} Q^{1 / 2} b\right|^{2}\right\} .
\end{aligned}
$$

Remark 1.2.9 It follows from the proof of the proposition that

$$
\langle M x, x\rangle=\sum_{k=1}^{\infty} \gamma_{n} W_{g_{n}}^{2}(x)=\sqrt{2} \sum_{k=1}^{\infty} \gamma_{n}\left[2^{-1 / 2}\left(W_{g_{n}}^{2}(x)-1\right)\right]+\sum_{k=1}^{\infty} \gamma_{n}
$$

and so, by Proposition 1.2.6, we have

$$
\begin{aligned}
\int_{H}[\langle M x, x\rangle]^{2} N_{Q}(d x) & =2 \sum_{k=1}^{\infty} \gamma_{n}^{2}+\left(\sum_{k=1}^{\infty} \gamma_{n}\right)^{2} \\
& =2\left\|Q^{1 / 2} M Q^{1 / 2}\right\|_{L_{2}(H)}^{2}+\left(\operatorname{Tr} Q^{1 / 2} M Q^{1 / 2}\right)^{2} \\
& <+\infty
\end{aligned}
$$

Proposition 1.2.10 Let $T \in L_{1}(H)$. Then there exists the limit

$$
\left\langle T Q^{-1 / 2} y, Q^{-1 / 2} y\right\rangle:=\lim _{n \rightarrow \infty}\left\langle T Q^{-1 / 2} P_{n} y, Q^{-1 / 2} P_{n} y\right\rangle, N_{Q} \text {-a.e., }
$$

where $P_{n}=\sum_{k=1}^{n} e_{k} \otimes e_{k}$.
Moreover we have the following expansion in $L^{2}\left(H, N_{Q}\right)$:

$$
\begin{align*}
\left\langle T Q^{-1 / 2} y, Q^{-1 / 2} y\right\rangle= & \sum_{n=1}^{\infty}\left\langle T g_{n}, g_{n}\right\rangle+\sum_{m \neq n=1}^{\infty}\left\langle T g_{n}, g_{m}\right\rangle W_{g_{n}} W_{g_{m}} \\
& \times \sqrt{2} \sum_{n=1}^{\infty}\left\langle T g_{n}, g_{n}\right\rangle\left[2^{-1 / 2}\left(W_{g_{n}}^{2}-1\right)\right] \tag{1.2.11}
\end{align*}
$$

The proof of the following result is similar to that of Claim 2 in the proof of Proposition 1.2.8 and it is left to the reader.

Proposition 1.2.11 Assume that M is a symmetric trace-class operator such that $M<1,\left({ }^{5}\right)$ and $b \in H$. Then

$$
\begin{gather*}
\int_{H} \exp \left\{1 / 2\left\langle M Q^{-1 / 2} y, Q^{-1 / 2} y\right\rangle+\left\langle b, Q^{-1 / 2} y\right\rangle\right\} N_{Q}(d y) \\
=(\operatorname{det}(1-M))^{-1 / 2} e^{\frac{1}{2}\left|(1-M)^{-1 / 2} b\right|^{2}} \tag{1.2.12}
\end{gather*}
$$

1.3 Absolute continuity of Gaussian measures

We consider here two Gaussian measures μ, ν. We want to prove the FeldmanHajek theorem, that is they are either singular or equivalent.

[^2]In $\S 1.3 .1$ we recall some results on equivalence of measures on \mathbb{R}^{∞} including the Kakutani theorem. In $\S 1.3 .2$ we consider the case when $\mu=N_{Q}$ and $\nu=N_{a, Q}$ with $Q \in L_{1}^{+}(H)$ and $a \in H$, proving the Cameron-Martin formula. Finally in $\S 1.3 .3$ we consider the more difficult case when $\mu=N_{Q}$ and $\nu=N_{R}$ with $Q, R \in L_{1}^{+}(H)$.

1.3.1 Equivalence of product measures in \mathbb{R}^{∞}

It is convenient to introduce the notion of Hellinger integral.
Let μ, ν be probability measures on a measurable space (E, \mathcal{E}). Then $\lambda=\frac{1}{2}(\mu+\nu)$ is also a probability measure on (E, \mathcal{E}) and we have obviously

$$
\mu \ll \lambda, \quad \nu \ll \lambda
$$

We define the Hellinger integral by

$$
H(\mu, \nu)=\int_{E}\left[\frac{d \mu}{d \lambda}(x) \frac{d \nu}{d \lambda}(x)\right]^{1 / 2} \lambda(d x)
$$

Instead of $\frac{1}{2}(\mu+\nu)$ one could choose as λ any measure equivalent to $\frac{1}{2}(\mu+\nu)$ without changing the value of $H(\mu, \nu)$.

By using Hölder's inequality we see that

$$
|H(\mu, \nu)|^{2} \leq \int_{E} \frac{d \mu}{d \lambda}(x) \lambda(d x) \int_{E} \frac{d \nu}{d \lambda}(x) \lambda(d x)=1
$$

so that $0 \leq H(\mu, \nu) \leq 1$.
Exercise 1.3.1 (a) Let $\mu=N_{q}$ and $\nu=N_{a, q}$, where $a \in \mathbb{R}$ and $q>0$. Show that we have

$$
\begin{equation*}
H(\mu, \nu)=e^{-\frac{a^{2}}{4 q}} \tag{1.3.1}
\end{equation*}
$$

(b) Let $\mu=N_{q}$ and $\nu=N_{\rho}$, where $q, \rho>0$. Show that we have

$$
\begin{equation*}
H(\mu, \nu)=\left[\frac{4 q \rho}{(q+\rho)^{2}}\right]^{1 / 4} \tag{1.3.2}
\end{equation*}
$$

Proposition 1.3.2 Assume that $H(\mu, \nu)=0$. Then the measures μ and ν are singular.

Proof. Set $\alpha=\frac{d \mu}{d \lambda}, \beta=\frac{d \nu}{d \lambda}$. Since $H(\mu, \nu)=\int_{\Omega} \sqrt{\alpha \beta} d \lambda=0$, we have $\alpha \beta=0, \lambda$-a.e. Consequently, setting

$$
A=\{\omega \in \Omega: \alpha(\omega)=0\}, \quad B=\{\omega \in \Omega: \beta(\omega)=0\}
$$

we have $\lambda(A \cup B)=1$. This means that $\lambda(C)=0$ where $C=\Omega \backslash(A \cup B)$, and hence $\mu(C)=\nu(C)=0$. Then, as

$$
\mu(A)=\int_{A} \alpha d \lambda=0, \quad \nu(B)=\int_{B} \beta d \lambda=0
$$

we have that μ and ν are singular since

$$
\mu(A \cup C)=\nu(B)=0, \quad(A \cup C) \cap B=\emptyset
$$

Proposition 1.3.3 Let $\mathcal{G} \subset \mathcal{E}$ be a σ-algebra, and let $\mu_{\mathcal{G}}$ and $\nu_{\mathcal{G}}$ be the restrictions of μ and ν to (E, \mathcal{G}). Then we have $H(\mu, \nu) \leq H\left(\mu_{\mathcal{G}}, \nu_{\mathcal{G}}\right)$.

Proof. Let $\lambda_{\mathcal{G}}$ be the restriction of λ to (E, \mathcal{G}). It is easy to check that

$$
\frac{d \mu_{\mathcal{G}}}{d \lambda_{\mathcal{G}}}=E_{\lambda}\left(\left.\frac{d \mu}{d \lambda} \right\rvert\, \mathcal{G}\right) \quad \frac{d \nu_{\mathcal{G}}}{d \lambda_{\mathcal{G}}}=E_{\lambda}\left(\left.\frac{d \nu}{d \lambda} \right\rvert\, \mathcal{G}\right), \lambda \text {-a.e. }\left({ }^{6}\right)
$$

Consequently we have $\left({ }^{7}\right)$

$$
H\left(\mu_{\mathcal{G}}, \nu_{\mathcal{G}}\right)=\int_{E}\left[\mathbb{E}_{\lambda}\left(\left.\frac{d \mu}{d \lambda} \right\rvert\, \mathcal{G}\right) \mathbb{E}_{\lambda}\left(\left.\frac{d \nu}{d \lambda} \right\rvert\, \mathcal{G}\right)\right]^{1 / 2} d \lambda
$$

Since λ-a.e.

$$
\frac{\left[\frac{d \mu}{d \lambda} \frac{d \nu}{d \lambda}\right]^{1 / 2}}{\left[\mathbb{E}_{\lambda}\left(\left.\frac{d \mu}{d \lambda} \right\rvert\, \mathcal{G}\right) \mathbb{E}_{\lambda}\left(\left.\frac{d \nu}{d \lambda} \right\rvert\, \mathcal{G}\right)\right]^{1 / 2}} \leq \frac{1}{2}\left(\frac{\frac{d \mu}{d \lambda}}{\mathbb{E}_{\lambda}\left(\left.\frac{d \mu}{d \lambda} \right\rvert\, \mathcal{G}\right)}+\frac{\frac{d \nu}{d \lambda}}{\mathbb{E}_{\lambda}\left(\left.\frac{d \nu}{d \lambda} \right\rvert\, \mathcal{G}\right)}\right)
$$

taking conditional expectations of both sides one finds, λ-a.e.,

$$
\begin{equation*}
\left[\mathbb{E}_{\lambda}\left(\left.\frac{d \mu}{d \lambda} \right\rvert\, \mathcal{G}\right) \mathbb{E}_{\lambda}\left(\left.\frac{d \nu}{d \lambda} \right\rvert\, \mathcal{G}\right)\right]^{1 / 2} \geq \mathbb{E}_{\lambda}\left(\left.\left(\frac{d \mu}{d \lambda}\right)^{1 / 2}\left(\frac{d \nu}{d \lambda}\right)^{1 / 2} \right\rvert\, \mathcal{G}\right) \tag{1.3.3}
\end{equation*}
$$

[^3]Integrating with respect to λ both sides of (1.3.3), the required result follows.

Now let us consider two sequences of measures $\left(\mu_{k}\right)$ and $\left(\nu_{k}\right)$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\nu_{k} \sim \mu_{k}$ for all $k \in \mathbb{N}$. We set $\lambda_{k}=\frac{1}{2}\left(\mu_{k}+\nu_{k}\right)$, and we consider the Hellinger integral

$$
H\left(\mu_{k}, \nu_{k}\right)=\int_{\mathbb{R}}\left[\frac{d \mu_{k}}{d \lambda_{k}}(x) \frac{d \nu_{k}}{d \lambda_{k}}(x)\right]^{1 / 2} \lambda_{k}(d x), k \in \mathbb{N} .
$$

Remark 1.3.4 Since $\left(\mu_{k}\right)$ and $\left(\nu_{k}\right)$ are equivalent, we have

$$
\frac{d \mu_{k}}{d \lambda_{k}} \frac{d \nu_{k}}{d \lambda_{k}}=\frac{d \mu_{k}}{d \lambda_{k}} \frac{d \nu_{k}}{d \mu_{k}} \frac{d \mu_{k}}{d \lambda_{k}}=\frac{d \nu_{k}}{d \mu_{k}}\left(\frac{d \mu_{k}}{d \lambda_{k}}\right)^{2}
$$

Thus

$$
\begin{equation*}
H\left(\mu_{k}, \nu_{k}\right)=\int_{\mathbb{R}}\left[\frac{d \nu_{k}}{d \mu_{k}}(x)\right]^{1 / 2} \mu_{k}(d x) \tag{1.3.4}
\end{equation*}
$$

We also consider the product measures on \mathbb{R}^{∞}

$$
\mu=\prod_{k=1}^{\infty} \mu_{k}, \quad \nu=\prod_{k=1}^{\infty} \nu_{k},
$$

and the corresponding Hellinger integral $H(\mu, \nu)$. As is easily checked we have

$$
H(\mu, \nu)=\prod_{k=1}^{\infty} H\left(\mu_{k}, \nu_{k}\right)
$$

Proposition 1.3.5 (Kakutani) If $H(\mu, \nu)>0$ then μ and ν are equivalent. Moreover

$$
\begin{equation*}
f(x):=\frac{d \nu}{d \mu}(x)=\prod_{k=1}^{\infty} \frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right), x \in \mathbb{R}^{\infty}, \mu \text {-a.e. } \tag{1.3.5}
\end{equation*}
$$

Proof. We set

$$
f_{n}(x)=\prod_{k=1}^{n} \frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right), x \in \mathbb{R}^{\infty}, n \in \mathbb{N}
$$

We are going to prove that the sequence $\left(f_{n}\right)$ is convergent on $L^{1}\left(\mathbb{R}^{\infty}, \mathcal{B}\left(\mathbb{R}^{\infty}\right), \mu\right)$. Let $m, n \in \mathbb{N}$, then we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{\infty}}\left|f_{n+m}^{1 / 2}(x)-f_{n}^{1 / 2}(x)\right|^{2} \mu(d x) \\
& =\left.\int_{\mathbb{R}^{\infty}} \prod_{k=1}^{n} \frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right)\right|_{k=n+1} ^{n+m}\left(\frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right)\right)^{1 / 2}-\left.1\right|^{2} \mu(d x) \\
& =\prod_{k=1}^{n} \int_{\mathbb{R}^{\infty}} \frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right) \mu(d x) \int_{\mathbb{R}^{\infty}}\left|\prod_{k=n+1}^{n+m}\left(\frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right)\right)^{1 / 2}-1\right|^{2} \mu(d x) .
\end{aligned}
$$

Consequently

$$
\begin{align*}
& \int_{\mathbb{R}^{\infty}}\left|f_{n+p}^{1 / 2}(x)-f_{n}^{1 / 2}(x)\right|^{2} \mu(d x) \\
& =\int_{\mathbb{R}^{\infty}}\left[\prod_{k=n+1}^{n+p} \frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right)-2 \prod_{k=n+1}^{n+p}\left(\frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right)\right)^{1 / 2}+1\right] \mu(d x) \\
& =2\left(1-\prod_{k=n+1}^{n+p} \int_{\mathbb{R}}\left(\frac{d \nu_{k}}{d \mu_{k}}\left(x_{k}\right)\right)^{1 / 2} \mu_{k}\left(d x_{k}\right)\right) \\
& =2\left(1-\prod_{k=n+1}^{n+p} H\left(\mu_{k}, \nu_{k}\right)\right) \tag{1.3.6}
\end{align*}
$$

On the other hand we know by assumption that

$$
H(\mu, \nu)=\prod_{k=1}^{\infty} H\left(\mu_{k}, \nu_{k}\right)>0
$$

or, equivalently, that

$$
-\log H(\mu, \nu)=-\sum_{k=1}^{\infty} \log \left[H\left(\mu_{k}, \nu_{k}\right)\right]<+\infty
$$

Consequently, for any $\varepsilon>0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that if $n>n_{\varepsilon}$ and $p \in \mathbb{N}$, we have

$$
-\sum_{k=n+1}^{n+p} \log \left[H\left(\mu_{k}, \nu_{k}\right)\right]<\varepsilon
$$

By (1.3.6) if $n>n_{\varepsilon}$ we have

$$
\int_{\mathbb{R}^{\infty}}\left|\sqrt{f_{n+p}}-\sqrt{f_{n}}\right|^{2} d \mu \leq 2\left(1-e^{-\varepsilon)}\right.
$$

Thus the sequence $\left(f_{n}^{1 / 2}\right)$ is convergent on $L^{2}\left(\mathbb{R}^{\infty}, \mathcal{B}\left(\mathbb{R}^{\infty}\right), \mu\right)$ to some function $f^{1 / 2}$. Therefore $f_{n} \rightarrow f$ in $L^{1}\left(\mathbb{R}^{\infty}, \mathcal{B}\left(\mathbb{R}^{\infty}\right), \mu\right)$.

Finally, we prove that $\nu \ll \mu$ and $f=\frac{d \nu}{d \mu}$. Let φ be a continuous bounded Borel function on \mathbb{R}^{∞}, and set $\varphi_{n}(x)=\varphi\left(P_{n}(x)\right), x \in \mathbb{R}^{\infty}$, where $P_{n} x=\left\{x_{1}, \ldots, x_{n}, 0,0, \ldots\right\}$. Then we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{\infty}} \varphi\left(P_{n} x\right) \nu(d x)=\int_{\mathbb{R}^{n}} \varphi\left(P_{n} x\right) \nu_{1}\left(d x_{1}\right) \ldots \nu_{n}\left(d x_{n}\right) \\
& =\int_{\mathbb{R}^{n}} \varphi\left(P_{n} x\right) \frac{d \nu_{1}}{d \mu_{1}}\left(x_{1}\right) \ldots \frac{d \nu_{n}}{d \mu_{n}}\left(x_{n}\right) \mu_{1}\left(d x_{1}\right) \ldots \mu_{n}\left(d x_{n}\right) \\
& =\int_{\mathbb{R}^{\infty}} \varphi\left(P_{n} x\right) f_{n}(x) \mu(d x)
\end{aligned}
$$

Letting n tend to infinity, we find

$$
\int_{\mathbb{R}^{\infty}} \varphi(x) \nu(d x)=\int_{\mathbb{R}^{\infty}} \varphi(x) f(x) \mu(d x)
$$

so that $\nu \ll \mu$. Finally, by exchanging the rôles of μ and ν, we find $\mu \ll \nu$.

1.3.2 The Cameron-Martin formula

We consider here the measures $\mu=N_{a, Q}$ and $\nu=N_{Q}$, and for any $a \in$ $Q^{1 / 2}(H)$ we set

$$
\begin{equation*}
\rho_{a}(x)=\exp \left\{-\frac{1}{2}\left|Q^{-1 / 2} a\right|^{2}+\left\langle Q^{-1 / 2} a, Q^{-1 / 2} x\right\rangle\right\}, x \in H \tag{1.3.7}
\end{equation*}
$$

$\underline{\text { Let us recall, see } \S 1.2 .4 \text {, that } W_{f}(x)=\left\langle f, Q^{-1 / 2} x\right\rangle \text { was defined for all } f \in, ~}$ $\overline{Q^{1 / 2}(H)}$. Since $Q^{-1 / 2} a \in Q^{1 / 2}(H)$ the definition (1.3.7) is meaningful.

[^0]: ${ }^{1}$ For any $p \geq 1$, we denote by ℓ^{p} the Banach space of all sequences $\left(x_{k}\right)$ of real numbers such that $|x|_{p}:=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}<+\infty$.
 ${ }^{2} \mathrm{We}$ shall consider \mathbb{R}^{∞} as a metric space with the distance $d(x, y) \quad:=$ $\sum_{k=1}^{\infty} 2^{-k} \frac{\left|x_{k}-y_{k}\right|}{1+\left|x_{k}-y_{k}\right|}, x, y \in \mathbb{R}^{\infty}$

[^1]: ${ }^{3}$ This means that $\left\langle Q^{1 / 2} M Q^{1 / 2} x, x\right\rangle<|x|^{2}$ for any $x \in H$ different from 0.
 ${ }^{4}$ We rember that $\left(e_{k}\right)$ is the sequence of eigenvectors of Q.

[^2]: ${ }^{5}$ That is $\langle M x, x\rangle<|x|^{2}$ for all $x \neq 0$.

[^3]: ${ }^{6} E_{\lambda}(\eta \mid \mathcal{G})$ is the conditional expectation of the random variable η with respect to \mathcal{G} and measure λ.
 ${ }^{7}$ For positive numbers $a, b, c, d, \sqrt{\frac{a b}{c d}} \leq \frac{1}{2}\left(\frac{a}{c}+\frac{b}{d}\right)$.

