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Second-order perturbation corrections to singles and doubles
coupled-cluster methods: General theory and application to the valence
optimized doubles model
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We present a general perturbative method for correcting a singles and doubles coupled-cluster
energy. The coupled-cluster wave function is used to define a similarity-transformed Hamiltonian,
which is partitioned into a zeroth-order part that the reference problem solves exactly plus a
first-order perturbation. Standard perturbation theory through second-order provides the leading
correction. Applied to the valence optimized doubles~VOD! approximation to the full-valence
complete active space self-consistent field method, the second-order correction, which we call~2!,
captures dynamical correlation effects through external single, double, and semi-internal triple and
quadruple substitutions. A factorization approximation reduces the cost of the quadruple
substitutions to only sixth order in the size of the molecule. A series of numerical tests are presented
showing that VOD~2! is stable and well-behaved provided that the VOD reference is also stable.
The second-order correction is also general to standard unwindowed coupled-cluster energies such
as the coupled-cluster singles and doubles~CCSD! method itself, and the equations presented here
fully define the corresponding CCSD~2! energy. © 2000 American Institute of Physics.
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I. INTRODUCTION

Methods for approximately solving for the electronic e
ergy of a molecular system often exploit a partitioning of t
energy into two terms. The first contribution solves a ref
ence problem that contains the leading energetic contr
tions. In general this problem must be solved in an iterat
or self-consistent fashion. The second contribution, which
in general much smaller, is often approximately obtained
a noniterative~perturbative! correction to the reference prob
lem. The simplified treatment of the correction makes
overall theory far more feasible than a full treatment of t
entire problem. At the same time it should be more accu
than neglecting the correction entirely.

The standard example is the partitioning of the electro
energy into a mean-field part~typically 99% of the total en-
ergy!, plus a correlation correction, which can be evalua
by perturbation theory~or other methods!. Second-order per
turbation theory~MP2!1 is the simplest example of this type
A second standard example is to break the correlation
rection itself into two pieces. The leading correlation con
butions are treated self-consistently, such as by coup
cluster theory, and the residual correction is then evalua
noniteratively. The QCISD~T!2 and CCSD~T!3 methods are
of this type: A reference problem is solved in the space of
single and double substitutions, and the residual contribu
of triple substitutions is then obtained as a noniterative c
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rection. This dramatically improves the accuracy relative
adding no such correction and at the same time dramatic
reduces the cost relative to self-consistent treatment of
triple substitutions.

The third example of such a splitting is the one th
relates to this work. It is conceptually and practically use
to split the correlation energy into a part associated w
correlations that involve substitutions of valence occup
orbitals by valence unoccupied orbitals. The correlation
ergy in this limited full valence space is sufficient to descri
the leading contributions to bond-breaking processes, as
as the structure of nonclosed shell species such as diradi
This ‘‘nondynamical’’ correlation energy4–6 requires a much
higher level of treatment than the remaining ‘‘dynamica
correlations, which are far more atomiclike in nature. A co
plete description of electron correlations within the full v
lence space is given by solution of the Schro¨dinger equation
in this space. This is accomplished in the complete ac
space self-consistent field~CASSCF!7 method. However, the
cost scales factorially with the number of atoms in the m
ecule. Therefore, approximations are necessary even
quite small systems.

We have recently shown that a very accurate approxim
tion to full valence CASSCF can be obtained with a couple
cluster wave function where the substitutions are restricte
lie in an active space whose orbitals are variationa
optimized.8 The simplest version of this theory is to restri
the cluster substitutions to doubles, yielding the valen
optimized-orbital coupled-cluster doubles~VOO-CCD!8

method. For conciseness we refer to this simply as vale

te
8 © 2000 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



e
in

ca
o

of
-

t
fo
ut
s
ns
-
c

ni
an

fe

i
il
i

th

tio
t

nc
el
-

le
d
n
fin
th

ar
ue
o
er
th
t

te

pe

te
ts
ne
th

-
th

ual

ith
nd
s.
-

n–

ter
ua-
no-
en

op-

n,

el,
ce.
ich
y.

e

.

the

so
y

3549J. Chem. Phys., Vol. 113, No. 9, 1 September 2000 Perturbation corrections
optimized doubles~VOD!. VOD provides a near quantitativ
approximation to full valence CASSCF for processes
which no more than one chemical bond is broken in a lo
spatial region. In addition, VOD reduces the factorial cost
full valence CASSCF to scaling with only the sixth power
molecule size~and indeed, it can be lower with local corre
lation approximations!.

The question we seek to address in this work is how
define a perturbative correction to VOD that can account
the omitted dynamical correlation contributions witho
greatly increasing the computational cost. The methods u
to perturbatively correct full valence CASSCF calculatio
~such as CASPT2,9,10 and alternatives! are not applicable be
cause of the coupled-cluster nature of the VOD referen
Furthermore, because VOD as a reference function is sig
cantly more flexible than an SCF reference, it is import
that the correction should not be based on Mo¨ller–Plesset
theory, as that perturbation theory fails when the SCF re
ence becomes poor.

This paper presents our solution to this problem. It
based on defining a similarity-transformation of the Ham
tonian using the truncated cluster amplitudes. This Ham
tonian is then partitioned into a zeroth-order part that
truncated coupled-cluster problem~VOD! solves exactly
plus a first-order perturbation. Second-order perturba
theory is then employed to obtain the leading correction
the VOD energy. We term the resulting method VOD~2! for
obvious reasons. As it depends only on the VOD refere
~specifically it does not depend in any way upon mean-fi
Hartree–Fock theory!, VOD~2! should be stable and well
behaved whenever the VOD reference itself is. VOD~2! con-
tains four separate terms that involve single, double, trip
and quadruple substitutions. We consider these terms in
tail, and force a factorization of the quadruple substitutio
to ensure that the computational cost is reasonable. The
section of the paper presents a series of calculations
explore the performance of VOD~2! numerically.

It may be evident to the reader that the solution we
proposing is actually somewhat more general than the q
tion we were originally asking. A second-order correction
this kind can, in fact, be directly applied to any clust
method based on single and double substitutions. As
correction is designed to be robust even in cases where
Hartree–Fock single reference is poor, it presents an in
esting alternative to methods of the CCSD~T! and QCISD~T!
type that are still dependent upon the single reference
forming well. In a separate publication11 we explore this ap-
proach in the context of the optimized-orbital coupled-clus
doubles method12–15and show that significant improvemen
against the standard triples corrections are, in fact, obtai
Elsewhere we shall also report on the related problem of
second-order correction to the CCSD12 and QCISD2 meth-
ods.

II. THEORY

A. VOD

We will begin with a quick overview of VOD. The pro
cess of choosing an active space consists of dividing up
Downloaded 11 Jan 2001  to 130.207.35.109.  Redistribution subject t
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orbital space into active and inactive occupied and virt
orbitals. We will use the lettersi , j ,k,l ,... to refer to any
spin–orbital occupied in the reference determinant, w
I ,J,K,L,... standing for active occupied spin–orbitals, a
i 8, j 8,k8,l 8,... standing for inactive occupied spin–orbital
Similarly, a,b,c,d,... will refer to any spin–orbital unoccu
pied in the reference determinant, withA,B,C,D,... stand-
ing for active unoccupied spin–orbitals, anda8,b8,c8,d8,...
standing for inactive unoccupied spin–orbitals. For spi
orbitals of unspecified occupancy we will usep,q,r ,s,...,
with capitals and primes carrying their same meaning. La
in this paper a recognition of the tensorial nature of the eq
tions is essential. Therefore, we will also use the tensor
menclature introduced in Ref. 16, with all quantities writt
in the mixed representation.

Using this notation, the VOD equations are8,14

^0ue2T2HNeT2u0&5Ecc, ~1!

^FddIJ
AB ue2T2HNeT2u0&50, ~2!

C5C0U~u!, ~3!

]E

]U~u!

]U~u!

]u
50. ~4!

Here, u0& is the reference determinant determined by the
timization procedure,

HN5H2^0uHu0&5 f dq
p $ap

†aq%1 1
4Wddrs

pq $ap
†aq

†asar%,
~5!

is the normal-product Hamiltonian in second quantizatio
and

T25 1
4tddIJ

AB $aA
†aIaB

†aJ%, ~6!

is the coupled-cluster excitation operator. In the VOD mod
T2 consists of only double excitations in the active spa
The first equation defines the coupled-cluster energy, wh
in the VOD model is the nondynamical correlation energ
The total energy is thenE5Ecc1^0uHu0&. Solving the sec-
ond equation gives the cluster amplitudes. Also,C is the
molecular orbital matrix. It is defined as the product of som
set of guess orbitalsC0 and a transformation matrixU, pa-
rameterized by a set of orbital transformation anglesu.14

Together, Eqs.~3! and~4! define the variationally optimized
molecular orbitals. Note thate2THNeT5(HNeT)c , where the
subscript c means that the equations must be connected

For the current work it will be helpful to rewrite Eqs.~1!
and ~2! as

^0u~11L2!e2T2HNeT2u0&5F, ~7!

where

L25 1
4lddAB

IJ $aI
†aAaJ

†aB%, ~8!

is a double de-excitation operator which serves as
coupled-cluster form of theZ vector from the Handy–
SchaeferZ-vector method.17 Equation~7! is known as the
Lambda functional.18 The equations forT can be derived by
taking the derivative of Eq.~7! with respect to thel ampli-
tudes and setting the resultant equations to zero. Doing
reproduces Eq.~2!. Similarly, theL equations are derived b
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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setting to zero the derivatives of Eq.~7! with respect to thet
amplitudes. Hence, the value ofF in Eq. ~7! is stationary
with respect to variations of both thet andl amplitudes, and
at stationarity it has as its numerical value the coupl
cluster energy.

B. Partitioning technique

To derive the dynamical energy correction, we will sta
with a Löwdin-style partitioning19 of a similarity-
transformed HamiltonianH̄. The definition ofH̄ for VOD
will be given later, but for now it is only necessary to no
that H̄ is not Hermitian. Since it is not Hermitian, it ha
different right-hand ~R! and left-hand ~L! eigenvectors.
However, the right- and left-hand eigenvalues are the sa
and the eigenvectors form a biorthogonal set

^0uLiRj u0&5Ci j d i j . ~9!

The first step is to divide the space of all possib
n-electron determinants~uh&! formed from our set of orbitals
into a primary space~up&! and a secondary space~uq&! such
that up&%uq&5uh&. We will discuss the appropriate choice
up& and uq& later.

Next, we will write the problem of finding the exac
eigenvalues ofH̄, which are the same as the exact eigenv
ues of the untransformed Hamiltonian, as

F H̄pp H̄pq

H̄qp H̄qq
G FRp

Rq
G5EexactFRp

Rq
G , ~10!

whereRp andRq are the projections ofR into the up& space
and uq& space, respectively. Expanding Eq.~10! gives

H̄ppRp1H̄pqRq5EexactRp, ~11!

H̄qpRp1H̄qqRq5EexactRq. ~12!

Solving for Rq in Eq. ~12! yields

Rq5~Eexact12H̄qq!21H̄qpRp, ~13!

where1 is a unit matrix of dimensionuq& by uq&. Substituting
for Rq back into Eq.~11!, we get an energy-dependent effe
tive Hamiltonian only over theup& space, but whose eigen
values are still exact,

H̄pp
effRp5$H̄pp1H̄pq~Eexact12H̄qq!21H̄qp%Rp5EexactRp.

~14!

Although this eigenvalue equation is only over the reduc
space, it is not computationally useful, since it involves
inverse of a huge matrix~in the uq& space!, and the energy
appears on both sides.

If we multiply on the left byLp ~the projection ofL onto
the up& space! and integrate, we get an expression for t
energy

Eexact̂ 0uLpRpu0&5^0uLp$H̄pp1H̄pq

3~Eexact12H̄qq!21H̄qp%Rpu0&. ~15!

To make this into a computationally useful formula, it
necessary to expand the inverse in some perturbation se
We will split H̄ into a zeroth-order partH̄ @0# and a first-order
Downloaded 11 Jan 2001  to 130.207.35.109.  Redistribution subject t
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part H̄ @1#. Similarly, we will split Eexact into a zeroth-order
part E@0# and higher order parts (E@1#,E@2#,E@3#,...) referred
to collectively asDE. We will chooseH̄ @0# to consist ofH̄pp

and part ofH̄qq. The rest ofH̄ will be considered first order
Using these definitions and expanding the inverse in Eq.~15!
gives

~Eexact12H̄qq!215~E@0#11DE12H̄qq
@0#2H̄qq

@1#!21

5$~E@0#12H̄qq
@0#!@12~E@0#12H̄qq

@0#!21

3~H̄qq
@1#2DE1!#%21

5~E@0#12H̄qq
@0#!211~E@0#12H̄qq

@0#!21

3~H̄qq
@1#2DE1!~E@0#12H̄qq

@0#!21

1~E@0#12H̄qq
@0#!21~H̄qq

@1#2DE1!

3~E@0#12H̄qq
@0#!21~H̄qq

@1#2DE1!

3~E@0#12H̄qq
@0#!211¯ . ~16!

Finally, we need to expandRp andLp as

Rp5Rp
@0#1Rp

@2#1Rp
@3#1Rp

@4#1¯ , ~17!

and

Lp5Lp
@0#1Lp

@2#1Lp
@3#1Lp

@4#1¯ . ~18!

Neither Rp nor Lp can have a first-order component, sin
H̄ @1# acting on aup& space function gives only auq& space
contribution. Substituting Eqs.~16!–~18! into Eq. ~15! and
collecting orders yields

E@0#^0uLp
@0#Rp

@0#u0&5^0uLp
@0#H̄pp

@0#Rp
@0#u0&, ~19!

E@1#50, ~20!

E@2#^0uLp
@0#Rp

@0#u0&1E@0#^0uLp
@2#Rp

@0#u0&

1E@0#^0uLp
@0#Rp

@2#u0&

5^0uLp
@0#H̄pq

@1#~E@0#12H̄qq
@0#!21H̄qp

@1#Rp
@0#u0&

1^0uLp
@2#H̄pp

@0#Rp
@0#u0&1^0uLp

@0#H̄pp
@0#Rp

@2#u0&. ~21!

C. VOD„2…

The above equations are general for any similari
transformed Hamiltonian, but here we want to focus on
dynamical correlation correction to VOD. Therefore, we d
fine the similarity-transformed Hamiltonian,H̄, as

H̄5e2THNeT

5~HNeT!c

5F̄dq
p $ap

†aq%1 1
4W̄ddrs

pq $ap
†aq

†asar%

1 1
36W̄dddstu

pqr $ap
†aq

†ar
†auatas%

1 1
576W̄ddddtuvw

pqrs $ap
†aq

†ar
†as

†awavauat%1¯ . ~22!

Note that sinceT contains up to double excitations,H̄ con-
tains up to six-body terms. However, only up to four-bo
terms appear in the VOD~2! equations. The one- and two
body terms inH̄ are
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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F̄d i
a 5 f d i

a 1tddIM
AE f dE

M 1 1
2tddIM

EF WddEF
aM

2 1
2tddMN

AE Wdd iE
MN , ~23!

F̄db
a 5 f db

a 2 1
2tddMN

AE WddbE
MN , ~24!

F̄d j
i 5 f d j

i 1 1
2tddJM

EF WddEF
iM , ~25!

F̄da
i 5 f da

i , ~26!

W̄dd i j
ab 5Wdd i j

ab 2P~ i j !tddMJ
AB f d i

M 1P~ab!tddIJ
EB f dE

a

1 1
2tddIJ

EF WddEF
ab 1 1

2tddMN
AB Wdd i j

MN

2P~ab!P~ i j !tddIM
AE Wdd jE

Mb , ~27!

W̄ddIJ
AB 50, ~28!

W̄ddci
ab 5Wddci

ab 2tddMI
AB f dc

M 1 1
2tddMN

AB Wdd ic
NM

1P~ab!tddMI
EB WddcE

aM , ~29!

W̄dd jk
ia 5Wdd jk

ia 2tddJK
EA f dE

i 1 1
2tddJK

EF WddFE
ai

1P~ jk !tddMK
EA Wdd jE

iM , ~30!

W̄ddcd
ab 5Wddcd

ab 1 1
2tddMN

AB Wddcd
MN , ~31!

W̄dd i j
kl 5Wdd i j

kl 1 1
2tddIJ

EF WddEF
kl , ~32!

W̄dd jb
ia 5Wdd jb

ia 2tddJM
EA WddEb

iM , ~33!

W̄ddbc
ai 5Wddbc

ai , ~34!

W̄ddka
i j 5Wddka

i j , ~35!

W̄ddab
i j 5Wddab

i j , ~36!

Here and elsewhere, the Einstein summation conven
is used. The symbolP(pq) is a permutation operato
defined by its operation on a generic opera
P(pq)X(...,p,...,q,...)5X(...,p,...,q,...)2X(...,q,...,p,...).
Note that Eq.~28! is equivalent to Eq.~2!. The three- and
four-body terms which we will need will be given later.

Before we insert this definition ofH̄ into Eqs.~19!–~21!
we must choose definitions forup& and H̄ @0#. If up& is re-
stricted to justu0&, H is used instead ofH̄, and f d j

i and f db
a

are assigned to be zeroth-order, with the rest ofH being first
order, we recover standard Møller–Plesset perturba
theory,1 where a single determinant serves as the refere
wave function.
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However, here we want the VOD wave function to b
the underlying reference wave function. Therefore, we w
chooseup&5u0&%uD&, whereuD& is the set of all determinant
formed from double excitations within the active space. T
is the space over which Eq.~2! was solved. We will choose

H̄ @0# to consist ofH̄pp augmented byF̄dJ
I , F̄

d j 8
i 8 , F̄dB

A , and

F̄
db8
a8 from H̄qq. The rest ofH̄ is considered first order, re

gardless of its order in standard perturbation theory. ForRp
@0#

and Lp
@0# we will choose the~normalized! eigenvectors of

H̄pp
@0# which represent the VOD solution. These areRp

@0#51
andLp

@0#511L.20 With these definitions, Eqs.~19!–~21! be-
come

E@0#5^0u~11L!H̄pp
@0#u0&5Ecc, ~37!

E@1#50, ~38!

E@2#5^0uH̄pq
@1#~E@0#12H̄qq

@0#!21H̄qp
@1#u0&

1^0uLH̄pq
@1#~E@0#12H̄qq

@0#!21H̄qp
@1#u0&. ~39!

Equation~37! is the same as Eq.~7!, which means that
the zeroth-order energy in our scheme is the VOD ener
This is consistent with us treating VOD as the zero
order wave function. This also means that we have a w
defined total energy, in that we can add the dynami
correlation correction to the VOD energy
The terms, ^0uLp

@2#H̄pp
@0#Rp

@0#u0&5Ecĉ 0uLp
@2#Rp

@0#u0& and
^0uLp

@0#H̄pp
@0#Rp

@2#u0&5Ecĉ 0uLp
@0#Rp

@2#u0&, which appeared in
Eq. ~21!, cancel here.

The two terms in Eq.~39! will be discussed separately
The first, which we call MP2-like, consists of two terms th
differ by the level of excitation inuq&. The two terms are

MP2 singles5F̄da
i ~ t̄ @1#!d i

a , ~40!

and

MP2 doubles5 1
4W̄ddab

i j ~ t̄ @1#!dd i j
ab . ~41!

These are called MP2-like because in the limit ofup&5u0&
these equations become MP2 for a non-Hartree–F
reference.21

The second term in Eq.~39! we call the Lambda term
and it consists of four parts. They are the singles, doub
triples, and quadruples terms, and they differ in the exc
tion level of the first-order amplitudes. The equations for t
terms are as follows:
L singles5ldB
I F̄

da8
B

~ t̄ @1#!dI
a8 2ldA

J F̄dJ
i 8 ~ t̄ @1#!d i 8

A
1ldB

J W̄ddJa
iB ~ t̄ @1#!d i

a 1lddAE
IM F̄dM

E ~ t̄ @1#!dI
A 1 1

2lddEF
IM W̄ddaM

EF ~ t̄ @1#!dI
a

2 1
2lddAE

MN W̄ddMN
iE ~ t̄ @1#!d i

A 1 1
2lddEF

MN WddGa
Fi tddMN

EG ~ t̄ @1#!d i
a 2 1

2lddEF
MN WddNa

Oi tddMO
EF ~ t̄ @1#!d i

a , ~42!

L doubles5ldA
I F̄db

j ~ t̄ @1#!ddI j
Ab 1 1

2ldE
I W̄ddab

E j ~ t̄ @1#!ddI j
ab 2 1

2ldA
M W̄ddMb

i j ~ t̄ @1#!dd i j
Ab 1 1

2lddAE
IJ F̄

db8
E

~ t̄ @1#!ddIJ
Ab8

2 1
2lddAB

IM F̄dM
j 8 ~ t̄ @1#!ddI j 8

AB
1 1

8lddEF
IJ W̄ddab

EF ~ t̄ @1#!ddIJ
ab 1 1

8lddAB
MN W̄ddMN

i j ~ t̄ @1#!dd i j
AB

2lddAE
MJ W̄ddMb

iE ~ t̄ @1#!dd iJ
Ab 2 1

4lddFE
MI Wddab

N j tddMN
FE ~ t̄ @1#!ddI j

ab 2 1
4lddEA

NM WddFb
i j tddNM

EF ~ t̄ @1#!dd i j
Ab , ~43!
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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L triples5 1
4ldA

I W̄ddbc
jk ~ t̄ @1#!dddI jk

Abc 1 1
4lddAB

IJ F̄dc
k ~ t̄ @1#!dddIJk

ABc 1 1
4lddAE

IJ W̄ddbc
Ek ~ t̄ @1#!dddIJk

Abc

2 1
4lddAB

IM W̄ddMc
jk ~ t̄ @1#!dddI jk

ABc , ~44!

L quadruples5 1
16lddAB

IJ W̄ddcd
kl ~ t̄ @1#!ddddIJkl

ABcd . ~45!

The last two terms of Eqs.~42! and ~43! arise from three-body terms inH̄ which have been expanded out.
The first-order amplitudes, which appear in these equations, are given by

05~ F̄ @0#!de
a ~ t̄ @1#!d i

e 2~ F̄ @0#!d i
m ~ t̄ @1#!dm

a 1F̄d i
a , ~46!

05~ F̄ @0#!de
a ~ t̄ @1#!dd i j

eb 1~ F̄ @0#!de
b ~ t̄ @1#!dd i j

ae 2~ F̄ @0#!d i
m ~ t̄ @1#!ddm j

ab 2~ F̄ @0#!d j
m ~ t̄ @1#!dd im

ab 1W̄dd i j
ab , ~47!

05~ F̄ @0#!de
a ~ t̄ @1#!ddd i jk

ebc 1~ F̄ @0#!de
b ~ t̄ @1#!ddd i jk

aec 1~ F̄ @0#!de
c ~ t̄ @1#!ddd i jk

abe 2~ F̄ @0#!d i
m ~ t̄ @1#!dddm jk

abc 2~ F̄ @0#!d j
m ~ t̄ @1#!ddd imk

abc

2~ F̄ @0#!dk
m ~ t̄ @1#!ddd i jm

abc 1W̄ddd i jk
abc , ~48!

05~ F̄ @0#!de
a ~ t̄ @1#!dddd i jkl

ebcd 1~ F̄ @0#!de
b ~ t̄ @1#!dddd i jkl

aecd 1~ F̄ @0#!de
c ~ t̄ @1#!dddd i jkl

abed 1~ F̄ @0#!de
d ~ t̄ @1#!dddd i jkl

abce

2~ F̄ [0] !d i
m ~ t̄ @1#!ddddm jkl

abcd 2~ F̄ @0#!d j
m ~ t̄ @1#!dddd imkl

abcd 2~ F̄ @0#!dk
m ~ t̄ @1#!dddd i jml

abcd 2~ F̄ @0#!d l
m ~ t̄ @1#!dddd i jkm

abcd

1W̄dddd i jkl
abcd , ~49!

where (F̄ @0#)d i
j 5F̄dI

J 1F̄
d i 8
j 8 , and (F̄ @0#)db

a 5F̄dB
A 1F̄

db8
a8 . The parts ofF̄ that couple occupied and unoccupied indices and

parts that couple active and inactive indices are excluded since they are considered first order. The three-body term in~48!
is

W̄ddd i jk
abc 5P~ku i j !P~aubc!tddIJ

AE @WddEk
bc 2tddMK

BC f dE
M 1 1

2tddMN
BC WddEk

MN 1P~bc!tddMK
FC WddEF

bM #

2P~ i u jk !P~cuab!tddIM
AB @Wdd jk

Mc 1 1
2tddJK

EF WddEF
Mc 1P~ jk !tddNK

EC Wdd jE
MN #. ~50!

The four-body term in Eq.~49! is

W̄dddd i jkl
abcd 5P~ i j ukl !P~aubcud!tddIJ

AE tddKL
FD @WddEF

bc 1 1
2tddMN

BC WddEF
MN #1P~ i u jku l !P~abucd!

3tddIM
AB tddNL

CD @Wdd jk
MN 1 1

2tddJK
EF WddEF

MN #2P~ i u j ukl !P~abucud!tddIM
AB tddKL

ED @Wdd jE
Mc 2tddJN

FC WddFE
MN #.

~51!
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The permutation operatorP(puqr) means to permutep with
q and permutep with r but not permuteq with r. The four-
index permutation operators are defined similarly. Both E
~50! and~51! can be simplified with careful use of two-bod
parts ofW̄ as intermediates.

With the inclusion ofla
i terms, which do not appear i

VOD~2!, these equations have been generalized to desc
methods including single excitations. Therefore, along w
the appropriate choice ofH̄, these equations exactly defin
the ~2! correction for any method based on coupled-clus
singles and doubles, such as CCSD, QCISD, or Brueck
orbital CCD.22

Finally, we need to consider the choice of orbitals. T
VOO-CC optimization procedure defines the inactive oc
pied, active occupied, active virtual, and inactive virtu
spaces, but the VOO-CC model and the equations prese
here are invariant to rotations within those spaces. Th
spaces form the diagonal blocks ofF̄ and compriseH̄qq

@0# .
From a practical standpoint, we want these blocks to be
agonal, since that makes solving for the first-order am
tudes trivial. Therefore, the natural choice of orbitals wou
be a semicanonical set where the inactive occupied, ac
occupied, active virtual, and inactive virtual blocks ofF̄ are
Downloaded 11 Jan 2001  to 130.207.35.109.  Redistribution subject t
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made diagonal. The problem is that, likeH̄, F̄ is not Her-
mitian, and so it has different right- and left-hand eigenve
tors. Therefore, diagonalizingF̄ requires a biorthogona
transformation of the integrals and amplitudes, where the
and ket indices of all the integrals and amplitudes get diff
ent transformation matrices. Because of the tensor natur
the equations,16 this poses no fundamental difficulties, but
does add to the computational complexity. The~2! equations
in spin–orbital form for this semicanonical basis are p
sented in Appendix A.

D. Discussion of the theory

1. Significance of the terms

The derivation used here follows closely one23–25used to
justify CCSD~T!. This derivation is also very close to the on
used to derive an asymmetric CCSD~T!-type correction26

which had been derived independently as CCSD~T)L .27 The
primary difference between the current work and previo
work is in the choice of order. Previously,H̄ had always
been expanded in terms of order with respect to the b
Hamiltonian. However, our interest is to treat the entire VO
wave function as zeroth-order. This is especially importan
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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cases with strong nondynamical correlation, which have s
eral determinants of close to equal importance. Such c
show up in a VOO-CC calculation as at amplitude close to
1. By treating all ofH̄ as either zeroth- or first-order, we a
implicitly treating all other significant determinants on th
same footing as the reference determinant.

VOD~2! is fundamentally a single determinant metho
just as the underlying VOD is. This does have drawback
that it would be difficult for VOD~2! to handle cases, such a
open-shell singlets, where two determinants need to h
identical weights in the wave function. However, the sing
determinantal nature of the method does have some m
advantages. The first is that the method is unambiguo
defined by the choice of the number and symmetry of
orbitals in the active occupied and active virtual spac
Also, we have none of the problems associated with mu
reference methods, such as intruder states. Finally, since
VOD and the perturbative correction contain only linked d
grams, VOD~2! is fully size extensive. Coupled with VOD’s
ability to handle active spaces much larger than those p
sible with CASSCF, this makes VOD~2! potentially very
useful for large systems.

The MP2 singles andL singles terms are almost alway
small. Furthermore, in almost all cases studied to date, t
nearly cancel as well. Therefore, they are relatively unimp
tant, and we will not discuss them in detail.

As will be seen later, the MP2 doubles term is the dom
nant term in VOD~2!. From the point of view of standard
perturbation theory, this term is the leading-order correcti
To a large extent it looks like MP2, but with any activ
space contribution excluded. The exclusion of any contri
tion from the active space for both the MP2 doubles term
theL doubles term occurs because of Eq.~28!. However, the
MP2 doubles term tends to be too negative, and theL
doubles term serves to dampen the effect.

In some ways theL doubles term can be thought of as
renormalization term. The VOD wave function is in interm
diate normalization, which puts the coefficient for the ref
ence determinant always as one. The importance of o
determinants in the VOD wave function does not have
direct impact on the size of the MP2 doubles term. Howev
if other determinants are also significant, this will appear
large t andl amplitudes. Ignoring the three-body terms, t
L doubles term looks like an excitation of a pair of electro
to outside of theuD& space, followed by a second excitatio
of the same electrons to an exciteduD& space determinant
This is multiplied by the weight of the exciteduD& space
determinant in the left-hand eigenvector. Thus, theL
doubles term appears to be correcting the over importa
the MP2 doubles term is putting on the reference determin
by including a positive term whose magnitude is direc
related to the size of thel amplitudes.

TheL triples term closely resembles the CCSD~T)L
27 or

a-CCSD~T)26 method mentioned earlier. In fact, if bare in
tegrals were used in Eqs.~44! and ~50!, we would almost
recover CCSD~T)L . The only difference is that CCSD~T)L

has an extraL1 term which we do not get, since we do n
have anyL1 in VOD.

Qualitatively, the triples term acts to provide dynamic
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correlation to the excited VOD determinants. Specifica
the triples describe the situation when one of the electron
the excited pair is further excited to another virtual orbit
while simultaneously a third electron is promoted fro
an occupied to a virtual orbital. The other situation th
describe is when an electron from an occupied orb
fills one of the newly created holes at the same time t
the third electron is excited into a virtual orbital. Since
least three of the six indices must be active, only a sub
of possible triple excitations are included. Thus, th
term can be considered a type of semi-internal triples cor
tion.

The L quadruples term is related to theEQ
@5#(L) term

from the CC5SD~TQ)L method of Ref. 27. In this case th
terms are identical, except for the use of transformed ver
bare integrals. These quadruples describe the correlation
doubly excited VOD determinant with independent doub
excitations. These correlations are of two types. The fi
type is when the second excitation also occurs within
active space. Such correlations are included in the V
model from theT2

2 term in the wavefunction. The quadruple
term, then, describes the differential correlation that ex
when the appropriate weight for the second electron pai
different for the reference determinant and the doubly
cited determinant. The second role of the quadruples is
give a MP2-like description of the correlation of the VO
doubly excited determinant coming from the inactive spa
However, no more than two of the indices in the quadru
can be inactive, giving us a semi-internal quadruples corr
tion. Therefore only a part of the external-space correlatio
included.

2. Computational considerations

An important consideration with any computation
method is cost. For VOD~2!, the calculation can be viewe
as four separate steps. The first is the calculation of the
derlying VOD wave function. The cost of a VOD calculatio
has steps that scale asOa

2Va
4, Oa

3Va
3, andOa

4Va
2 that must be

performed every iteration. Here,O, V, andN stand for the
number of occupied orbitals, virtual orbitals, and total orb
als, respectively, while the subscripta means active andt
means total. Normally, the number of virtual orbitals far ou
weighs the number of occupied orbitals. However, the nu
ber of active occupied and active virtual orbitals is usua
about the same. A VOD calculation also involves an integ
transformation which must be performed each iteration a
that scales asNaNt

4. The size of the active space as a pr
portion of the size of the basis set will determine whether
n6 or n5 terms will dominate.

The second logical step in a VOD~2! calculation is the
formation of H̄. The most expensive step of the similari
transformation scales asOa

2Va
2Vt

2. The next step is then the
transformation of the integrals to the semi-canonical ba
The leading term here transforms asVt

5.
The final step is the calculation of the various ener

contributions. The costs of the MP2 terms are trivial. T
singles term scales asOtVt , and the doubles terms scales
Ot

2Vt
2. The most expensive part of theL singles term scales
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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asOa
2Va

2Vt . In theL doubles term, the most expensive pa
is Oa

2Va
2Vt

2. Because of the noniterative nature of the~2!
correction, these terms should be about as expensive ov
as the iterative VOD.

TheL triples term, on the other hand, has two terms t
scale asOtOa

2Va
2Vt

2. Although the fourth power dependenc
on the size of the active space means that the triples t
here will be significantly cheaper than the tripl
term in CCSD~T!, the expense of the triples term could st
limit the applicability of the method. Thus, applying som
sort of local approximation to this term may be appropriate28

Finally, we come to theL quadruples term. As written in
Eqs. ~45! and ~51! the cost of the quadruples scales
Oa

4Va
3Vt

2. Clearly, this is cost-prohibitive for all but th
smallest of cases. The extreme cost of the term arises
cause the presence of the eight index denominator makes
essary the formation of the four bodyW̄ term. This type of
term also arises in MP5.29 However, there then9 step is
avoided by using a factorization trick.29 In MP5 the two
left-most operators are identical, and by summing over
possible time orderings of the two operators, the denom
tor can be factorized into two four-index denominators m
tiplied together. Unfortunately, that does not apply he
since our two left-most operators,L and W̄i jab are not
equivalent.

This same problem arises in some noniterative q
druples corrections to CCSD. One solution that has b
suggested there27,30 is to approximate then9 step by forcing
a factorization of the denominator. In tests27,30–32the factor-
ization approximation changed the energy at the mic
Hartree level. We are going to chose to use this factoriza
trick here to reduce the cost of the quadruples term. In f
we define the VOD~2! method to include this factorizatio
trick. Forcing the factorization means that Eq.~45! is re-
placed by

L quadruples~factorized)

5 1
32lddAB

IJ ~W̄D!ddcd
kl W̄ddddIJkl

ABcd , ~52!

where

~W̄D!ddab
i j 5~ F̄ @0#!dm

i W̄ddab
m j 1~ F̄ @0#!dm

j W̄ddab
im

2~ F̄ @0#!da
e W̄ddeb

i j 2~ F̄ @0#!db
e W̄ddae

i j . ~53!

The elimination of the eight-index denominator allows us
avoid explicitly formingW̄dddd i jkl

abcd . Instead, we substitute
Eq. ~51! into Eq. ~52!. By regrouping terms we can reduc
the cost of theL quadruples term to justVa

4Vt
2. Spin–orbital

equations for the factorized quadruples term are given
Appendix B.

Finally, it should be noted that until Eq.~37!, the deri-
vation of the perturbative correction did not depend uponR
andL being the ground state. In fact, a similar derivation h
been used to generate a correction for ionized states.23,24,33

Also, the current derivation did not depend on the expl
form of H̄. Therefore, this type of correction can be dev
oped for any single-reference coupled-cluster based gro
or excited-state method.
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III. RESULTS

We have implemented VOD~2! in both the Q-Chem34

and PSI35 quantum chemistry packages. In order to test
performance of the method we have studied potential cur
for four model systems, stretching H2 and F2 , symmetrically
stretching H2O, and twisting ethylene.

A. H2 stretch

Our first example is stretching H2. Since H2 is a two
electron problem, OD~VOD where all orbitals are active! is
equivalent to full CI. In other words, it is exact within th
chosen basis set. Also, VOD, which in this case is equiva
to two configuration SCF, is exact at the dissociation lim
Furthermore, the triples and quadruples terms are zero, a
the singles terms. Therefore, this system lets us isolate
the doubles terms and study their effects.

In Fig. 1 we compare the error in VOD~2! to the error in
VOD and to the error in standard MP2.1 Our baseline is OD.
The basis set was Dunning’s DZ basis,36,37scaled by a factor
of 1.2 and augmented with ap function with exponent 0.75
The data for this and all other figures in the paper are c
tained in the supplementary material.38 At short bond dis-
tances and around equilibrium, where dynamical correlat
dominates, both VOD~2! and MP2 have small errors. In con
trast, VOD, which does not include dynamical correlatio
has rather large errors. At longer bond distances, where n
dynamical correlation dominates, the error in MP2 blows

FIG. 1. MP2, VOD, and VOD~2! energy differences from OD~full CI ! with
a DZP basis for stretching H2 .
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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and then turns negative in a dramatic failure. On the ot
hand, the VOD error decreases, ultimately going to zero
long bond distances. At all points, though, VOD~2! is the
superior method. At short bond distances it beats MP2,
at long bond distances its error goes to zero much faster
the VOD error.

In Fig. 2 we break down VOD~2! into VOD, the MP2
doubles term, and theL doubles term. For the~2! correction
the MP2 doubles term is dominant, but its size decrea
with the decreasing role of dynamical correlation. As t
second determinant in the two configuration description
dissociating H2 becomes important, theL doubles term
grows until it is nearly equal in magnitude to the MP
doubles term. What is interesting is how both terms ha
significant magnitude for almost four Bohr after the VOD~2!
error has gone to essentially zero. The VOD error is e
zero well before the two terms die out. Clearly, these t
terms serve to cancel out each other, and both must be
cluded for a balanced treatment.

B. F2 stretch

Our next test system will be stretching F2 , which is a
more realistic system. Since it is still a single bond be
broken, we expect that VOD will be able to give a qualit
tively correct description of the bond breaking. Figure
compares VOD and VOD~2! to OD~2!. The OD~2! curve
should have errors of about one milliHartree compared

FIG. 2. A breakdown of the energy components of VOD~2! for stretching
H2 with a DZP basis.
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full CI.11 Comparing OD~2! and VOD~2! also gives a direct
measure of the effect of using an active space. The basi
used was cc-pVDZ,39 and only the spherical harmonic com
ponents were kept.

In Fig. 3 the VOD~2! curve runs parallel to the OD~2!,
but with an offset. At 2.8 Bohr, the minimum calculate
point on the curve, the VOD~2! curve lies 19.8 milliHartrees
above the OD~2! curve. At 5 Bohr that difference is 20.
milliHartrees. This leads to a discrepancy of 0.3 kcal/mol
the estimated dissociation energy, 33.3 kcal/mol for VOD~2!
versus 33.0 kcal/mol for OD~2!. On the other hand, the VOD
curve is much too shallow, only giving a dissociation ener
of 15.5 kcal/mol.

Another way to view the data is by looking at wh
percentage of the difference between OD~2! and VOD is
recovered by VOD~2!. At 2.8 Bohr the percentage is 94%
while at 5 Bohr it is 93%. This difference is indicative of th
shallowness of the VOD curve. The important point, thoug
is that the~2! correction recovers over 90% of the dynamic
correlation across the whole curve.

C. H2O stretch

Our third test is symmetrically stretching both O–
bonds in water. Since we are now breaking two single bon
only including doubles in the active space should not
sufficient; connected quadruples should also be needed.
CASSCF, CASPT2, MRSDCI~multireference singles and

FIG. 3. VOD, VOD~2!, and OD~2! energies with the cc-pVDZ basis set fo
stretching F2 .
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



3556 J. Chem. Phys., Vol. 113, No. 9, 1 September 2000 Gwaltney et al.

Downloaded 11 
TABLE I. Energy differences~in milliHartrees! from full CIa for several approximate methods for H2O at
equilibrium and several stretched geometries using the cc-pVDZ basis set.

Method 1.0* Re 1.5* Re 2.0* Re 2.5* Re 3.0* Re

VOD 164.128 150.974 128.962 96.140 81.703
VOD~2! 14.925 14.676 17.948 3.877 212.302
CASSCFa 164.025 150.029 133.568 126.322 124.715
CASPT2a 12.833 10.819 8.111 8.033 8.262
MRSDCIa 4.425 3.938 3.208 2.837 2.753

aReference 40.
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doubles configuration interaction!, and full CI results from
Olsenet al.40 will be used for comparison. Again, Dunning
cc-pVDZ39 basis set was used. The energy was calculate
1.0* Re , 1.5* Re , 2.0* Re , 2.5* Re , and 3.0* Re . For details
of the calculations, see Ref. 40.

The results of the calculations are presented in Tab
and Fig. 4. The CASSCF, CASPT2, and MRSDCI calcu
tions all used the same full valence active space as the V
and VOD~2! calculations. At the shorter bond distance
1.0* Re and 1.5* Re , VOD and CASSCF differ by less tha
one milliHartree. In this same region VOD~2! is about four
milliHartrees above CASPT2, which is about eight milliHa
trees above the MRSDCI. By 2.0* Re , however, the lack of
higher excitations is causing VOD to have problems, a
turns below the CASSCF curve. As the VOD~2!’s reference
wave function breaks down, VOD~2! also begins to break
down. One positive note, though, is that the VOD~2! curve

FIG. 4. Several approximate methods and full CI for the symmetric stre
of H2O with the cc-pVDZ basis.
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dips far less than the VOD curve. The perturbative inclus
of connected higher excitations seems to be reducing
instability of the VOD~2! curve relative to the referenc
VOD.

D. Ethylene twist

Our final test is twisting ethylene. By varying the dih
dral angle, we can adjust the problem from one totally dom
nated by dynamical correlation~zero degrees! to one where
the nondynamical correlation is so strong that it is impossi
for any single reference method to give a correct qualitat
description of the wave function~ninety degrees!. The prob-
lem at ninety degrees is that for the wave function to tra
form as an irrep of theD2d point group as it should, thep2

and p* 2 determinants must have equal weight in the wa
function. In a coupled-cluster method, where the refere
determinant is one of the two, for the wave function to tran
form properly, the other determinant must have a coeffici
of unity. Even in VOD, which is designed to handle nond
namical correlation, the coefficient of thep* 2 determinant at
ninety degrees is just over 0.9. Hence, the VOD wave fu
tion at ninety degrees only hasD2 symmetry. Although the
VOD curve appears smooth8 despite the symmetry breaking
the symmetry breaking causes the VOD~2! curve to have a
cusp. This should not be surprising. The question, then
how far into the twist curve can VOD~2! go before the sym-
metry breaking in the reference causes the method to b
down.

We examine this question in Figs. 5 and 6. For all of t
calculations the CC bond distance was 1.330 Å, the CH b
distance was 1.076 Å, and the HCC bond angle was 121
These coordinates were kept fixed while the dihedral an
was varied. The basis set used was a DZP basis consistin
Dunning’s DZ basis36,37augmented by polarization function
with an exponent of 0.75 added to the carbons and hyd
gens. All six Cartesian components of the carbond functions
were kept. Figure 5 presents the VOD and VOD~2! curves.
On this scale, both curves appear smooth. However, w
we plot just the~2! correction, we see that after 80° the~2!
curve turns up. By fitting a sixth-order polynomial to the da
from 15° to 80° and from 100° to 165°, we can estimate
error caused by the symmetry breaking. The curve fit e
mate of the correction at 90° is2175.2 milliHartrees, while
the calculated correction is2173.5 milliHartrees. Thus, we
get an error of 1.1 kcal/mol. So, even though the~2! correc-
tion breaks down when the reference wave function bre
symmetry, the theory does work for situations with a lar

h

o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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amount of nondynamical correlation, as shown by the res
up to 80°.

IV. CONCLUSIONS

In this paper we first develop a general theory for p
turbative expansions of similarity-transformed matrices. T
is accomplished via a Lo¨wdin-style partitioning of the trans
formed matrix. TheH̄qq block of the matrix and the right
and left-hand eigenvectors are then expanded in a pertu
tion series. As long as the zeroth-order right- and left-ha
eigenvectors are chosen to be eigenvectors ofH̄pp

@0# , the
zeroth-order energy is the energy of the unperturbed p
lem, and we have a consistent perturbation theory. Furt
more, the first-order correction to the energy is zero, me
ing that the leading correction to the energy appears
second order.

Next, we applied this scheme to the problem of dev
oping new perturbative corrections on top of coupled-clus
theory. Although we focused on VOD, we derived corre
tions for all methods which can be viewed as approximati
to CCSD, including QCISD, BD, OD, and CCSD itself. Th
new type of correction, called~2!, consists of, in general
single, double, triple, and quadruple excitation terms. By
troducing a factorization approximation to the quadruple
citation term, the cost is reduced fromn9 to n6. The overall
scaling of the method, as determined by the triples term
thenn7.

FIG. 5. VOD and VOD~2! energies with a DZP basis set as a function
twisting angle for ethylene.
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Finally, we examined the effectiveness of the VOD~2!
method for some examples of bond breaking and dirad
formation, difficult problems for single-reference methods
describe properly. For those areas of the potential-ene
surface where VOD provides a reasonable qualitative
scription of the wave function, VOD~2! does an excellent job
of recovering the dynamical correlation. Clearly, more te
ing needs to be done, but it appears that this new met
provides an inexpensive and robust way to describe
breaking of single bonds with quantitative accuracy.
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APPENDIX A: SPIN–ORBITAL FORM OF THE „2…
EQUATIONS

Equations~40!–~45! present the equations for the var
ous terms in the~2! correction in their completely genera
Downloaded 11 Jan 2001  to 130.207.35.109.  Redistribution subject t
tensor form. However, it is useful to present those equati
in their spin–orbital form within the semicanonical bas
Therefore, in this Appendix we present spin–orbital forms
Eqs.~40!–~45!. The MP2 terms are
MP2 singles5(
a
i

F̄da
i F̄d i

a

«̄ i2 «̄a
, ~A1!

MP2 doubles5
1

4(a,b
i , j

W̄ddab
i j W̄dd i j

ab

«̄ i1 «̄ j2 «̄a2 «̄b
, ~A2!

whereēp stands forF̄dp
p in the semicanonical basis. TheL terms are

L singles5 (
a8,B

I

ldB
I F̄

da8
B F̄dI

a8

«̄ I2 «̄a8
2(

A
i 8,J

ldA
J F̄dJ

i 8 F̄
d i 8
A

«̄ i 82 «̄A
1(

a,B
i ,J

ldB
J W̄ddJa

iB F̄d i
a

«̄ i2 «̄a

1(
A,E
I ,M

lddAE
IM F̄dM

E F̄dI
A

«̄ I2 «̄A
1

1

2 (
a,E,F
I ,M

lddEF
IM W̄ddaM

EF F̄dI
a

«̄ I2 «̄a
2

1

2 (
A,E

i ,M ,N

lddAE
MN W̄ddMN

iE F̄d i
A

«̄ i2 «̄A

1
1

2 (
a,E,F,G
i ,M ,N

lddEF
MN WddGa

Fi tddMN
EG F̄d i

a

«̄ i2 «̄a
2

1

2 (
a,E,F

i ,M ,N,O

lddEF
MN WddNa

Oi tddMO
EF F̄d i

a

«̄ i2 «̄a
, ~A3!

L doubles5(
A,b
I , j

ldA
I F̄db

j W̄ddI j
Ab

«̄ I1 «̄ j2 «̄A2 «̄b
1

1

2 (
a,b,E

I , j

ldE
I W̄ddab

E j W̄ddI j
ab

«̄ I1 «̄ j2 «̄a2 «̄b
2

1

2 (
A,b,M

i , j

ldA
M W̄ddMb

i j W̄dd i j
Ab

«̄ i1 «̄ j2 «̄A2 «̄b

1
1

2 (
A,b8,E

I ,J

lddAE
IJ F̄

db8
E W̄ddIJ

Ab8

«̄ I1 «̄J2 «̄A2 «̄b8
2

1

2 (
A,B

I , j 8,M

lddAB
IM F̄dM

j 8 W̄
ddI j 8
AB

«̄ I1 «̄ j 82 «̄A2 «̄B
1

1

8 (
a,b,E,F

I ,J

lddEF
IJ W̄ddab

EF W̄ddIJ
ab

«̄ I1 «̄J2 «̄a2 «̄b

1
1

8 (
A,B

i , j ,M ,N

lddAB
MN W̄ddMN

i j W̄dd i j
AB

«̄ i1 «̄ j2 «̄A2 «̄B
2 (

A,b,E
i ,J,M

lddAE
MJ W̄ddMb

iE W̄dd iJ
Ab

«̄ i1 «̄J2 «̄A2 «̄b
2

1

4 (
a,b,E,F
I , j ,M ,N

lddFE
MI Wddab

N j tddMN
FE W̄ddI j

ab

«̄ I1 «̄ j2 «̄a2 «̄b

2
1

4 (
A,b,E,F
i , j ,M ,N

lddEA
NM WddFb

i j tddNM
EF W̄dd i j

Ab

«̄ i1 «̄ j2 «̄A2 «̄b
, ~A4!

L triples5
1

4 (
A,b,c
I , j ,k

ldA
I W̄ddbc

jk W̄dddI jk
Abc

«̄ I1 «̄ j1 «̄k2 «̄A2 «̄b2 «̄c
1

1

4 (
A,B,c
I ,J,k

lddAB
IJ F̄dc

k W̄dddIJk
ABc

«̄ I1 «̄J1 «̄k2 «̄A2 «̄B2 «̄c
1

1

4 (
A,b,c,E

I ,J,k

lddAE
IJ W̄ddbc

Ek W̄dddIJk
Abc

«̄ I1 «̄J1 «̄k2 «̄A2 «̄b2 «̄c

2
1

4 (
A,B,c

I , j ,k,M

lddAB
IM W̄ddMc

jk W̄dddI jk
ABc

«̄ I1 «̄ j1 «̄k2 «̄A2 «̄B2 «̄c
, ~A5!

L quadruples5
1

16 (
A,B,c,d
I ,J,k,l

lddAB
IJ W̄ddcd

kl W̄ddddIJkl
ABcd

«̄ I1 «̄J1 «̄k1 «̄ l2 «̄A2 «̄B2 «̄c2 «̄d
. ~A6!
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APPENDIX B: FACTORIZED QUADRUPLES EQUATIONS

In this appendix we give the equations for the factorized quadruples approximation. The terms are broken up i
groups for manageability. Also,W̄ddcd

ab , W̄dd i j
kl , and W̄dd jb

ia from Eqs.~31!–~33! and (W̄D)kl from Eq. ~53! are used as
convenient intermediates. The four groups are

L Quadsf
15 1

4lddAB
IJ ~W̄D!ddcd

KL W̄ddEF
cd tddIK

AE tddLJ
FB 1 1

8lddAB
IJ ~W̄D!ddcd

KL W̄ddEF
cd tddKL

AE tddIJ
FB

1 1
4lddAB

IJ ~W̄D!ddCd
KL W̄ddEF

dA tddKL
CE tddIJ

FB 1lddAB
IJ ~W̄D!ddCd

KL W̄ddEF
Ad tddKI

CE tddLJ
FB

1 1
4lddAB

IJ ~W̄D!ddCd
KL W̄ddEF

dA tddIJ
CE tddKL

FB 1 1
8lddAB

IJ ~W̄D!ddCD
KL W̄ddEF

AB tddKL
CE tddIJ

FD

1 1
4lddAB

IJ ~W̄D!ddCD
KL W̄ddEF

AB tddKI
CE tddJL

FD , ~B1!

L Quadsf
25 1

4lddAB
IJ ~W̄D!ddCD

kl W̄ddkl
MN tddIM

AC tddNJ
DB 1 1

8lddAB
IJ ~W̄D!ddCD

kl W̄ddkl
MN tddIM

CD tddNJ
AB

1 1
4lddAB

IJ ~W̄D!ddCD
Kl W̄dd l I

MN tddKM
CD tddNJ

AB 1lddAB
IJ ~W̄D!ddCD

Kl W̄ddI l
MN tddKM

CA tddNJ
DB

1 1
4lddAB

IJ ~W̄D!ddCD
Kl W̄dd l I

MN tddKM
AB tddNJ

CD 1 1
8lddAB

IJ ~W̄D!ddCD
KL W̄ddIJ

MN tddKM
CD tddNL

AB

1 1
4lddAB

IJ ~W̄D!ddCD
KL W̄ddIJ

MN tddKM
CA tddNL

BD , ~B2!

L Quadsf
352lddAB

IJ ~W̄D!ddcD
Kl W̄dd lE

Mc tddIK
AE tddMJ

DB 2 1
4lddAB

IJ ~W̄D!ddCd
kL W̄ddkE

Md tddIJ
CE tddML

AB

2 1
2lddAB

IJ ~W̄D!ddCd
Kl W̄dd lE

Md tdd lK
CE tddMJ

AB 2 1
2lddAB

IJ ~W̄D!DddcD
kL W̄ddkE

Mc tddIJ
AE tddML

DB

2 1
4lddAB

IJ ~W̄D!ddCd
Kl W̄ddIE

Md tddKL
CE tddMJ

AB 2 1
2lddAB

IJ ~W̄D!ddCd
KL W̄dd jE

Md tddKI
CE tddML

AB

2 1
2lddAB

IJ ~W̄D!ddcD
KL W̄ddIe

Mc tddKL
AE tddMJ

DB 2lddAB
IJ ~W̄D!ddcD

KL W̄ddJE
Mc tddIK

AE tddML
BD , ~B3!

L Quadsf
452 1

4lddAB
IJ ~W̄D!ddCD

kL W̄ddkE
MB tddIJ

AE tddML
CD 2 1

2lddAB
IJ ~W̄D!ddCD

kL W̄ddkE
MA tddIJ

CE tddML
BD

2 1
2lddAB

IJ ~W̄D!ddCD
Kl W̄dd lE

MB tddIK
AE tddMJ

CD 2lddAB
IJ ~W̄D!ddCD

Kl W̄dd lE
MA tddKI

CE tddMJ
DB

1 1
2lddAB

IJ ~W̄D!ddCD
KL W̄ddIE

MA tddKL
CE tddMJ

DB 2lddAB
IJ ~W̄D!ddCD

KL W̄ddJE
MA tddKI

CE tddML
BD

2 1
4lddAB

IJ ~W̄D!ddCD
KL W̄ddIE

MB tddKL
AE tddMJ

CD 1 1
2lddAB

IJ ~W̄D!ddCD
KL W̄ddJE

MB tddIK
AE tddML

CD . ~B4!

Finally,

L quadruples~factorized!51
2~L Quadsf

11L Quadsf
21L Quadsf

31L Quadsf
4). ~B5!

The overall factor of one-half arises from the factorization approximation.27
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