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Abstract

The point process of vertices of an iteration infinitely divisible or, more specifically, of an
iteration stable random tessellation in the Euclidean plane is considered. We explicitly
determine its covariance measure and its pair-correlation function, as well as the cross-
covariance measure and the cross-correlation function of the vertex point process and
the random length measure in the general nonstationary regime. We also give special
formulae in the stationary and isotropic setting. Exact formulae are given for vertex
count variances in compact and convex sampling windows, and asymptotic relations are
derived. Our results are then compared with those for a Poisson line tessellation having
the same length density parameter. Moreover, a functional central limit theorem for the
joint process of suitably rescaled total edge counts and edge lengths is established with
the process (ξ, tξ), t > 0, arising in the limit, where ξ is a centered Gaussian variable
with explicitly known variance.
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1. Introduction

Random tessellations have attracted particular interest in stochastic geometry because of
their wide applications ranging from classical geological problems to recent developments in
telecommunication; see [10] and [15]. It is one of the main purposes of the related theory
to develop new classes of random tessellations that are mathematically tractable and yet rich
enough in structure so that they may serve as new reference models for applications beside
the classical Poisson hyperplane and the Poisson–Voronoi tessellation. A very recent model,
the so-called random STIT (stable under iteration) tessellations, was introduced by Nagel and
Weiss in [8]. One of the main features of these tessellations that distinguishes them from the
abovementioned model classes is the property that their cells are not side-to-side; see Figure 1.
This causes new geometric effects whose planar first-order properties in terms of mean values
were explored in [9]. This paper will deal with second-order characteristics and central limit
theory for the planar case, a topic that was considered first by Weiss et al. in [16] and later studied
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914 • SGSA T. SCHREIBER AND C. THÄLE

Figure 1: Realizations of two STIT tessellations with different driving measures, the invariant measure
(left) and a measure concentrated on lines pointing in only two orthogonal directions with weight 1

2 (right).

in [12], where, beside other characteristics, the variance of the total edge length was determined.
Here, in contrast, we will deal with second-order properties of the point process of vertices of
the tessellation. To provide more general results, we will not restrict our attention to the class of
stationary random iteration stable tessellations (STIT tessellations), but instead we will study
the larger class of nonstationary random iteration infinitely divisible tessellations in the plane.
They were introduced in [12] as generalizations of STIT tessellations and in Subsection 2.1 we
will recall their construction in the spirit of Mecke–Nagel–Weiss (MNW) [8]. It is an important
observation that this spatio-temporal MNW construction can be interpreted as a continuous-time
Markov process on the space of tessellations, whence the general theory of Markov processes
is available. Before extending some mean value relations from the stationary iteration stable
to the nonstationary iteration infinitely divisible case in Subsection 2.3, we will formulate the
main technical tools from the theory of Markov processes in Subsection 2.2, on which our main
results are based. They are the content of Sections 3 and 4. The variance of the total number of
vertices and that of the total number of maximal edges in a bounded observation window will
be calculated in Subsection 3.1 for very general driving measures, whereas in Subsection 3.4
we specialize to the motion-invariant case. The vertex pair-correlation measure for general line
measures is considered in Subsection 3.2 and the considerations are specialized again to the
stationary and isotropic setting in Subsection 3.5. Moreover, we determine in Subsection 3.3
the exact cross-covariance measure of the vertex point process and the length measure in the
general case and provide specialized formulae in Subsection 3.6 for the stationary and isotropic
regime. Here, the most explicit formulae are available. Another topic treated there concerns
the variance asymptotics for a sequence WR of growing windows as R tends to ∞. Based on
these results, in Section 4 we deal with the central limit problem. It will be shown that a certain
rescaled bivariate process of edge counts and edge lengths of a STIT tessellation converges to
the process (ξ, tξ), where ξ is a centered normal random variable with an explicitly known
variance.

We would like to emphasize that our results may be of interest in the context of statistical
model fitting of random tessellations to real data; see [10]. Our central limit theory could be
a base for statistical inference of tessellation models and related functionals, and asymptotic
confidence intervals and statistical tests can be derived from them, since we make the first- and
second-order moments explicitly available.
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For general notions and notation related to stochastic geometry and the theory of random
tessellations, which are used in this paper, we refer the reader to [11] and [15].

2. Background material

2.1. Iteration infinitely divisible and iteration stable random tessellations

Consider a compact and convex set W ⊂ R
2 with nonempty interior and a diffuse (non-

atomic) measure � on the space of [R2] of lines in the plane enjoying the local finiteness

property, stating that �([C]) < ∞ for any compact C ⊂ R
2, under the usual notation

[C] = {lines L : L ∩ C �= ∅},

letting [C] stand for the set of lines that have nonempty intersection with C. Below we briefly
describe the construction of an iteration infinitely divisible tessellation in W, the construction is
called the MNW construction to honor its inventors, Mecke, Nagel, and Weiss, who introduced
it in [8]. To begin, assign to W an exponentially distributed random lifetime with parameter
given by �([W ]). Upon expiry of this random time, the cell W dies and splits into two subcells,
W+ and W−, separated by a line in [W ] chosen according to the law �([W ])−1�(· ∩ [W ]).
The resulting new cells W+ and W− are again assigned independent exponential lifetimes
with respective parameters �([W+]) and �([W−]), whereupon the construction continues
recursively and independently in each of the subcells W+ and W− until some deterministic
time threshold t > 0 is reached. The random tessellation constructed in W by time t will be
denoted by Y (t, W). Stated formally, by Y (t, W) we denote the random closed subset of W

arising as the union of the boundaries of cells constructed by time t. The cell-splitting edges
are called the maximal edges (in the related literature they are often called I-segments, as they
assume shapes similar to that of the literal I) of the tessellation Y (t, W) and the family of all
such edges is denoted by MaxEdges(Y (t, W)). Note that such maximal edges can be further
subdivided between their birth time and time t , that is, in the course of the MNW dynamics there
can appear additional vertices in their relative interiors. Thus, we have a distinction between
maximal edges with a possible interior structure and those edges which are not maximal (for
example, the sides of cells or the primitive elements that are bounded by vertices but have no
interior structure).

In general, the random tessellations Y (t, W) in W do not have to arise as windowed
restrictions of stationary (stochastically translation invariant) or isotropic (stochastically ro-
tation invariant) processes. If we assume in addition though that the driving measure � has,
under polar parametrization, the product structure � = τℓ+ ⊗R with τ a positive constant, ℓ+
the Lebesgue measure on R+, and a spherical directional distribution R on the unit circle S1,
then Y (t, W) has the property of being a suitable windowed restriction of a stationary random
field. The random tessellation Y (t, W) is furthermore isotropic in a similar restrictionwise
sense if and only if R is the uniform distribution, i.e. if and only if � is a multiple of the
standard motion-invariant measure �iso := ℓ+ ⊗ ν1 of unit length intensity on the space of
lines in the plane, where ν1 is the uniform distribution on S1.

We now review some of the important properties of the tessellation Y (t, W), proofs of which
can be found in [7], [8], and [12]. We formulate them only for the planar case, even if they are
true in higher dimensions as well.

1. The random tessellations Y (t, W) are consistent in W, that is, Y (t, V ) ∩ W
d= Y (t, W)

for W ⊆ V and V, W compact convex, where ‘
d=’ denotes equality in distribution. This
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implies the existence of the whole-plane tessellation Y (t) such that Y (t, W)
d= Y (t) ∩ W

for each compact convex W.

2. The MNW construction satisfies the Markov property with respect to the iteration of
tessellations in the time parameter t , i.e.

Y (s, W) ⊞ Y (t, W)
d= Y (s + t, W),

where ‘⊞’denotes the operation of iteration for whose exact definition we refer the reader
to the abovementioned papers. This operation can roughly be explained as follows. Let Y0

be a random tessellation, and let T1, T2, . . . be a sequence of independent and identically
distributed random tessellations in the plane. To each cell ck of the frame tessellation

Y0 we associate the tessellation Tk . Now, we make a local superposition of Y0 and the
cutouts of Tk in each cell ck of the frame tessellation. If we let Y1 be a tessellation with the
same distribution as Tk for any k = 1, 2, . . . , we denote the outcome of this procedure
of local superposition by Y0 ⊞ Y1 and call it the iteration of Y0 with Y1.

3. It directly follows from the above Markov property that the random tessellations Y (t, W)

are infinitely divisible with respect to iteration, i.e.

Y (t, W)
d= Y

(
t

n
, W

)
⊞ · · · ⊞ Y

(
t

n
, W

)

︸ ︷︷ ︸
n

for any n ∈ N and any compact convex W . For this reason, the tessellations Y (t, W)

are referred to as iteration infinitely divisible random tessellations. However, it is worth
pointing out that it is currently not known whether any iteration infinitely divisible random
tessellation can be obtained by the MNW construction. If, in addition, the driving measure
� is translation invariant, it can be verified that Y (t, W) is even stable under iteration, i.e.

Y (t)
d= n(Y (t) ⊞ · · · ⊞ Y (t)︸ ︷︷ ︸

n

), n ∈ N,

where n(·) denotes the dilation with a factor n, i.e. nY = {nx : x ∈ Y }. Note that this
equation must be understood symbolically, since the operation of iteration involves a
sequence of independent and identically distributed random tessellations, but we adopt
here the usual convention from the earlier work [7] and suppress writing out the whole
sequence. Thus, in the stationary case we are in fact dealing with iteration stable random

tessellations or STIT tessellations for short.

3. The intersection of an iteration infinitely divisible random tessellation Y (t, W) having
driving measure � with an arbitrary line L ∈ [W ] is a Poisson point process with intensity
measure A 	→ t�([A]), where A ⊂ W ∩ L is a Borel set. In particular, for x, y ∈ W ,
the probability that x and y belong to the same cell of Y (t, W) equals

P(x and y are in the same cell of Y (t, W)) = e−t�([xy]),

where xy ⊂ W denotes the line segment joining the points x and y.
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2.2. Martingales in the MNW construction

As already mentioned in the introduction, the MNW construction of iteration infinitely
divisible or iteration stable random tessellations Y (t, W) in finite volumes W ⊂ R

2 for general
locally finite and diffuse driving measures � satisfies the Markov property in the continuous-
time parameter t. In our previous work [12] we used this fact combined with the classical
theory of martingale problems for pure jump Markov processes to construct a class of natural
martingales associated to the MNW process. In this paper we need only a part of that theory.
To formulate the required results, for a bounded and measurable functional φ of a line segment
(tessellation edge) and for a tessellation Y, usually taken to be a realization of Y (t, W) for some
t > 0, write

�φ(Y ) =
∑

e∈MaxEdges(Y )

φ(e).

Note that, with Y as above, for each straight line L ∈ [W ], the intersection Y ∩ L is just a one-
dimensional tessellation of L∩W which can be identified with the collection Segments(Y ∩L)

of its constituent segments. Bearing this in mind we write

Aφ(Y ) =
∫

[W ]

∑

e∈Segments(Y∩L∩W)

φ(e)�(dL). (1)

It is also convenient to introduce the bar notation for centered versions of these quantities with
Y = Y (t, W), that is,

�̄φ(Y (t, W)) := �φ(Y (t, W)) − E �φ(Y (t, W))

and likewise
Āφ(Y (t, W)) := Aφ(Y (t, W)) − E Aφ(Y (t, W)).

With this notation, in view of Equation (41) of [12] we have the following result.

Proposition 1. For bounded measurable segment functionals φ and ψ , the stochastic processes

�φ(Y (t, W)) −
∫ t

0
Aφ(Y (s, W)) ds (2)

and

�̄φ(Y (t, W))�̄ψ (Y (t, W)) −
∫ t

0
Aφψ (Y (s, W)) ds

−
∫ t

0
[Āφ(Y (s, W))�̄ψ (Y (s, W)) + Āψ (Y (s, W))�̄φ(Y (s, W))] ds (3)

are martingales with respect to the filtration It generated by (Y (s, W))0≤s≤t .

2.3. Mean values for edge and vertex processes

This subsection recapitulates some basic first-order properties of iteration infinitely divisible
tessellations, mostly known in the stationary setup, for the sake of reference in further sections.
Using (2) with φ ≡ 1 yields, upon taking expectations,

E �1(Y (t, W)) =
∫ t

0
E A1(Y (s, W)) ds. (4)
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However, in view of definition (1) it is easily verified that

A1(Y ) = �([W ]) +
∑

e∈MaxEdges(Y )

�([e]) = �([W ]) + ��[·](Y ), (5)

where �[·] stands for the edge functional e 	→ �([e]). Applying (2) once again with φ = �[·]
leads to

E ��[·](Y (t, W)) =
∫ t

0
E A�[·](Y (s, W)) ds.

However,

A�[·](Y (s, W)) =
∫

[W ]
�([L ∩ W ])�(dL) = 〈〈� ∩ �〉〉(W) for all s ∈ (0, t], (6)

where the locally finite point-intersection measure 〈〈� ∩ �〉〉 on R
2 is given by

〈〈� ∩ �〉〉 :=
∫

[R2]

∫

[L]
δL∩L′�(dL′)�(dL), (7)

where, recall, δ(·) stands for the Dirac unit mass at the argument, so that, in other words,

〈〈� ∩ �〉〉(A) = (� × �){(L1, L2) ∈ [A] × [A], L1 ∩ L2 ∈ A}, A ⊆ R
2.

Hence,

E ��[·](Y (s, W)) = s〈〈� ∩ �〉〉(W). (8)

Combining (4), (5), and (8) finally yields

E �1(Y (t, W)) = t�([W ]) + t2

2
〈〈� ∩ �〉〉(W). (9)

Note that (9), when specialized to the translation–invariant setup, contains an extra boundary
correction term, t�([W ]), in comparison to the classical mean value formula for the iteration
stable (STIT) random tessellations given in [9], which says that the density of maximal edges
in W is just t2〈〈� ∩ �〉〉(W)/2. This additional boundary correction term, t�([W ]), comes
from the fact that we count edges rather than edge midpoints. Thus, it can happen that in two
neighboring regions we observe two distinct edges which may coalesce into one edge when
putting these regions together into one area.

3. Second-order theory for edge and vertex processes

3.1. Variance calculation for the general case

We consider the most general case first and study iteration infinitely divisible random
tessellations Y (t, W) with general locally finite and nonatomic driving measures �. We fix
t > 0 and a compact and convex observation window W ⊂ R

2 as in Subsection 2.1. First we
use (3) with φ = ψ ≡ 1 to conclude that

�̄2
1(Y (t, W)) −

∫ t

0
A1(Y (s, W)) ds − 2

∫ t

0
Ā1(Y (s, W))�̄1(Y (s, W)) ds
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is a martingale with respect to It . Using (5) and taking expectations, we obtain

var(�1(Y (t, W))) = t�([W ]) +
∫ t

0
E ��[·](Y (s, W)) ds

+ 2

∫ t

0
cov(��[·](Y (s, W)), �1(Y (s, W))) ds. (10)

It remains to find an expression for the covariance cov(��[·](Y (s, W)), �1(Y (s, W))). Such
an expression can be found by applying (3) once again, this time with φ = 1 and ψ = �[·],
and t replaced by s and s replaced by u. In this way we obtain

cov(��[·](Y (s, W)), �1(Y (s, W))) =
∫ s

0
E A�[·](Y (u, W)) du

+
∫ s

0
cov(A1(Y (u, W)), ��[·](Y (u, W))) du

+
∫ s

0
cov(A�[·](Y (u, W)), �1(Y (u, W))) du.

In view of (6), A�[·](·) is a constant and, hence, the covariance involving it vanishes. Resorting
again to (5) we end up with

cov(��[·](Y (s, W)), �1(Y (s, W)))

=
∫ s

0
E A�[·](Y (u, W)) du +

∫ s

0
var(��[·](Y (u, W))) du. (11)

Putting together (10) with (11) yields the following expression for var(�1(Y (t, W))):

var(�1(Y (t, W)))

= t�([W ]) +
∫ t

0
E ��[·](Y (s, W)) ds

+ 2

(∫ t

0

∫ s

0
E A�[·](Y (u, W)) du ds +

∫ t

0

∫ s

0
var(��[·](Y (u, W))) du ds

)
. (12)

It remains to find var(��[·](Y (t, W))). To find an expression, apply (3) again with φ = ψ =
�[·] to obtain, upon taking expectations and using the fact that A�[·] is a constant, as remarked
in (6) above,

var(��[·](Y (t, W))) =
∫ t

0
E A(�[·])2(Y (s, W)) ds. (13)

However, using (1),

A(�[·])2(Y (s, W))

=
∫

[W ]

∫

[L∩W ]

∫

[L∩W ]
1[L ∩ L1 and L ∩ L2 are in the same cell of Y (s, W)]

× �(dL1)�(dL2)�(dL),

https://doi.org/10.1239/aap/1293113144 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113144


920 • SGSA T. SCHREIBER AND C. THÄLE

and, hence,

E A(�[·])2(Y (s, W))

=
∫

[W ]

∫

[L∩W ]

∫

[L∩W ]
P(L ∩ L1 and L ∩ L2 are in the same cell of Y (s, W))

× �(dL1)�(dL2)�(dL)

=
∫

[W ]

∫

[L∩W ]

∫

[L∩W ]
exp(−s�([L(L1, L2)]))�(dL1)�(dL2)�(dL), (14)

where L(L1, L2) stands for the segment joining the points L ∩ L1 and L ∩ L2, and where the
last equality follows by property 4 of Subsection 2.1.

To neatly formulate our theory, denote by 〈〈(�×�)∩�〉〉 the segment-intersection measure

on the space [̄R2 ]̄ of finite linear segments in R
2 given by

〈〈(� × �) ∩ �〉〉 =
∫

[R2]

∫

[L]

∫

[L]
δL(L1,L2)�(dL1)�(dL2)�(dL), (15)

and observe that this defines a locally finite measure, charging finite mass on collections [̄A]̄
of segments with both ends falling into a bounded set A ⊂ R

2, because of the local finiteness
of �. With this notation, combining (6), (8), (11), (12), (13), and (14) yields the following
result.

Theorem 1. For general locally finite and diffuse driving measures �, denoting by

T
exp
n (u) =

∞∑

k=n

uk

k! = exp(u) −
n−1∑

k=0

uk

k!

the nth tail of the exponential series at u, we have

var(��[·](Y (t, W))) = −
∫

[̄W ]̄

T
exp

1 (−t�([e]))
�([e]) 〈〈(� × �) ∩ �〉〉(de),

cov(��[·](Y (t, W)), �1(Y (t, W))) = t〈〈� ∩ �〉〉(W)

+
∫

[̄W ]̄

T
exp

2 (−t�([e]))
�([e])2

〈〈(� × �) ∩ �〉〉(de),

and

var(�1(Y (t, W))) = t�([W ]) + 3t2

2
〈〈� ∩ �〉〉(W)

− 2

∫

[̄W ]̄

T
exp

3 (−t�([e]))
�([e])3

〈〈(� × �) ∩ �〉〉(de). (16)

3.2. Vertex pair correlations for the general case

In this subsection we also stay in the general setup of locally finite and diffuse �. We
will extend the calculations made in Subsection 3.1 to determine the pair-correlation structure
of the vertex point process VY (t,W) generated by Y (t, W). For definiteness, we adopt the
convention that VY (t,W) does not include the boundary vertices; this way each vertex arises
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at the intersection of exactly two maximal edges. Recalling the consistency relation Y (t, W) =
Y (t) ∩ W , we see that the covariance structure between bounded regions U, V ⊂ R

2 does not
depend on W as soon as both U and V are contained in the interior of W. To put this in formal
terms, consider the whole-plane covariance measure cov(VY (t)) of the point process VY (t) on
(R2)2 = R

2 × R
2 (also called the second-order cumulant measure) given by the relation
∫

(R2)2
(f ⊗ g) d cov(VY (t)) = cov(�ηf (Y (t)), �ηg (Y (t))), (17)

holding for all bounded measurable f, g : R
2 → R with bounded support. Here ηf is the edge

functional
ηf (e) =

∑

x∈Vertices(e)

f (x),

and likewise for ηg. Note that, even though we are apparently dealing with the functionals
�ηf (Y (t)) and �ηg (Y (t)) defined on the whole-plane process, they can be safely replaced by
�ηf (Y (t, W)) and �ηg (Y (t, W)), respectively, for some W containing the supports of f and
g; hence, our martingale relations given in Proposition 1 hold here with no extra assumptions.
For the same reasons, all the integrals below with apparently unbounded integration domains
are effectively bounded due to the bounded supports of f and g, which we are going to exploit
without further mention. It is readily seen from (1) that, for each possible realization Y of Y (t)

or Y (t, W) in a domain W containing the supports of f,

Aηf (Y ) = 2

∫

[R2]

∑

x∈L∩Y

f (x)�(dL) = 2��f [·](Y ), (18)

where �f [e] =
∫
[e] f (e ∩ L)�(dL) and the factor 2 comes from the fact that each point of the

tessellation is contained in exactly two maximal edges. Consequently, using (3) with φ = ηf

and ψ = ηg , and taking expectations, we obtain

cov(�ηf (Y (t)), �ηg (Y (t))) =
∫ t

0
E Aηf ηg (Y (s)) ds

+ 2

∫ t

0
cov(��f [·](Y (s)), �ηg (Y (s))) ds

+ 2

∫ t

0
cov(��g[·](Y (s)), �ηf (Y (s))) ds. (19)

Proceeding as in Subsection 3.1, we now turn to the calculation of the covariance cov(��f [·]
(Y (s)), �ηg (Y (s))). To this end, we note that

A�f [·](Y ) =
∫

[R2]
�f [L]�(dL) =

∫

R2
f d〈〈� ∩ �〉〉, (20)

whence A�f [·](·) is a constant, and we again use (3) with φ = �f and ψ = ηg to obtain, in
view of (18),

cov(��f [·](Y (s)), �ηg (Y (s)))

=
∫ s

0
E A�f [·]ηg (Y (u)) du + 2

∫ s

0
cov(��f [·](Y (u)), ��g[·](Y (u))) du. (21)
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Finally, using (3) with φ = �f and ψ = �g , and applying (20) yields

cov(��f [·](Y (u)), ��g[·](Y (u))) =
∫ u

0
E A�f [·]�g[·](Y (v)) dv. (22)

Thus, using (19), (21) twice, once with f and g interchanged, and then (22), we obtain

cov(�ηf (Y (t)), �ηg (Y (t)))

=
∫ t

0
E Aηf ηg (Y (s)) ds + 2

∫ t

0

∫ s

0
E A�f [·]ηg+�g[·]ηf (Y (u)) du ds

+ 8

∫ t

0

∫ s

0

∫ u

0
E A�f [·]�g[·](Y (v)) dv du ds, (23)

since A�f [·]ηg + A�g[·]ηf = A�f [·]ηg+�g[·]ηf . It remains to calculate the expectations of the
A(·) functionals present in these integrals. However, this is easily done by recalling that,
for L ∈ [R2], the intersection Y (t) ∩ L is the Poisson point process with intensity measure
L ⊇ A 	→ t�([A]) (see property 4 of Subsection 2.1), whence, in view of (1),

E Aφ(Y (t)) = 1

2

∫

[̄R2 ]̄
φ(e) exp(−t�([e]))〈〈(t� × t�) ∩ �〉〉(de)

= t2

2

∫

[̄R2 ]̄
φ(e) exp(−t�([e]))〈〈(� × �) ∩ �〉〉(de) (24)

for bounded measurable φ such that φ(∅) = 0, which are locally defined in the sense that there
exists a bounded convex W such that φ(e) = φ(e ∩ W) for all e. Note that the extra prefactor
of 1

2 comes from the fact that the segment-intersection measure defined by (15) counts each
segment twice, once for each of the two orderings of its two termini. Putting (24) together
with (23) yields

cov(�ηf (Y (t)), �ηg (Y (t)))

= 1

2

∫

[̄R2 ]̄
ηf (e)ηg(e) �

1(s2 exp(−t�([e])); t)〈〈(� × �) ∩ �〉〉(de)

+
∫

[̄R2 ]̄
(�f [e]ηg[e] + �g[e]ηf (e)) �

2(s2 exp(−s�([e])); t)〈〈(� × �) ∩ �〉〉(de)

+ 4

∫

[̄R2 ]̄
�f [e]�g[e] �

3(s2 exp(−s�([e])); t)〈〈(� × �) ∩ �〉〉(de), (25)

where the multiple integral �
n is given by

�
n(f (s); t) :=

∫ t

0

∫ s1

0
· · ·

∫ sn−1

0
f (s) ds dsn−1 · · · ds1 = 1

(n − 1)!

∫ t

0
(t − s)n−1f (s) ds,

so that, in particular,

�
1(s2 exp(−λs); t) = λ−3(2 − (λ2t2 + 2λt + 2) exp(−λt)), (26)

�
2(s2 exp(−λs); t) = λ−4(2λt − 6 + (λ2t2 + 4λt + 6) exp(−λt)), (27)

�
3(s2 exp(−λs); t) = λ−5(λ2t2 − 6λt + 12 − (λ2t2 + 6λt + 12) exp(−λt)). (28)
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For a segment (edge) e, consider the measures �e and �[· ∩ e] on R
2 that are defined by

�e :=
∑

x∈Vertices(e)

δx

and
(�[· ∩ e])(A) = �([A ∩ e]), A ⊆ R

2.

With this notation, putting together (17) and (25) yields, in view of the definitions of ηf and
�f [·], the following result.

Theorem 2. For general locally finite and diffuse driving measures �, we have

cov(VY (t))

=
∫

[̄R2 ]̄

1

2
(�e ⊗ �e)� 1(s2 exp(−s�([e])); t)〈〈(� × �) ∩ �〉〉(de)

+
∫

[̄R2 ]̄
(�e ⊗ �[· ∩ e] + �[· ∩ e] ⊗ �e) �

2(s2 exp(−s�([e])); t)〈〈(� × �) ∩ �〉〉(de)

+ 4

∫

[̄R2 ]̄
(�[· ∩ e] ⊗ �[· ∩ e])� 3(s2 exp(−s�([e])); t)〈〈(� × �) ∩ �〉〉(de). (29)

An intuitive understanding of the structure of the covariance measure in Theorem 2 comes
by noting that the first integral in (29) takes into account pairs of vertices constituting the ends
of the same maximal edge, the second integral corresponds to pairs of vertices with the property
that one of them is an internal vertex of a maximal edge of which the second point is a terminus,
whereas the third integral corresponds to pairs of vertices lying on the same maximal edge but
not being its termini. Thus, other pairs of vertices (not lying on the same maximal edge) are
not present in the covariance measure; roughly speaking, this is because the maximal edges
are the only means of propagating dependencies in iteration infinitely divisible tessellations, an
intuition to be made more specific in future work.

3.3. Edge-vertex correlations in the general case

In this subsection, still placing ourselves in the general setting of a locally finite and diffuse
�, we consider the covariance measure between the vertex point process and edge length
process generated by Y (t). To this end, define the (random) edge length measure EY (t) of Y (t)

by setting, for bounded Borel A ⊆ R
2,

EY (t)(A) =
∑

e∈MaxEdges(Y (t))

ℓ(e ∩ A),

where ℓ(·) stands for the usual one-dimensional length. The object of our interest is the measure
cov(VY (t), EY (t)) given by

∫

(R2)2
(f ⊗ g) d cov(VY (t), EY (t)) = cov(�ηf (Y (t)), �J g (Y (t))) (30)

for bounded measurable f, g : R
2 → R with bounded support, where J g denotes the functional

J g(e) =
∫
e
g(x)ℓ(dx). Similarly as in (20) we have

AJ g (Y ) =
∫

[R2]
J g(L)�(dL). (31)
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Thus, AJ g is constant and, hence, using (3) with φ = ηf and ψ = J g, taking expectations,
and recalling (18), yields

cov(�ηf (Y (t)), �J g (Y (t))) =
∫ t

0
E Aηf J g (Y (s)) ds

+ 2

∫ t

0
cov(��f [·](Y (s)), �J g (Y (s))) ds. (32)

Using (3) once again, with φ = �f [·] and ψ = J g, upon taking expectations and recalling (20)
and (31), we obtain

cov(��f [·](Y (s)), �J g (Y (s))) =
∫ s

0
E A�f [·]J g (Y (u)) du.

Substituting into (32) leads to

cov(�ηf (Y (t)), �J g (Y (t))) =
∫ t

0
E Aηf J g (Y (s)) ds + 2

∫ t

0

∫ s

0
E A�f [·]J g (Y (u)) du ds.

Applying (24), we obtain

cov(�ηf (Y (t)), �J g (Y (t)))

= 1

2

∫

[̄R2 ]̄
ηf (e)J g(e) �

1(s2 exp(−s�([e])); t)〈〈(� × �) ∩ �〉〉(de)

+
∫

[̄R2 ]̄
�f [e]J g(e) �

2(s2 exp(−s�([e])); t)〈〈(� × �) ∩ �〉〉(de). (34)

Consequently, putting (34) together with (30) and defining the measure (ℓ(·∩e))(A) := ℓ(A∩e),
A ⊆ R

2, we obtain the following result.

Theorem 3. For general locally finite and diffuse driving measures �, we have

cov(VY (t,W), EY (t,W)) =
∫

[̄R2 ]̄

(
1

2
�e ⊗ ℓ(· ∩ e) �

1(s2 exp(−s�([e])); t)

+ �[· ∩ e] ⊗ ℓ(· ∩ e) �
2(s2 exp(−s�([e])); t)

)

× 〈〈(� × �) ∩ �〉〉(de). (35)

Observe that the first term in the integral in (35) takes into account pairs consisting of a vertex
constituting the terminus of a maximal edge and the maximal edge itself, whereas the second
term corresponds to pairs consisting of a vertex lying in the relative interior of a maximal edge
and the maximal edge. In analogy to the case of Theorem 2, vertex-edge pairs where the vertex
is not adjacent to the edge bring no contribution to the considered covariance structure.

3.4. Variance calculation for the stationary and isotropic case

We now specialize the results obtained in Subsection 3.1 to the stationary and isotropic
case, i.e. we consider stationary and isotropic random tessellations in the plane that are stable
under iteration (STIT tessellations). Up to reparametrization, this means taking the driving
measure �iso, the isometry invariant measure on the space of lines in the plane with length
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density 1. Recall first that Crofton’s formula [11, Theorem 5.1.1] for d = 2 and k = 1 implies
that

�iso([K]) = 2

π
V1(K) = 1

π
P (K), (36)

where K ⊂ R
2 is a planar convex body with first intrinsic volume V1(K) and perimeter

length P(K). For a line segment e ⊂ R
2, this is just

�iso([e]) = 2

π
ℓ(e), (37)

where ℓ(e) stands for the length of e. It follows from (36) that

��iso[·](Y (s, W)) = 2

π
�ℓ(Y (t, W)).

Moreover, in the context of (6) and (7) we have

〈〈�iso ∩ �iso〉〉(dx) = 2

π
dx and A�iso[·](Y (s, W)) = 2

π
Area(W).

Recall from Theorem 4 of [12] that the variance of the total edge length in W of the stationary
and isotropic iteration stable random tessellation Y (u, W), u > 0, simplifies in our particular
case to

var(�ℓ(Y (u, W))) = π

∫ ∞

0
γ W (r)(1 − e−2ur/π )

dr

r
,

where γ W (r) =
∫
S1

Area(W ∩ (W + ru))ν1(du) is the isotropized set-covariance function of
the window W , with ν1 standing for the uniform distribution on the unit circle S1; see [15] for
the definition of γ W (·) and Subsection 4.2 of [12] for further details. Combining this with (8)
and (12), in view of (37) we are immediately led to the variance formula. An alternative method
for deriving this formula directly from (16) for the case in which � = �iso is to use (36) and
the important identity for the intersection measure (15), namely

〈〈(�iso × �iso) ∩ �iso〉〉(dxy) = 4 dx dy

π3‖x − y‖ . (39)

The above equation may be established using a twofold application of the affine Blaschke–
Petkantschin formula [11, Theorem 7.2.7], as shown in [12, Equation (50)] in connection
with (37). It follows that

var(�1(Y (t, W))) = t

π
P (W) + 3

π
Area(W)t2 − 2

∫

W

∫

W

T
exp

3 (−2t‖x − y‖/π)

(2‖x − y‖/π)3

4 dx dy

π3‖x − y‖

= t

π
P (W) + 3

π
Area(W)t2 − 2π

∫ ∞

0
γ W (r)

T
exp

3 (−2tr/π)

r3
dr.

Computing T
exp

3 (−2tr/π), we arrive at the following result.

Corollary 1. The variance of the number of maximal edges of a stationary and isotropic random

iteration stable tessellation Y (t, W) is given by

var(�1(Y (t, W))) = t

π
P (W) + 3

π
Area(W)t2

+
∫ ∞

0
γ W (r)

(
4t2

πr
− 4t

r2
+ 2π

r3
(1 − e−2tr/π )

)
dr. (40)
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As an example, we may consider for W the ball B2
R in R

2 with radius R > 0. In this special
case, the isotropized set-covariance function takes the special form

γ B2
R
(r) = 2R2 arccos

(
r

2R

)
− r

2

√
4R2 − r2, 0 ≤ r ≤ 2R.

Unfortunately, the arising integral cannot be further simplified.
We are now interested in the variance asymptotics for a sequence WR = RW of growing

observation windows, as R → ∞. To this end, first note that, asymptotically, as R → ∞, we
have ∫ B(R)

0

(
4t2

πr
− 4t

r2
+ 2π

r3
(1 − e−2tr/π )

)
dr ∼ 4

π
t2 log R,

as long as log B(R) ∼ log R, where B(R) stands for some upper integration bound depending
on R. Here and later, we will write f (R) ∼ g(R) whenever limR→∞ f (R)/g(R) = 1. Now,
the relation

γ WR
∼ Area(WR) = R2 Area(W),

valid uniformly for the argument r = O(R/log R) and γ WR
→ 0 for r = �(R log R) (using

the standard Landau notation), implies that

var(�1(Y (t, WR))) ∼ 1

π
tP (WR) + 3

π
t2 Area(WR) + 4

π
t2 Area(WR) log R

∼ 4

π
t2R2 Area(W) log R.

Summarizing, we have shown the following result.

Corollary 2. Asymptotically, as R → ∞, we have

var(�1(Y (t, WR))) ∼ 4

π
t2R2 Area(W) log R

and

var(Nv(Y (t, WR))) ∼ 16

π
t2R2 Area(W) log R,

where Nv(Y (t, WR)) ∼ 2�1(Y (t, WR)) is the number of vertices of Y (t, WR).

The formulae show that the geometry of the window W is reflected only by its area in the
variance asymptotics. Recall from [4] that, for the Poisson–Voronoi tessellation, PVT(t, W),
restricted to some window W ⊂ R

2 with edge length density t > 0 (i.e. the intensity of the
underlying Poisson point process equals t2/4), we asymptotically have

var(Nv(PVT(t, W))) ∼ 2t2R2 Area(W).

Moreover, for the stationary and isotropic Poisson line tessellation, PLT(t, W), with length
intensity t and restricted to W , we have, according to [3],

var(Nv(PLT(t, W))) ∼ 4

π2
t3R3CPI(W ; 2),

where CPI(W ; 2) is the second-order chord-power integral of W in the sense of [11, Chap-
ter 8.6]. The appearance of CPI(W ; 2) in the latter formula means that, beside the area of W ,
its shape also plays an asymptotically important role. The variances of the different tessellation
models are illustrated in Figure 2 for a sequence WR = B2

R of circles with radii R. In this
case it holds that CPI(B2

1 ; 2) = 16π/3, as can be concluded from Theorem 8.6.6 of [11] with
a corrected constant.
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Figure 2: Variance comparison for the numbers of vertices of Poisson line (dashed line), STIT (solid

line), and Poisson–Voronoi (dotted line) tessellations for t = 1 and WR = B2
R , the ball with radius R > 0.

In particular, the formulae of Corollary 2 establish weak long-range dependencies (cf. [10,
p. 60]) for the point process of maximal edge midpoints and the point process of vertices, since

lim
R→∞

var(�1(Y (t, WR)))

Area(WR)
= lim

R→∞
var(Nv(Y (t, WR)))

Area(WR)
= ∞.

As explained at the end of Subsection 3.2, these dependencies are propagated by long maximal
edges on which the vertices are lying and the log term in the asymptotic variance formula reflects
the weakness of these long-range dependencies. In contrast to the STIT model, Poisson line
tessellations have strong long-range dependencies, since Area(WR)−1 var(Nv(PLT(t, WR)))

grows polynomially (linearly) in R, while Poisson–Voronoi tessellations do not have any long-
range dependencies. In fact, the maximal edges almost surely have finite length and there are no
full straight lines in the tessellation Y (t). In contrast to this, Poisson line tessellations consist
by definition of only full lines and the spatial dependencies are in this case much stronger
due to the geometric structure of these processes. For Poisson–Voronoi tessellations, we have
independence of local geometries whenever the observation regions are far enough from each
other, which means that we ‘almost’have independence for the point process of vertices; see [4].
In this sense the STIT tessellations exhibit features intermediate between Poisson–Voronoi and
Poisson line tessellations.

3.5. Vertex pair correlations for the stationary and isotropic case

Having made very general computations for the covariance measure of the point process of
vertices of an iteration infinitely divisible random tessellationY (t, W) in Subsection 3.2, we now
specialize, as in Subsection 3.4, to the stationary and isotropic setup and consider a stationary
and isotropic random tessellation Y (t, W) that is iteration stable, i.e. a stationary and isotropic
random STIT tessellation with driving measure �iso. Firstly, recall relation (39). Substituting
this expression into (29), using the fact that �iso([· ∩ e]) = 2ℓ(· ∩ e)/π and applying the
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substitution y = x + u yields

cov(VY (t))

=
∫

R2

∫

R2

[
1

2
(�Ou ⊗ �Ou) ◦ (ϑx)

−1
�

1(s2e−2‖u‖s/π ; t)

+
(

�Ou ⊗ 2

π
ℓ(· ∩ Ou) + 2

π
ℓ(· ∩ Ou) ⊗ �Ou

)
◦ (ϑx)

−1
�

2(s2e−2‖u‖/πs; t)

+ 4

(
2

π
ℓ(· ∩ Ou) ⊗ 2

π
ℓ(· ∩ Ou)

)
◦ (ϑx)

−1
�

3(s2 e−2‖u‖s/π ; t)

]
4 dx du

π3‖u‖ ,

where we have denoted the origin by O and the usual length measure by ℓ, and where ϑx

stands for the diagonal shift ϑx(v, w) = (v + x, w + x), v, w ∈ R
2. The covariance measure

cov(VY (t)) can be reduced in the sense of [2, Section 8.1] and, by Proposition 8.1.I(b) therein,
the reduced covariance measure ĉov(VY (t)) has the form

ĉov(VY (t)) =
∫

R2

[
1

2
(δu + δ−u + 2δO)� 1(s2e−2‖u‖s/π ; t)

+ 4

π
ℓ(· ∩ (−u)u) �

2(s2e−2‖u‖s/π ; t)

+ 4

(
4

π2

∫

Ou

∫

Ou

δv−wℓ(dv)ℓ(dw)

)
�

3(s2e−2‖u‖s/π ; t)

]
4 du

π3‖u‖ ,

where we have used the facts that∫
δv−w(�Ou ⊗ �Ou) d(v, w) = δu + δ−u + 2δO

and ∫
δv−w(�Ou ⊗ ℓ(· ∩ Ou)) d(v, w) = 2ℓ(· ∩ (−u)u).

Recall now, see [2] again, that the measure ĉov(VY (t)) and the reduced second moment measure
K(VY (t)) are related by ĉov(VY (t)) = K(VY (t)) − λ2ℓR2 (see [2, Equation (8.1.6)]), where ℓR2

is the Lebesgue measure in the plane and λ stands for the intensity of VY (t). Hence, taking into
account the fact that the vertex intensity λ equals 2t2/π (see [9]), and transforming into polar
coordinates, we obtain

K(VY (t)) = 4

π3

∫ 2π

0

∫ ∞

0

[
(δO + δreiϕ )� 1(s2e−2rs/π ; t) + 8

π
ℓ(· ∩ Oreiϕ)� 2(s2e−2rs/π ; t)

+ 4

(
8

π2

∫ r

0
(r − ρ)δρeiϕ dρ

)
�

3(s2 e−2rs/π ; t)

]
dr dϕ

+
(

2

π
t2

)2

ℓ2
R
.

From the above expression we can now calculate Ripley’s K-function,

K(R) :=
(

π

2t2

)2

K(B2
R),

often also considered in the factorial version K̃(R) with

K(R) = K̃(R) +
(

π

2t2

)2

K({0});
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see [2, Equation (8.1.12)] or [15, Chapter 4.5]. We obtain

K(R) = 2

t4

∫ ∞

0

[
(1 + 1[r ≤ R])� 1(s2e−2rs/π ; t) + 8

π
min(r, R)� 2(s2e−2rs/π ; t)

+ 32

π2

(
r min(r, R) − 1

2
min(r, R)2

)
�

3(s2e−2rs/π ; t)

]
dr + πR2.

Splitting the integral into two parts, one integral over [0, R] and another over [R, ∞), yields

K(R) = πR2 + 2

t4

∫ R

0

[
2�

1(s2e−2rs/π ; t) + 8

π
r� 2(s2e−2rs/π ; t)

+ 16

π2
r2

�
3(s2e−2rs/π ; t)

]
dr

+ 2

t4

∫ ∞

R

[
�

1(s2e−2rs/π ; t) + 8

π
R�

2(s2e−2rs/π ; t)

+ 32

π2

(
rR − R2

2

)
�

3(s2e−2rs/π ; t)

]
dr. (41)

Using (26), (27), and (28), we finally obtain Corollary 3 below, using the definition

g(r) = 1

2πr

d

dr
K(r) = 1

2πr

d

dr
K̃(r)

for the pair-correlation function, describing the normalized vertex density in terms of the
distance r from a typical vertex.

Corollary 3. The pair-correlation function of the vertex point process VY (t) of a stationary

and isotropic random STIT tessellation Y (t) with edge length density t > 0 is given by

g(r) = 1 + 2

t2r2
− π

t3r3
+ π2

4t4r4
−

(
1

2t2r2
− π

2t3r3
+ π2

4t4r4

)
e−2tr/π . (42)

Note that in this context in the case of a stationary and isotropic Poisson line tessellation
with intensity t > 0, the pair-correlation function of the point process of vertices takes the form

gPLT(t)(r) = 1 + 4

πtr
,

which can be easily concluded from Slivnyak’s theorem for Poisson point processes; see [15]
(here applied to the Poisson process of lines). A comparison between the pair-correlation
functions g(r) of the STIT tessellation and gPLT(t)(r) and that of a Poisson–Voronoi tessellation
is shown in Figure 3. However, in contrast to Poisson line and STIT tessellations, the structure of
the pair-correlation function of the point process of vertices of a Poisson–Voronoi tessellation is
much more complicated. It may be expressed by a sum of integrals of rather involved functions,
which cannot be explicitly evaluated. For details and the nontrivial numerical computations,
we refer the reader to [4].

It is interesting to compare the pair-correlation formula in Corollary 3 with the information
on the variance of the number of edges provided in Corollary 1. To this end, use the variance
formula

var(Nv(Y (t, W))) = 2π

(
2

π
t2

)2 ∫ ∞

0
γ W (r)[g(r) − 1]r dr + 2

π
t2 Area(W)
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Figure 3: (a) The pair-correlation function of the point process of vertices of Poisson line (dashed line),
STIT (solid line), and Poisson–Voronoi tessellations (dotted line). (b) The cross-correlation function of
the vertex point process and the length measure of a Poisson line (dashed line) and a STIT (solid line),

each time with edge length density 1.

(see [15, Equation (4.5.7)] and Girling’s formula thereafter), and compare it with the variance
expression in Corollary 1. Taking into account the fact that the number of vertices is equal to,
modulo boundary effects, twice the number of edges, we should have agreement between the
leading term, 4t2/πr , in the integral in (40) and 1

4 2πr(2t2/π)2 times the leading term, 2/t2r2,
of g(r)−1 in (42), where the factor 1

4 comes from switching between edge and vertex counts, the
factor 2πr comes from the transformation into polar coordinates, and the remaining factor is the
squared intensity of the vertex point process. Comparing these expressions we readily obtain
the required agreement of leading terms, determining the prefactor in the O(R2 log R)-variance
asymptotics. The remaining lower-order terms, o(1/r2), in the pair correlation function (42)
do not have to and do not agree with their suitably normalized counterparts in (40), because the
latter contains additional area order corrections and, moreover, takes into account the boundary
effects caused by edges hitting the boundary ∂WR of WR .

Another aspect that can be compared concerns the radial distribution function. For a
stationary and isotropic random point process in the plane with intensity λ > 0 and K-function
K(r), the radial distribution function ρ(r) is defined by

ρ(r) = λ
dK(r)

dr
.

Writing from now on ρ(r) for the radial distribution function of the point process VY (t) of
vertices of a stationary and isotropic STIT tessellation Y (t) with edge length density t > 0, we
can use (41) to conclude that

ρ(r) = 4t2r + 8

r
− 4π

tr2
+ π2

t2r3
−

(
2

r
− 2π

tr2
+ π2

t2r3

)
e−2tr/π ,

whereas, for the radial distribution function ρPLT(t)(r) of the vertex point process of a stationary
and isotropic Poisson line tessellation with edge length density t > 0, we obtain

ρPLT(t)(r) = 2t2r + 8t

π
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from Slivnyak’s theorem. This means that, asymptotically, we have

ρ(r) ∼ 2ρPLT(t)(r) as r → ∞.

Remark 1. There are different normalizations available for the reduced second-moment mea-
sure K and Ripley’s K-function in the existing literature; see, for example, [2] or [15]. In this
paper we decided not to normalize K by 1 over the squared intensity, 1/λ2, but we normalize
the K-function by that factor in order to ensure that the pair-correlation function g(r) tends to
1 as r → ∞. This is done to keep the formulae consistent with those from previous papers on
STIT tessellations. This convention will also be adopted in the next subsection.

3.6. Edge-vertex correlations in the stationary and isotropic case

Our interest here is focused on the cross-covariance measure cov(VY (t), EY (t)) of a stationary
and isotropic random STIT tessellation Y (t) with edge length density t > 0 and driving
measure �iso. It describes the correlations between the stationary and isotropic random point
process of vertices and the stationary and isotropic random length measure concentrated on the
edges of Y (t). The study of this measure was proposed in [13] and [14], and we recall some
general definitions now. Let �1 and �2 be stationary and isotropic random measures in R

2

with respective intensities λ1 > 0 and λ2 > 0. For a Borel set B ⊂ R
2, we introduce the

random measures

K12(B) := E

∫

[0,1]2
�2(B + x)�1(dx), K21(B) := E

∫

[0,1]2
�1(B + x)�2(dx).

The measure K12 describes �2 as seen from the typical point of �1 and K21 describes the
measure �1 as seen from the typical point of �2 in the sense of Palm distributions. In [14] it
was shown that K12(B) = K21(−B), which, in particular, implies that, for the ball B2

r with
radius r > 0, the identity K12(B

2
r ) = K21(B

2
r ) holds. The cross K-function K12(r) = K21(r)

may now be introduced as

K12(r) := 1

λ1λ2
K12(B

2
r ),

and the cross-correlation function g12(r) of the random measures �1 and �2 is defined by

g12(r) := 1

2πr

dK12(r)

dr
; (43)

cf. [13] and [14]. Informally, we could say that λ1K21(r) or λ2K12(r) is the expectation of
�1(B

2
r + x) or �2(B

2
r + x) at the typical point x of �2 or �1, respectively. The theory is

now applied to our setting and we take for �1 the point process VY (t) and for �2 the random
measure EY (t) (recall the definitions from Subsection 3.3). We have in this special situation
λ1 = 2t2/π and λ2 = t ; see [9]. We can now use Theorem 3 together with (36) and (39) to
obtain, under the substitution y = x + u,

cov(VY (t), EY (t)) =
∫

R2

∫

R2

[
1

2
�Ou ⊗ ℓ(· ∩ Ou)� 1(s2e−2‖u‖s/π ; t)

+ 2

π
ℓ(· ∩ Ou)⊗2

�
2(s2e−2‖u‖s/π ; t)

]
◦ ϑ−1

x

4 du dx

π3‖u‖ .
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Consequently, we end up with

K12 =
∫

R2

[
ℓ(· ∩ Ou)� 1(s2 e−2‖u‖s/π ; t)

+ 2

π

∫

Ou

∫

Ou

δv−wℓ(dv)ℓ(dw)� 2(s2e−2‖u‖s/π ; t)

]
4 du dx

π3‖u‖ + 2

π
t3ℓR2 ,

whereby, upon passing to polar coordinates, we have

K12 = 4

π3

∫ ∞

0

∫ 2π

0

[
ℓ(· ∩ Oreiϕ)� 1(s2e−2rs/π ; t)

+ 4

π

(∫ r

0
(r − ρ)δρeiϕ dρ

)
�

2(s2 e−2rs/π ; t)

]
dϕ dr + 2

π
t3ℓR2 .

Recalling the definition of K12 and again using the fact that in our setup λ1 = 2t2/π and
λ2 = t, we obtain

K12(R) = πR2 + 4

πt3

∫ ∞

0

[
min(r, R) �

1(s2 e−2rs/π ; t)

+ 4

π

(
r min(r, R) − 1

2
min(r, R)2

)
�

2(s2e−2rs/π ; t)

]
dr

= πR2 + 4

πt3

∫ R

0

[
r� 1(s2e−2rs/π ; t) + 2

π
r2

�
2(s2e−2rs/π ; t)

]
dr

+ 4

πt3

∫ ∞

R

[
R�

1(s2e−2rs/π ; t) + 4

π

(
rR − R2

2

)
�

2(s2 e−2rs/π ; t)

]
dr.

Using (43) together with (26), (27), and (28), we arrive at the following result.

Corollary 4. The cross-correlation function of the vertex point process VY (t) and the random

length measure EY (t) of a stationary and isotropic random STIT tessellation Y (t) with edge

length density t > 0 is given by

g12(r) = 1 + 1

t2r2
− π

4t3r3
−

(
1

2t2r2
− π

4t3r3

)
e−2tr/π .

In contrast to this formula, the same cross-correlation function g
PLT(t)
12 (r) for a stationary

and isotropic Poisson line tessellation with edge length density t > 0 is given by

g
PLT(t)
12 (r) = 1 + 2

πtr
,

which can be easily obtained from Slivnyak’s theorem for which we refer the reader to [15].
A comparison of both functions is shown in Figure 3. We would like to point out that the
corresponding cross-correlation function is still unknown for the Poisson–Voronoi model.

4. Central limit theory

In this section we will study the functional central limit problem for the total edge count and
edge length processes induced by a STIT tessellation in growing windows WR = RW, R→ ∞,
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where W denotes some compact convex set of nonempty interior, to remain fixed throughout
the section. We assume that the measure � is translation invariant, i.e. we are in the STIT
regime.

Define the rescaled total edge length process by

L
R,W
t := 1

R
√

log R
�̄�iso[·]

(
Y

(
t + 1

log R
, WR

))

and the rescaled total edge count process by

C
R,W
t := 1

R
√

log R
�̄1

(
Y

(
t + 1

log R
, WR

))
, t ∈ [0, 1].

The main result of this section is the following.

Theorem 4. The processes (L
R,W
s , C

R,W
s )s∈[0,1] converge jointly in law, as R → ∞, on the

space D([0, 1]; R
2) of R

2-valued càdlàg functions on [0, 1] endowed with the usual Skorokhod

J1 topology (see [5, Chapter VI.1] or [1, Chapter 3, Section 14]) to the process t 	→ (ξ, tξ),

where ξ is a normal random variable with variance V (�[·], W), which is given by Equation (63)

of [12] with φ = �[·].

Rather than giving a general formula for V (φ, W), we refer the reader to Proposition 1 and
Equation (72) of [12], where the general case is considered and V (φ, W) is expressed as a
weighted mean width of an associated zonoid and its polar body. Here, we only mention the
fact that, for the particular isotropic case, we simply have

V (�iso[·], W) = 4

π
Area(W);

see the discussion following Proposition 1 of [12].
The phenomenon observed in Theorem 4 deserves a short discussion. Namely, although both

�̄�[·](Y (t, WR)) and �̄1(Y (t, WR)) exhibit fluctuations of the order R log R, the mechanisms
in which these fluctuations arise are of a rather different nature.

• As shown in [12, Theorem 6], the leading-order deviations of �̄�[·] arise in the initial
stages of the MNW construction, usually referred to as the big bang phase. Here, this is the
time period [0, 1/log R]. During the later stages of the construction, i.e. the time interval
(1/log R, 1], the variance increase is of lower order and any newly arising fluctuations
are negligible compared to those originating from the big bang. In the asymptotic picture
this means the initial fluctuation remains frozen throughout the rest of the dynamics,
whence we obtain the constant limit for L

R,W
t (note that at this point the Brownian limit

for the length process obtained in Theorem 6 of [12] referred to a different time flow).

• In contrast, the deviations of �̄1 arise and cumulate constantly in time t with a rate
proportional to t times the initial big bang fluctuation of �̄�[·]. Thus, as opposed to that
of �̄�[·], the variance of �̄1 exhibits a nonvanishing quadratic dependency on t even in
large-R asymptotics.

Thus, in large-R asymptotics, we have the following intuitive picture. Denoting by � the initial
big bang fluctuation of ��[·] we can effectively use the following first-order approximations:
�̄�[·](Y (t, WR)) ≈ � and �̄1(Y (t, WR)) ≈ t� valid for t ∈ (1/log R, 1].
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Proof of Theorem 4. Consider the auxiliary process

�̂1(Y (t, W)) := �̄1(Y (t, W)) −
∫ t

0
Ā1(Y (s, W)) ds,

which in view of (5) is the same as

�̄1(Y (t, W)) −
∫ t

0
�̄�[·](Y (s, W)) ds,

and which is a centered It -martingale by (2). Squaring and taking expectations, we obtain

E(�̂1(Y (t, W)))2 = var(�1(Y (t, W))) − 2

∫ t

0
E[�̄1(Y (t, W))�̄�[·](Y (s, W))] ds

+ E

∫ t

0

∫ t

0
�̄�[·](Y (s, W))�̄�[·](Y (u, W)) du ds. (44)

Using the facts that, for s < t , E[�̄�[·](Y (t, W)) | Is] = �̄�[·](Y (s, W)) and

E[�̄1(Y (t, W)) | Is] − �̄1(Y (s, W)) =
∫ t

s

E[�̄�[·](Y (u, W)) | Is] du

= (t − s)�̄�[·](Y (s, W)),

as follows by the martingale property of �̄�[·](Y (t, W)) and �̂1(Y (t, W)). Taking conditional
expectations we can rewrite (44) as

E(�̂1(Y (t, W)))2

= var(�̄1(Y (t, W))) − 2

∫ t

0
(t − s) E �̄2

�[·](Y (s, W)) ds

− 2

∫ t

0
E �̄1(Y (s, W))�̄�[·](Y (s, W)) ds + 2

∫ t

0

∫ s

0
E �̄2

�[·](Y (u, W)) du ds,

and, hence, with the second and fourth terms on the right-hand side canceling out,

E(�̂1(Y (t, W)))2 = var(�1(Y (t, W)))

− 2

∫ t

0
cov(�1(Y (s, W))��[·](Y (s, W))) ds. (45)

Relation (45) combined with (8) and (10) readily yields

E(�̂1(Y (t, W)))2 = t�([W ]) + t2

2
〈〈� ∩ �〉〉(W). (46)

To proceed, define the auxiliary process

Ĉ
R,W
t := 1

R
√

log R
�̂1

(
Y

(
t + 1

log R
, WR

))
= C

R,W
t −

∫ t

−1/log R

L
R,W
s ds. (47)

Using the facts that �([WR]) = O(R) and 〈〈� ∩ �〉〉(WR) = O(R2), we conclude from (46)
that limR→0 E(Ĉ

R,W
1 )2 = 0. Thus, Doob’s L2-maximal inequality [6, Theorem 3.8(iv)] implies

that
lim

R→∞
E sup

t∈[0,1]
(Ĉ

R,W
t )2 ≤ lim

R→∞
4 E(Ĉ

R,W
1 )2 = 0. (48)
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We are now in a position to apply Theorem 6 of [12] (taking into account the fact that the
notation L

R,W used in [12] corresponds to a time change of L
R,W as defined here) to conclude

that, as R → ∞,

(L
R,W
t )t∈[0,1] ⇒ (ξ)t∈[0,1],

that is, the process (L
R,W
t )t∈[0,1] converges in law in the Skorokhod space D([0, 1]; R) to

the constant process t 	→ ξ, where, recall, ξ is a centered normal random variable with
variance V (�[·], W). Using (48) and recalling definition (47), we see that the processes
(L

R,W
t , C

R,W
t )t∈[0,1] converge jointly in law in D([0, 1]; R

2) to the process

t 	→
(

ξ,

∫ t

0
ξ ds

)
= (ξ, tξ),

which completes the proof of Theorem 4.

Remark 2. For reasons discussed in detail in Remark 6 of [12], we expect the rate of the
convergence in Theorem 4 to be rather slow.
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