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This paper shows that a straightforward extrapolation of the bootstrap distribution obtained by
resampling without replacement, as considered by Politis and Romano, leads to second-order correct
confidence intervals, provided that the resampling size is chosen adequately. We assume only that the
statistic of interest Tn, suitably renormalized by a regular sequence, is asymptotically pivotal and
admits an Edgeworth expansion on some differentiable functions. The results are extended to a
corrected version of the moving-block bootstrap without replacement introduced by Künsch for strong-
mixing random fields. Moreover, we show that the generalized jackknife or the Richardson extra-
polation of such bootstrap distributions, as considered by Bickel and Yahav, leads to better approx-
imations.
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1. Introduction

Politis and Romano (1994) give a general theory, under very weak assumptions, for the
construction of first-order asymptotically valid approximations and confidence intervals based
on a resampling scheme. The idea is to approximate the sampling distribution of a statistic Tn

based on n observations by the empirical distribution of the suitably renormalized values of
the statistic computed on all the subsets of size bn , n. Although this undersampling scheme
may be seen as a delete-dn jackknife with dn � nÿ bn (see Wu 1990; Shao and Wu 1989),
for reasons that will appear more clearly later, we shall call this method the bootstrap without
replacement (WoRB). Politis and Romano’s (1994) work is based on two basic ideas – one
being undersampling, the other the absence of replacement. Indeed, it is well known from
previous work that failure of Efron’s (1979) bootstrap with a resampling size equal to the
original sample size may be solved in some cases by undersampling (see, for instance,
Bretagnolle 1983; Bertail 1992). However, such a modification may not succeed in other
cases. One of the reasons for this failure is the problem of ties induced by the bootstrap
algorithm (consider, for instance, the cases of U-statistics in Bickel and Freedman 1981). The
approach of Politis and Romano (1994), which goes back to Wu’s (1990) jackknife histogram,
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avoids these problems and leads to a kind of ‘general’ asymptotic validity of the WoRB.
Extensions to strong-mixing random fields using the ideas of the moving-block bootstrap
introduced by Künsch (1989) and Liu and Singh (1992) are also possible.

However, the main drawback of this method is that it does not provide second-order
properties as does Efron’s bootstrap in regular cases. An explicit correction, as proposed in
Tu (1992), may be used to overcome this deficiency; yet this requires some additional
regularity conditions on Tn. Moreover, it is not automatic. The purpose of this paper, which
extends Bertail (1993), is to give a modified version of the WoRB, in the independent
identically distributed case and in a strong-mixing setting; this version yields a ‘general’
second-order asymptotic validity under the very weak assumption that the statistic Tn admits
an Edgeworth expansion on some differentiable functions. The proposed transformation of
the WoRB distribution has been independently investigated by Booth and Hall (1993). It is
based on the observation that if the size used to construct the jackknife pseudo-values is bn,
then the error of the approximation of the jackknife histogram is of order O(bÿ1=2

n ) and thus
cannot coincide with the true distribution up to the second order. However, if one mixes the
normal approximation and the jackknife histogram in proportion (bn=n)1=2 and
(1ÿ (bn=n)1=2), then one obtains second-order properties. In fact, this transformation is
already contained in Bickel and Yahav’s (1988) paper on Richardson extrapolations, whose
aim was to show how it is possible to construct an accurate approximation of the bootstrap
distribution at a lower cost, using undersampling. The weighted scheme proposed along
these lines may itself be seen as a generalized jackknife transformation (see Gray et al.
1972) of the asymptotic distribution and the jackknife histogram that yields a better
approximation of the true distribution. In some sense, this is a transposition of bias
reduction techniques to ‘order reduction’ techniques. We shall see that this idea may be
applied to a very large category of statistics and may be generalized to obtain
approximations correct up to O(nÿ1�E), for any E . 0 in regular cases. We shall see that
the present results may be useful in many applications and lead to new second-order results
for many non-regular functionals. In particular, we obtain second-order correct confidence
intervals for some econometric quantities that are asymptotically chi-squared distributed, for
quantiles and U-quantiles, as well as for degenerate U statistics and von Mises functionals,
for which the second-order properties of the usual bootstrap have never been examined or
may even fail.

The layout of this paper is as follows. To motivate our main result and introduce the
notation, we shall begin in Section 2 with general considerations on the case of the mean.
Connections with other bootstrap methods are also pointed out. Section 3 gives the basic
ideas and the main theorem on the second-order validity of the corrected bootstrap in the
i.i.d. real case under very weak assumptions. The results are illustrated by many examples.
As a particular illustration we show that it is possible to choose a resampling size which
improves the results of Hall (1992a) in nonparametric density estimation and allows for the
construction of more accurate confidence intervals. Some extensions to more general spaces
are also considered. Section 4 extends the results of Section 3 to strong-mixing random
fields using a modified version of Künsch’s (1989) moving-block bootstrap. The results are
illustrated by some applications in robust estimation in autoregressive moving-average
models and spectral density estimation. Section 5 exposes some refinements. In particular,
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we shall show that computing the generalized jackknife of several WoRBs for different
values of bn improves the approximations and reduces the cost of computation. In Section 6
we give some simulation results, in the case of quantile estimation, for which the usual
bootstrap fails to be second-order correct.

2. Bootstrapping without replacement

2.1. A METHOD OF GENERAL INTEREST

Let fX 1, X 2, . . . , X ngn2N be sequences of i.i.d. random variables with distribution P and
consider a statistic Tn � Tn(X 1, X 2, . . . , X n) estimating some real parameter θ(P) (we shall
later see that the assumption that θ(P) is real may easily be relaxed). Consider also
S2

n � S2
n(X 1, X 2, . . . , X n) a normalizing sequence converging in probability to a constant

σ 2 . 0. This includes the case S2
n � 1. Assume that Tn converges to θ(P) at a rate τn. To fix

some notation, define

Kn(x, P) � P(~Tn < x)

with

~Tn � ~Tn(X 1, X 2, . . . , X n) � H(τnSÿ1
n (Tn ÿ θ(P)),

where H is either the identity or the absolute value. The function H is introduced to consider
simultaneously the construction of unilateral and bilateral confidence intervals. Consider now
the following assumptions:

Assumption A1. ~Tn converges in distribution to a random variable having a non-degenerate
continuous distribution function K(x, P) with a uniformly bounded first derivative.

Assumption A19. A1 holds under the weaker condition that K(x, P) is continuously
differentiable on a compact neighbourhood of the quantile of order 1ÿ α:

c(1ÿ α) � inf fx: K(x, P) > 1ÿ αg:

Let bn , n be the size of the samples taken without replacement from the observed
population Xn � (X 1, X 2, . . . , X n). These subsets may take only

Nn �
n
bn

� �

possible values denoted by X bn,i, i � 1, . . . , Nn. The WoRB distribution of the root ~Tn is
defined by

�Kb n (xjXn) � Nÿ1
n

XNn

i�1

IfH(τb n (Tb n (X b n,i)ÿ Tn)=Sb n (X b n,i)) < xg,

where in the following IfBg is the indicator of the event B. The fact that �Kbn (xjXn) is almost
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a U statistic with finite support leads to the result that if τb n=τn !n!1 0, bn=n !n!1 0 with
bn !n!11 then under Assumption A1

sup
x
j
�Kb n (xjXn)ÿ Kn(x, P)j !n!1 0 in probability

without assuming any regularity condition on Tn (see Politis and Romano 1994). Direct
application of Beran’s (1984) results leads to first-order correct bootstrap confidence intervals
under Assumption A19. Extensions to general spaces to non-i.i.d. sequences (typically α-
mixing sequences) are almost immediate using a version of the moving-block bootstrap
without replacement introduced by Künsch (1989). Notice that, for the results to be useful in
practice, the convergence rate has to be known, which may be a serious problem if the class
of probability P under consideration is too big (consider, for instance, the case of
Tn � min1<i<n X i or the case of the mean when no assumptions are made on the variance).
Using the ‘right’ convergence rate means that we have to adapt the WoRB to the model (but
note that it is also the case with the usual bootstrap in the same situations). Bertail et al.
(1995) recently showed that it is possible to circumvent this problem by first estimating
consistently the convergence rate via undersampling and then using this estimator to construct
the WoRB distribution. However, for many statistical applications the assumption concerning
the convergence rate is rather weak. We shall consider that case now.

2.2. CONNECTIONS WITH OTHER BOOTSTRAPS

Connections with the generalized weighted bootstrap will probably make clearer the link
between the WoRB, Efron’s bootstrap and the Monte Carlo step. Mason and Newton (1992)
have introduced a generalization of Efron’s bootstrap that yields similar and sometimes better
results in many situations (see Barbe and Bertail 1995). The idea is to weight each
observation by stochastic exchangeable weights (wn,i)1<i<n and to determine the distribution
of the weighted statistic according to the law of the weights, conditioned on the original
sample. Specific choices of weights lead to well-known resampling plans including the
Bayesian bootstrap, Lo’s (1991) Bayesian bootstrap clones and Efron’s bootstrap. The WoRB
actually belongs to this category since it is possible to choose weights defined for ik 2 f0, 1g,
k � 1, . . . , n, such that

Pn
k�1ik � bn by

PW (wn,1 � i1, wn,2 � i2, . . . , wn,n � in) � Nÿ1
n : (1)

In the case of the mean, Tn � �X n � nÿ1
Pn

i�1 X i estimating θ(P) � EP X , under the
assumption that σ 2

� EP(X ÿ EP X )2 ,1, Theorem 2.1 of Mason and Newton (1992)
applies (see their conditions 2.12 and 2.13 with weights defined by Yi,n �

wn,ifbn(nÿ bn)gÿ1=2). When bn=n !n!1 0, we obtain, for the mean, the validity of the
WoRB as stated in Politis and Romano (1994). The asymptotic validity of the WoRB in some
other regular cases (typically U or V statistics) follows directly from this representation. The
approach of Politis and Romano (1994) is, of course, more general and more direct. However,
conditions for second- and third-order validity developed in Barbe and Bertail (1995) fail for
these weights essentially because of the ‘undersampling’ size

Pn
k�1wn,k � bn.
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2.3. SECOND-ORDER INVALIDITY

To motivate our results, consider the example of the mean studied in Bertail (1993) and
Booth and Hall (1993). Assume that EP X 4 ,1 and choose S2

n � nÿ1
Pn

i�1(Xi ÿ �X n)2.
Under regularity conditions (see Bhattacharya and Ghosh 1978), we have the traditional
Edgeworth expansion:

Pfn1=2Sÿ1
n (�X n ÿ θ(P)) < xg � Φ(x)� nÿ1=2 k3=6(2x2

� 1)φ(x)� o(nÿ1=2), (2)

where k3 is the skewness of X. Babu and Singh’s (1985) Edgeworth expansion for sampling
without replacement from a finite population, with bn=n !n!1 0, yields the Edgeworth
expansion for the WoRB studentized distribution

�Kb n (xjXn) � Φ(x(1ÿ bn=n)ÿ1=2)� bÿ1=2
n k3,n=6(2x2

� 1)φ(x)� o(bÿ1=2
n ), (3)

where k3,n is the empirical skewness. If bn=n � o(bÿ1=2
n ) and since k3,n ÿ k3 � op(1), a

Taylor expansion of (3) immediately leads to

�Kbn (xjXn) � Φ(x)� bÿ1=2
n k3=6(2x2

� 1)φ(x)� op(bÿ1=2
n ): (4)

Notice that the condition bn=n � o(bÿ1=2
n ) simply means that bn should be small enough,

typically of order o(n2=3), to take into account the error induced by the undersampling
scheme. Of course, the two Edgeworth expansions (2) and (4) fail to match as they do for
the usual bootstrap. It is clear that �Kb n (xjXn) is not a good approximation: the order of the
error O(bÿ1=2

n ) is worse than O(nÿ1=2) obtained with the usual Gaussian approximation.
However, a combination of these two different approximations leads to a better one. Indeed,
putting

�K�n (xjXn) � (bn=n)1=2
�Kb n (xjXn)� (1ÿ (bn=n)1=2)Φ(x),

which is actually a particular case of Richardson’s extrapolations (see Isaacson and Keller
1966, p. 188) studied in Bickel and Yahav (1988), we immediately see that �K�n (xjXn) is
second-order correct.

Notice that �K�n (xjXn) may also be interpreted as the generalized jackknife estimator of
the two non-second-order correct approximations �Kb n (xjXn) and Φ(x) (see Gray et al.
1972) defined by:

det
�Kb n (xjXn) bÿ1=2

n ÿ nÿ1=2

Φ(x) ÿnÿ1=2

� ��

det 1 bÿ1=2
n ÿ nÿ1=2

1 ÿnÿ1=2

� �

:

The purpose of the next section is to prove that second-order correctness holds if the size
of the resampling is chosen adequately, under the minimal assumption that the statistic
under consideration, Tn, suitably renormalized, admits an Edgeworth expansion on an
arbitrary continuously differentiable distribution.
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3. Second-order properties of the extrapolated WoRB: the i.i.d.
case

3.1. NOTATION AND ASSUMPTIONS

Let Tn, S2
n and ~Tn be as in Section 2. We shall assume that ~Tn has an Edgeworth expansion

and, for ease of notation, we shall index the assumptions by the order of the Edgeworth
expansion, I.

Assumption A2[I]. ~Tn admits an Edgeworth expansion of the form:

Kn(x, P) � P(~Tn < x) � E( Iÿ1)
n (x, P)� O( f I (n)ÿ1), (5)

uniformly in x, where

E( Iÿ1)
n (x, P) � K(x, P)�

XIÿ1

i�1

f i(n)ÿ1 pi(x, P):

The f f i(:)g1<i< Iÿ1 are an increasing sequence of positive non-decreasing functions
converging to �1 at �1. The fpi(x, P)g1<i<Iÿ1 are uniformly continuous functions of x.
For I . 2, we also assume that the pi(x, P) have uniformly bounded derivatives.

For the purpose of confidence intervals, only the following assumption is needed:

Assumption A29[I]. Assumption A2[I] holds only on a neighbourhood of c(1ÿ α).

In some applications, we may not have precise control over the order of the Edgeworth
expansion of the statistic Tn. In those cases it will not be possible to control more precisely
the rate of the corrected WoRB approximation. For these reasons, we shall alternatively
make the following assumptions:

Assumption B2[ I 2 1]. ~Tn admits an Edgeworth expansion of the form:

Kn(x, P) � E( Iÿ1)
n (x, P)� o( f Iÿ1(n)ÿ1), (6)

where f i(:) and pi(x, P), i � 1, . . . , I ÿ 2 are as in Assumption A2[I], but pIÿ1(x, P) is only
assumed to be uniformly continuous.

Assumption B29[ I 2 1]. Assumption B2[I ÿ 1] holds only on a compact neighbourhood of
c(1ÿ α).

In many applications K(x, P) is the cdf of the normal distribution or a chi-square
distribution and the pi(x, P) are polynomials multiplied by the density of the normal or the
chi-square distribution. In such cases, the functions f i(n) are known and conditions A2[I],
A29[I] or alternatively B2[I ÿ 1] and B29[I ÿ 1] may be easily checked.
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The following assumptions ensure that bn is chosen adequately according to the functions
f i.

Assumption A3[i]. bn is such that bn !n!11 and (bn=n) f i(bn)2 log ( f i(bn)) !n!1 0.

Assumption A4[i]. bn is chosen such that τb n=τn !n!1 0 and τb n f i(bn)jTnÿ θ(P)j !n!1 0,
in probability.

Notice that Assumption A4[i] is satisfied if τb n f i(bn)=τn !n!1 0 under Assumption A1 (or
A19).

Assumption A5[i]. bn satifies
P

n.0 f i(bn) exp [ÿnνnfbn f i(bn)2
g
ÿ1] ,1, for some positive

sequence νn converging to 0.

As we shall later see (Remarks 1–3 and Examples 1–5), it is easy to find bn in practical
situations.

Finally, we need some control over the convergence of S2
n. The following assumption

ensures that the tail of the distribution of S2
n is not too big and does not induce any

perturbations on the WoRB distribution when one undersamples and standardizes by the
variance estimated on the subsamples.

Assumption A6[i]. For some E 2 ]0, 1=2[, as n converges to 1,

P(S2
n=σ 2 < E) � o( f i(n)ÿ1):

Assumption A6[i] is very weak since in many applications f i(n) � o(nÿâi), for some â . 0
and PfS2

n=σ 2 < Eg � o(nÿr) for any r . 0 and E , 1=2. It is automatically satisfied if an
exponential inequality holds for S2

n. If it does not hold, one may also use a truncated
estimator, ~S2

n � max (S2
n, η), η . 0. Notice that for the statement of Theorem 1 the

standardization by Sn is of no real importance since we may choose Sn � 1 so that
Assumption A6[i] is trivially satisfied. It will be important if we want to construct a pivotal
quantity, i.e. such that K(:, P) is independent of P.

3.2. THE BASIC RESULT

The main results of this paper are based on the fact that, on the preceding assumptions, the
WoRB distribution admits an Edgeworth expansion

�Kb n (xjXn) � E( Iÿ1)
b n

(x, P)� OP( f I (bn)ÿ1): (7)

This result may look strange to those accustomed to Efron’s bootstrap. Indeed, it is well
known that the bootstrap distribution, say KE

n(xjXn), may be interpreted as an empirical
Edgeworth expansion (see Bhattacharya and Qumsiyeh 1989). In contrast, (7) is equal to the
original expansion developed on bn instead of n. To explain this phenomenon, let Assumption
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A2[3] hold and consider the case where f i(x) � xi=2. In many situations it is possible to show
(see, for instance, Hall 1992b) that the bootstrap distribution is such that

KE
n(xjXn) � E(2)

n (x, Pn)� OP(nÿ3=2) � K(x)�
X2

i�1

nÿi=2 pi(x, Pn)� OP(nÿ3=2),

where the pi(x, Pn), i � 1, 2, are the empirical version of the pi(x, P) and the asymp-
totic distribution K(x) � K(x, P) is independent of P. Since in most regular situations we
have

pi(x, Pn)ÿ pi(x, P) � Op(nÿ1=2), (8)

the bootstrap distribution matches the true one up to OP(nÿ1). Considering the WoRB
for general bn, one may also obtain by direct methods – see, for instance, Babu and
Singh (1985) for the mean – that the WoRB distribution admits an Edgeworth expansion of
the type

�Kb n (xjXn) � E(2)
n (x, Pn)� OP(bnnÿ1

� bÿ3=2
n � bÿ1=2

n nÿ1=2):

Assumptions A3[3] and A4[3] are satisfied if, for instance, we choose bn � n1=6 and we
obtain for this choice and under (8):

�Kb n (xjXn) � E(2)
bn

(x, Pn)� O(nÿ1=4)

� E(2)
bn

(x, P)� O(nÿ1=4):

What is meant is that the order of the whole approximation is so bad that it makes no
difference whether we use the empirical or the non-empirical version! Of course, this
approximation is very poor. The scheme proposed in (18) and further in Section 5 overcomes
this deficiency. We are now ready to state our basic result.

Theorem 1. (i) Under Assumptions A1, A2[I], A3[I], A4[I] and A6[I], the WoRB distribution
admits an Edgeworth expansion

�Kbn (xjXn) � E( Iÿ1)
bn

(x, P)� OP( f I (bn)ÿ1), (9)

uniformly in x.
(ii) Under Assumptions A1, B2[I ÿ 1], A3[I ÿ 1], A4[I ÿ 1] and A6[I ÿ 1] we have

uniformly in x

�Kb n (xjXn) � E( Iÿ1)
b n

(x, P)� oP( f Iÿ1(bn)ÿ1): (10)

(iii) Under Assumptions A19, A29[I] (B29[I ÿ 1]), A3[I] (A3[I ÿ 1]) and A4[I]
(A4[I ÿ 1]), equation (9) (equation (10)) holds on a neighbourhood of c(1ÿ α).

(iv) If in addition we assume A5[I] (A5[I ÿ 1]) and that A4[I] (A4[I ÿ 1]) holds with
probability one, then the results hold with probability one.

Proof. The proof is similar for (i) and (ii) (replace f I by f Iÿ1 and O(:) by o(:) in the proofs).
Part (i) may be directly deduced from the following two lemmas.
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Lemma 1. Under Assumptions A1 (A19), A2[I] (A29[I]) and A3[I],

Ub n (xjXn) � Nÿ1
n

XNn

i�1

I
fτb n (Tb n (X b n ,i)ÿθ(P))=Sb n (X b n ,i)<xg

admits with probability one an Edgeworth expansion

Ub n (xjXn) � E( Iÿ1)
b n

(x, P)� OP( f I (bn)ÿ1), (11)

uniformly in x (uniformly on a neighbourhood of c(1ÿ α)).

Proof. For any real-valued right-continuous distribution G, denote G(xÿ) � lim y!x, y,x G(x)
and define, for any 1 < kn < n and 1 < j < kn,

xj,k n � sup (x, j=kn > Kbn (xÿ, P)):

Then straightforward arguments show (see Chow and Teicher 1988, p. 265)

sup
x
jUbn (xjXn)ÿ Kb n (x, P)j < max

0< j<k n

jUb n (xj,k n jXn)ÿ Kbn (xj,k n , P)j

� max
1< j<k n

jUb n (xÿj,k n
jXn)ÿ Kbn (xÿj,k n

, P)j � kÿ1
n :

But notice that Ubn (xjXn) is a U statistic with finite support and expectation Kbn (x, P).
Hoeffding’s inequality implies that, for any t . 0, for any x,

PfjUb n (xjXn)ÿ Kbn (x, P)j. tg < 2 exp (ÿ2(n=bn)t2): (12)

As a particular case, for any E . 0, if we choose kn � [2 f I (bn)=E]� 1 and t � E f I (bn)ÿ1, then
we have

Pfsup
x
jUb n (xjXn)ÿ Kbn (x, P)j. E f I (bn)ÿ1

g

< Pf max
0< j<k n

jUbn (xj,k n jXn)ÿ Kb n (xj,k n , P)j

� max
1< j<k n

jUb n (xÿj,k n
jXn)ÿ Kbn (xÿj,k n

, P)j.(E=2) f I (bn)ÿ1
g

(13)

< 4(2 f I (bn)Eÿ1
� 2) exp (ÿ(n=bn)E2 f I (bn)ÿ2

=2):

Now, under A3[I], the right-hand side of (13) converges to 0. It follows that

Ub n (xjXn)ÿ Kb n (x, P) � OP( f I (bn)ÿ1)

uniformly in x. But under A2[I] (A29[I]), Kbn (x, P) admits an Edgeworth expansion,
yielding the result of Lemma 1. u

Lemma 2. Under Assumptions A1, A2[I] (A19 and A29[I]), A3[I], A4[I] and A6[I],

�Kbn (xjXn)ÿ Ubn (xjXn) � OP( f I (bn)ÿ1),

uniformly on R (uniformly on a neighbourhood of c(1ÿ α)).
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Proof. Define

Fn,i � fE , σ ÿ2Sb n (X b n,i)
2
g

and

En � fτb n σÿ1
jTn ÿ θ(P)j < E

1=2µn f I (bn)ÿ1
g,

where E is given in Assumption A6[I]. Under Assumption A4[I] we may choose µn to be a
non-negative sequence converging to 0 such that

P(En) !n!1 1: (14)

In order to simplify the notation, write

I i,n � I
fH(τb n (Tb n (X b n ,i)ÿTn)=Sb n (X b n ,i))<xg:

Then, we have, for any ν . 0,

P

�
�
�
�
�Kbn (xjXn)ÿ Nÿ1

n

XNn

i�1

I i,n I
fEn\Fn,ig

�
�
�
�
. ν f I (bn)ÿ1

( )

< P I
f
�Eng
� Nÿ1

n

XNn

i�1

I
f
�Fn,ig

. ν f I (bn)ÿ1

( )

: (15)

But under Assumption A6[I], by the strong law of large numbers for U statistics, we obtain
with probability one

Nÿ1
n

XNn

i�1

I
f
�Fn,ig

ÿ PfE > σ ÿ2Sbn (X bn,1)2
g !n!1 0: (16)

Since we have

PfE > σÿ2Sb n (X b n,1)2
g � o( f I (bn)ÿ1), (17)

it follows from (14), (16) and (17) that the right-hand side of inequality (15) converges to 0
yielding, uniformly in x,

�
�
�
�
�Kb n (xjXn)ÿ Nÿ1

n

XNn

i�1

I i,n I
fEn\Fn,ig

�
�
�
�
� oP( f I (bn)ÿ1):

But we have on each En \ Fn,i

jH(τb n (Tb n (X bn,i)ÿ Tn)=Sb n (X b n,i))j < jH(τbn (Tbn (X bn,i)ÿ θ(P))=Sb n (X b n,i))j

� µn f I (n)ÿ1
:

The preceding equations imply that, with probability one,

Ub n (xÿ µn f I (bn)ÿ1
jXn)� oP( f I (n)ÿ1) < �Kbn (xjXn)

< Ubn (x� µn f I (bn)ÿ1
jXn)� oP( f I (n)ÿ1):

Since, from Lemma 1, Ubn (xjXn) admits an Edgeworth expansion on differentiable functions,
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a Taylor expansion of K(x� µn f I (bn)ÿ1) and of each pi(x� µn f I (bn)ÿ1, P), i � 1, . . . ,
I ÿ 2, leads immediately to the fact that

Ub n (x� µn f I (bn)ÿ1
jXn) � Ub n (xjXn)� o( f I (bn)ÿ1)

and Lemma 2 follows. The uniformity in x comes from the fact that the derivatives are
uniformly bounded. Notice that under Assumption B2[I ÿ 1] (B29[I ÿ 1]) uniform continuity
of the last function pIÿ1(:, P) is sufficient). u

Combining Lemmas 1 and 2 leads to (i) and (ii). The proof of (iii) proceeds along
similar lines: it suffices to apply the Borel–Cantelli lemma, using inequality (13), and to
replace convergence in probability by convergence with probability one in Lemma 2. u

3.3. SECOND-ORDER VALIDITY OF �K�n (xjXn)

In the following we shall assume that the root ~Tn is asymptotically pivotal in the sense that
the asymptotic distribution of ~Tn is independent of P, K(:, P) � K(:), and the latter is known.
This is the setting in which the second-order properties of the t-percentile method have been
extensively studied (see, for instance, Hall 1992b). In many applications, it is a sine qua non
for construction of asymptotic confidence intervals.

The generalized jackknife of �Kbn (xjXn) and K(x) is then given by

�K�n (xjXn) � f 1(bn) f 1(n)ÿ1
�Kb n (xjXn)� (1ÿ f 1(bn) f 1(n)ÿ1)K(x): (18)

In the following, we shall also use the gap

∆n � sup
x
j
�K�n (xjXn)ÿ Kn(x, P)j:

We deduce from Theorem 1 the second-order validity of the corrected WoRB. If we
can control precisely the remainder in the Edgeworth expansion, we are able to control
precisely the rate of the extrapolation. The proof of the following corollary is straight-
forward.

Corollary 1. (i) Under Assumptions A1, A2[2], A3[2], A4[2] and A6[2] we have

∆n � OP(max ( f 1(bn) f 2(bn)ÿ1 f 1(n)ÿ1, f 2(n)ÿ1)): (19)

Alternatively, under Assumptions A1, B2[1], A3[1], A4[1] and A6[1] we have

∆n � oP( f 1(n)ÿ1): (20)

(ii) If, in addition to Assumption A3[2] (A3[1]), we have A5[2] (A5[1]) and if A4[2]
(A4[1]) holds with probability one, equation (19) (equation (20)) holds almost surely.

(iii) Let c�n (1ÿ α) � inf fx: �K�n (xjXn) > 1ÿ αg be the (1ÿ α) quantile of the extra-
polated WoRB distribution; then under Assumptions A19, A29[2], A3[2], A4[2] and A6[2]
we have:

P(~Tn < c�n (1ÿ α)) � 1ÿ α� O(max ( f 1(bn) f 2(bn)ÿ1 f 1(n)ÿ1, f 2( f 2(n)ÿ1)):
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Alternatively, under Assumptions A19, B29[1], A3[1] A4[1] and A6[1] we have:

P(~Tn < c�n (1ÿ α)) � 1ÿ α� o( f 1(n)ÿ1): (21)

Remark 1. The validity of the results whether H is equal to the identity or to the absolute
value is important for the construction of one- and two-sided confidence intervals. Indeed, in
many cases, the order of the first non-vanishing term in the Edgeworth expansion of j~Tnj is
smaller than that of ~Tn. This is due to the fact that in many applications, the first polynomial
p1(x, P) that appears in the expansion of ~Tn is even and vanishes in the Edgeworth expansion
of j~Tnj. If θ is not a real parameter, the function H used in the definition of ~Tn may also be
replaced by any real-valued function satisfying a triangular inequality. This does not change
the proof.

Remark 2. In many applications it is often possible to derive an Edgeworth expansion of type
(6) with f 1(x) � x1=2 and τn � n1=2. Assumption A3[1] holds for bn � o(n1=2 log (n)ÿ1=2). In
that case Assumption A4[1] is automatically satisfied and we obtain ∆n � oP(nÿ1=2). Almost
sure results are typically obtained with bn � O(n1=2(log n)ÿ1). For two-sided confidence inter-
vals, in standard applications, we have f1(x) � x and τn � n1=2. In that case Assumptions
A3[1] and A4[1] are satisfied with bn � o(n1=3 log (n)ÿ1=3), yielding ∆n � op(nÿ1).

Remark 3. With more work and regularity conditions on Tn it is often possible to obtain
Edgeworth expansions of type (5) with f1(x) � x1=2, f 2(x) � x and τn � n1=2. In that case
one should take bn � o(n1=3 log (n)ÿ1=3) for unilateral confidence intervals. The greater the
value of bn, the better the corrected WoRB. If bn � n1=3 log (n)ÿ1, we obtain
∆n � OP(nÿ2=3 log (n)1=2). As can be seen from the example of the mean in Section 2.3,
the choice of bn indicated by the theorem may not be optimal in the sense that admissible bn

may yield a better order of ∆n in specific cases. According to Booth and Hall (1993) one
may choose bn � O(nÿ2=3) and obtain ∆n � OP(nÿ5=6), if one accounts for the finite-
population correction factor (1ÿ bn=n) which appears in the variance of (1) (see also Remark
4). In many regular applications (such as functionals of means) the usual bootstrap yields an
error of order OP(nÿ1). With refinements proposed in Barbe and Bertail (1995) for the
weighted bootstrap, one may obtain OP(nÿ3=2) if one chooses the random weights appro-
priately as a function of the statistic. This last result is, however, not automatic in the sense
that we need some extra information on the structure of the statistic. Thus, the extrapolated
distribution does not provide any improvements in regular situations. However, we shall see
below that a refinement of the proposed method leads to the rate OP(nÿ1�E), E . 0, and thus
may be used as an alternative to the usual bootstrap. The results of Theorem 1 and Corollary
1 are more interesting in non-regular situations including some non-Gaussian and lattice
cases or situations in which the bootstrap has never been proved or is known to fail.

Remark 4. The interest of Corollary 1 lies mainly in the fact that the asymptotic distribution
is known or tractable. However, if the asymptotic distribution is unknown or very difficult to
handle, one may think of using another approximation, for instance a WoRB approximation,
and define the generalized jackknife of these distributions which coincides exactly with the
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Richardson extrapolation proposed by Bickel and Yahav (1988) when f 1(x) � x1=2:

�K��n (xjXn) � det
�Kb n,1 (xjXn) f1(bn,1)ÿ1

ÿ f 1(n)ÿ1

�Kb n,2 (xjXn) f1(bn,2)ÿ1
ÿ f 1(n)ÿ1

� ��

det
1 f 1(bn,1)ÿ1

ÿ f 1(n)ÿ1

1 f 1(bn,2)ÿ1
ÿ f 1(n)ÿ1

� �

:

Such a solution has also been investigated recently in a paper by Bickel et al. (1994) made
known to us during the revision of this work.

If bn,1 6� bn,2, say bn,1 , bn,2, �K��n (xjXn) improves over �Kbn,2(xjXn). However, it coincides
with the true distribution up to o( f 2(bn,2)ÿ1) so that it is second-order correct if and only if
(9) holds with bn,2 such that

f 2(bn,2) � f 1(n): (22)

In most situations it is not possible to choose bn,2 in such a way that both the Edgeworth
expansion of the WoRB approximation and this condition hold. The scheme without
replacement implies a loss in Edgeworth expansion typically of size bn=n (see (5)) coming
from the fact that the associated weights given by (2) have variance (1ÿ bn=n) instead of 1.
It follows that if we want to obtain the Edgeworth expansion up to o( f 2(bn,2)ÿ1) � o(bÿ1

n,2),
we have to choose bn,2 such that bn,2=n � o(bÿ1

n,2). This means that bn,2 is o(n1=2) and (22)
cannot hold.

Notice, however, that, if we want to take into account the correction factor induced by the
scheme without replacement, it makes more sense to consider �Kbn,i(x(1ÿ bn,i=n)1=2

jXn),
i � 1, 2, in the construction of �K��n (xjXn), at least for non-degenerate linear statistics. This
possibility has recently been investigated in Bertail and Politis (1996).

Remark 5. If θ(P) is a multidimensional parameter on Rk endowed with a norm i:i, it is
easy to generalize the preceding results to construct second-order correct confidence regions
based on the WoRB distribution of a root ~T�n � iτnCn(Xn)ÿ1=2(Tn ÿ θ(P))i, where Cn(Xn)
estimates the asymptotic covariance matrix of Tn. If Assumption A4[i] is replaced by
τbn f i(bn)iTn ÿ θ(P)i !n!1 0 in probability, then it is easy to see that propositions (19) and
(20) hold with

�Kb n (xjXn) � Nÿ1
n

XNn

i�1

I
fτb n iCb n (X b n ,i)ÿ1=2(Tb n (X b n ,i)ÿTn)i<xg:

As a particular case, the results apply in linear (or nonlinear) models with homoscedastic
errors.

If θ(P) takes its values in a separable Banach space B of type 2, endowed with a norm
i:i, a straightforward generalization may also be obtained for the root ~Tn � H(nÿ1=2

�X n ÿ

θ(P)), where H is a Fréchet differentiable function from B to R. Götze (1989) proves that
under some regularity assumptions on H and the moments of X i, ~Tn admits an Edgeworth
expansion on a family of functions which are continuously differentiable (see his Theorem
1.3). This may be used, for instance, to construct confidence regions for likelihood ratios.

The preceding results apply also in many other situations, as shown in the following
examples.
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Example 1. If θ(P) is a second-order Fréchet or Hadamard differentiable functional whose
first gradient (i.e. the influence function) is non-degenerate, then it can be shown that under
some regularity conditions on the gradients of θ(P), θ(Pn) (where Pn is the empirical
distribution function of the observations) admits an Edgeworth expansion on the normal
distribution with f1(x) � x1=2 and τn � n1=2 (see Pfanzagl and Wefelmeier 1985, for
instance) and the results apply with bn as given in Remarks 2 and 3. Other examples
(including the maximum likelihood estimator, rank statistics, non-degenerate U statistics,
econometric estimators) and conditions for the validity of second- and third-order expansions
may also be found, for instance, in Bhattacharya and Denker (1990) and Sargan (1976). It is
easy to check conditions of Theorem 1 in those cases.

Example 2. Some asymptotic expansions have also been derived in the degenerate case (see
Götze 1984). For instance, if we deal with degenerate bivariate von Mises functionals, then
the assumptions of Theorem 1 are satisfied with f i(x) � xi and τn � n. As a particular case,
we obtain the second-order validity of the extrapolated WoRB distribution of the Cramér–von
Mises statistic. The asymptotic properties of the usual bootstrap of degenerate U statistics
and functionals have also been studied by Bretagnolle (1983) and Bertail (1992). In that case,
either the undersampling scheme or an adequate recentring of the statistic is fundamental for
the validity of the bootstrap. However, it is difficult to obtain the second-order validity of the
usual bootstrap of degenerate von Mises functionals because one has to check a highly
technical smoothness condition that ensures that the bivariate influence function is not too
degenerate with respect to the probability measures P and Pn (see Götze 1984). A similar
problem appears when one wishes to construct two-sided confidence intervals for a third-
order Fréchet differentiable functional (see Bertail 1992). Undersampling avoids these
technical problems. Moreover, it is not necessary to make smoothness assumptions on the
gradients of θ(P) or uniformity assumptions on the map θ(:) in a neighbourhood of P as is
usually the case – see the notion of strong differentiability in Tu (1992) and the Lipschitz
conditions on the gradients of θ(:) used in Bertail (1992).

Example 3. Many quantities in econometrics are asymptotically ÷2 distributed and admit an
Edgeworth expansion on the family of ÷2 distributions (see Sargan 1979) with τn � n and
f 1(n) � n1=2. All the assumptions are satisfied in that case and the results hold with
bn � o(n1=2 log (n)ÿ1=2) yielding an error of size o(nÿ1=2) for confidence regions.

Example 4. The following example is on the same lines as Hall (1992a). Consider
nonparametric density estimation from the point of view of coverage probability. To take
into account the problem of bias in bootstrapping nonparametric density kernel estimators,
Hall (1992a) shows that it is better to undersmooth the kernel estimator and oversmooth the
bootstrap distribution than to estimate the bias and then to construct a bias-corrected
bootstrap confidence interval. For a fourth-order kernel estimator, this leads to a two-sided
bootstrap confidence interval coverage probability error of size O(nÿ4=5) instead of
O(nÿ12=17) in the latter case. Undersampling may be an alternative solution to that
problem. In the following, we give very crude arguments showing that an adequate choice of
bn may yield even better results. This example also illustrates the fact that, in some cases,
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Assumption A3[i] should be replaced by a more adequate condition on bn. This problem
ought to be investigated in more detail, but is beyond the scope of this paper. Consider

~Tn(x) � (nh)1=2σ̂ n(x)ÿ1
j
^f n(x)ÿ f (x)j,

where ^f n(x) � (nh)ÿ1
Pn

i�1Kfhÿ1(xÿ Xi)g is a kernel estimator of the density f, con-
structed with an rth-order bounded kernel K(r > 4) and a bandwidth h. The estimated
variance of ^f n(x) is

σ̂ 2
n(x) � (nh)ÿ1

Xn

i�1

Kfhÿ1(xÿ Xi)g
2
ÿ h ^f n(x)2

:

Following Hall (1992a), assuming that the rth-derivative, say f (r), is continuous and bounded,
the bias of ^f n(x) is given by

bn(x) � krh
rf (r)(x)� o(hr),

where kr is a constant. Now by straightforward arguments on Edgeworth expansion, if, for
any x, for any E . 0,

Pf(nh)1=2
jbn(x)j=σ̂ n(x) . E((nh)ÿ3=2

� nÿ1)g � o((nh)ÿ3=2
� nÿ1) (23)

then we have

P(�Tn(x) < y) � Φ(y)ÿΦ(ÿy)� 2(nh)ÿ1 p1(y, f , x)φ(y)� O((nh)ÿ3=2
� nÿ1),

where p1 is a polynomial whose form is given explicitly in Hall (1991a). But if we choose h
of the form Cnÿâ, â . 0, then (23) holds if â is such that

â . max (2=(2� r), 3=2r � 1): (24)

Now if we choose bn such that nÿ1b1�3(1ÿâ)
n log (bn) � o(1) and nÿ1b3

n log (bn) � o(1), then
Assumptions A3[2] and A4[2] hold and we can check all the assumptions of Theorem 1 and
Corollary 1. This means that if bn � min (n1=(4ÿ3â), n1=3) log (n)ÿ1, then the corrected WoRB
yields second-order correct bilateral confidence intervals with a coverage error of size
o(nÿ1�â(nÿ(1ÿâ)=(2(4ÿ3â))

� nÿâ=3) log (n)) which is minimized when we choose â near the
frontier given by (24). In the particular case r � 4 studied in Hall (1992a), we can choose
bn � o(n1=3 log (n)ÿ1) and we obtain an error of size o(nÿ7=9�v), for any small v . 0. Again,
this leads to a better rate than the bias-corrected bootstrap confidence interval. Nevertheless,
it seems to be worse than the method proposed by Hall (1992a). This may be explained by
the fact that, as in the case of the mean, Assumption A3[2] is too restrictive on the choice of
bn. Theorem 1 aims to give a general result, but this may be clearly improved in particular
cases. Actually, using Hall’s (1991a) Edgeworth expansions and the arguments of Section 2.3,
it is possible to choose bn such that nÿ1bn � O(bÿ3=2(1ÿâ)

n � bÿ1
n ), i.e. bn � O(min (n2=(5ÿ3â),

n1=2)), and in the case r � 4 the corrected WoRB yields an error of size close to o(nÿ5=6�ν),
for any small ν . 0, when â is close to 1=3, which is better than the rate O(nÿ4=5). Of course,
it would be interesting to use higher-order Edgeworth expansions in the spirit of Booth and
Hall (1993) to investigate which is the best choice for bn yielding the best rate when one
takes into account the correction factor emphasized in Remark 4.
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3.4. MONTE CARLO APPROXIMATION

As noted by Politis and Romano (1994), Nn may be very large and it may be difficult to
compute the WoRB distribution exactly. It is, however, possible to construct a stochastic
approximation by simulating the law of the ‘resampling plan’ described in (1). Let
X bn,i1 , . . . , X bn,iBn

be Bn samples chosen with or without replacement among the Nn

possible sets of bn observations. Then �Kb n (xjXn) may be approximated by

^K (Bn)
b n

(xjXn) � Bÿ1
n

XBn

k�1

If~Tb n (X b n,i k ) < xg,

leading to the Monte Carlo approximation

^K�(Bn)
n (xjXn) � f 1(bn) f 1(n)ÿ1

^K (Bn)
b n

(xjXn)� (1ÿ f 1(bn) f 1(n)ÿ1)K(x):

Since the difference between ^K (Bn)
b n

(xjXn) and �Kb n (xjXn) is of order O(Bÿ1=2
n ) the difference

between ^K�(Bn)
n (xjXn) and �K�n (xjXn) is of order O( f 1(bn) f1(n)ÿ1 Bÿ1=2

n ). Bn should be chosen
so that it does not affect the second-order correction. Typically Bÿ1=2

n � o( f 1(bn)ÿ1) is
sufficient to obtain an approximation of order o( f 1(n)ÿ1).

4. Extensions to strong-mixing random fields

It is possible to generalize the results obtained for i.i.d. random variables to strong-mixing
homogeneous random fields using the idea of the moving-block bootstrap as introduced by
Künsch (1989) (see also work done independently by Liu and Singh 1992) and closely related
to Carlstein’s (1986) proposal for the use of non-overlapping blocks to estimate the variance
of a statistic (see also Sherman 1992; Politis and Romano 1993).

It is well known that the moving-block bootstrap does not provide second-order
confidence intervals. More precisely, Lahiri (1992) shows that the moving-block boot-
strapped mean has a random bias that actually determines the rate of the approximation,
which appears to be worse than the asymptotic distribution. When standardizing the mean
by the true variance, he shows that it is possible to get rid of this drawback by recentring
the bootstrap mean by its expectation. However, if, in practical situations, one standardizes
by an estimator of the variance, Götze and Künsch (1993) show in the case of the mean
that it is essential for second-order correctness to hold that the moving-block bootstrap
variance should have the same bias as the variance on the original sample. Generalizations
to nonlinear functionals are not straightforward. One of the features of the corrected
moving-block bootstrap without replacement that we will now study is that it is possible
to use the bad recentring or standardization and to choose the resampling size so as to
get (automatically) rid of these bias problems and then to rescale to obtain the second-
order properties. As in the preceding section, results may be applied even in non-regular
cases.

In what follows we shall mainly for the most part retain the notation of Politis and
Romano (1994). Let (X (t), t 2 Zd) be a random field indexed by Zd, defined on a
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probability space (Ω, A, P ), taking its values in R. We shall assume that the random field
satisfies some weak dependence condition. Define the strong-mixing coefficients, for
k 2 N�, l1 2 Z�, l2 2 Z� by

αX (k, l1, l2) � sup
E12Zd

E22Zd

fP(A1 A2)ÿ P(A1)P(A2), Ai 2 F(Ei),

card (Ei) < li, i � 1, 2, �d (E1, E2) > kg,

where F(Ei) is the σ-algebra generated by (X (t), t 2 Ei) and the semi-distance �d is defined
by

�d(E1, E2) � inf
t2E1
u2E2

f∆(t, u)g with ∆(t, u) � sup
1<k<d

juk ÿ tk j:

We shall, in the following, make the following assumption:

Assumption α0. The random field (X (t), t 2 Zd) is homogeneous and the strong-mixing
coefficients αX (k, l1, l2) converge to 0 as k converges to 1, for any l1 and l2.

Now let Tn � Tn(X (t), t 2 En) be a measurable function of the observations
Xn � (X (t), t 2 En) on the rectangle En � Zd , n � (nk)1<k<d . Tn estimates a real
parameter θ. As in the i.i.d. case, we shall also assume that there exists a normalizing
sequence Sn � Sn(X (t), t 2 En) such that ~Tn � H(τnSÿ1

n (Tn ÿ θ)) with distribution Kn(:, P),
satisfy Assumption A1 (or A19). As in Sections 2 and 3, H may be either the identity or
the absolute value (or a norm if one wishes to handle multidimensional parameters).

Let ( j, b, h) 2 (Zd)3 and define the blocks E j,b,h by

E j,b,h � fi 2 Zd , ( jk ÿ 1)hk � 1 < ik < ( jk ÿ 1)hk � bk , for k � 1, . . . , dg:

b � (bk)k�1,:::,d defines the shape of the blocks whereas h � (hk)k�1,:::,d is related to the
amount of overlap in each direction of the space. The smaller the components of h, the
greater the overlaps. Since we do not want a block to appear twice, we require that hk > 1,
k � 1, . . . , d: in that case if j 6� j9, E j,b,h 6� E j9,b,h. The number of such blocks is given by

Nn,h,b �
Yd

k�1

mk , mk � [(nk ÿ hk)=bk]� 1

and j � ( jk)k�1,:::,d can take values only in

Bn,h,b � f j 2 Zd , E j,b,h � Eng �
Yd

k�1

f1, . . . , mkg:

In the spirit of Sections 2 and 3, b is a function of the vector n that we shall denote by b(n).
Since Nn,h,b is a decreasing function of the (hi)1<i<d , it seems natural to choose
h � (1, 1, . . . , 1), which corresponds to maximum overlaps. However, we shall give our
results for a general h(n) possibly depending on n. Denote respectively by B(n) and H(n) the
products of the bi(n) and of the hi(n).
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The moving-block version of the bootstrap without replacement is then defined by (see
Politis and Romano 1994)

�K n,h,b(xjXn) � Nÿ1
n,h,b

X

j2Bn, h,b

If^Tb(n), j < xg

with

^Tb(n), j � H(τb(n)S
ÿ1
b(n), j(Tb(n), j ÿ Tn)),

where Sb(n), j and Tb(n), j are the values of the statistic evaluated on the set of the b(n)
observations indexed by E j,b,h, for j 2 Bn,h,b.

Of course, the size of the blocks of observations should be chosen as a function of the
dependence between the observations. Assumption A3[i] should be replaced by the
following:

Assumption α3[i]. Define

ân �

X

maxn j

j�1,:::,d

k�1

kdÿ1αX (k, B(n), B(n))

and

An � [2ÿd Nn,h,b]B(n):

Then b(n) � (bj(n)) j�1,:::,d and h(n) � (hj(n)) j�1,:::,d are chosen such that there exists
( pj) j�1,:::,d with Pn �

Qd
j�1 pj < 2ÿd Nn,h,b converging to 1, satisfying the two conditions

Nn,h,b Pÿ1
n f i(b(n))3=2αX (min

j
pj min

j
hj ÿmax

j
bj, An, An) !n!1 0, (25)

f i(b(n)) ln f i(b(n)) max (Nÿ1=2
n,h,b, B(n)1=2H(n)ÿ1=2 Nÿ1=2

n,h,b, â1=2
n Nÿ1=2

n,h,b, Pn Nÿ1
n,h,b) !n!1 0: (26)

It is easy to choose b(n) in many practical situations (see Remark 6). Of course, if h(n)
is too big (and consequently Nn,h,b too small), then Assumption α3[i] may never hold. In
many cases it seems more interesting to choose h(n) � (1, . . . , 1). Notice also that at the
first order (i.e for i � 0 and f i(x) equal to a constant) it is easy to obtain the conditions of
Politis and Romano’s (1994) Theorem 3.1.

In the same way, we replace Assumption A4[i] by Assumption α4[i]:

Assumption α4[i]. b(n) is chosen such that τb(n)=τn !n!1 0 and

τb(n) f i(b(n))jTn ÿ θ(P)j !n!1 0:

The following theorem gives the analogue of Theorem 1 and Corollary 1 for
asymptotically pivotal statistics of strong-mixing random fields.
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Theorem 2. Suppose that Assumption α0 holds. If Assumptions A3[.] and A4[.] are replaced
by α3[.] and α4[.] then the conclusions (i), (ii) and (iii) of Theorem 1, (i) and (iii) of
Corollary 1 remain true with

�K�n (xjXn) � f 1(b(n)) f 1(n)ÿ1
�K n,h,b(xjXn)� (1ÿ f 1(b(n)) f 1(n)ÿ1)K(x, P):

Proof. We follow the arguments of Theorem 1. Actually it suffices to obtain a similar version
of Lemma 1 in a strong-mixing setting. The proof of Lemma 2 is similar: replace the U-
statistics argument in (16) by the law of large numbers for strong-mixing random variables.

Similarly to the i.i.d. case, define

Ub(n)(xjXn) � Nÿ1
n,h,b

X

i2Bn, h,b

If~Tb(n),i < xg,

where

~Tb(n),i � H(τb(n)S
ÿ1
b(n),i(Tb(n),i ÿ θ)):

We have by homogeneity of the random fields:

EfUb(n)(xjXn)g � P(~Tb(n),1 < x) � Kb(n)(x, P):

The proof is similar to the proof in the i.i.d. case if we show that

Pfsup
x
jUb(n)(xjXn)ÿ Kb(n)(x, P)j. E f I (b(n))ÿ1

g � o(1):

Since the main tool for proving this result is the existence of a Hoeffding-type inequality
or a Bernstein inequality, we shall first discuss this point. A precise Bernstein inequality has
recently been obtained by Bosq (1993) for strong-mixing times series (i.e. if d � 1) under a
minorization condition that unfortunately does not hold in our situation. However, Rhomari
(1993) shows that this condition may be removed to obtain a similar inequality. The result
may be used to obtain the validity of our procedure for strong-mixing times series. A
Bernstein inequality for â-mixing random fields may also be found in Doukhan (1994).
Combining the approaches of Rhomari (1993) and Doukhan (1994), we give in Lemma 3 an
extension of these inequalities to strong-mixing stationary random fields. In the following
we use the notation h� � mini (hi(n)), b� � maxi (bi(n)), p

�
� min ( pi(n)), n� � maxi (ni).

Lemma 3. Let Dn be a sequence of rectangles of size n � (ni)i�1,:::,d with ~Nn �
Qd

i�1 ni and
consider (Yn(t), t 2 Dn), an array of α-mixing stationary random fields on a probability
space (Ω, A, P ) with strong-mixing coefficients αY (k, l1, l2). Assume, in addition, that

(i) EYn(t) � 0;
(ii) there exists Mn . 0, such that, for any t 2 Zd, jYn(t)j, Mn;

(iii) there exists σ 2
n: N ! R� such that, for any A � Zd,

E
X

t2A

Y (t)

 !2

< σ 2
n(card(A)):
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For any En . 0, for any integer 1 < pi < [ni=4], i � 1, . . . , d, put Pn �
Qd

i�1 pi; then we
have

P

�
�
�
�

X

t2Dn

Yn(t)

�
�
�
�
. ~NnEn

 !

< 2d�2 exp fÿ~Nn PnE
2
n2ÿd

=f16σ 2
n(Pn)� 8Mn P2

nEngg

� 33M1=2
n E

ÿ1=2
n

~Nn Pÿ1
n 2dαY ( p

�
ÿ 1, [2ÿd

~N n], [2ÿd
~Nn])): (27)

Proof. Without any loss of generality we may assume that Mn � 1. We use blocking
techniques as in Bosq (1993). For this purpose we shall cut the domain Dn into slices of
equal size (except on the upper bounds of Dn). Let 1 < pj < [nj=2], j � 1, . . . , d, be the size
of the slices. Consider qj � [nj=(2 pj)], j � 1, . . . , d, and put Qn �

Qd
j�1 qj. For any

δ � (δ1, . . . , δd) 2 f0, 1gd , for any i � (ij) j�1,:::,d 2 E n �
Qd

j�1f1, . . . , qjg, define

Ui(δ) �
X
ci1

k1�ai1

. . .

X
ci2

k2�ai2

. . .

X
cid

k d�aid

Y (k),

where

ai j � 2(ij ÿ 1) pj � δ j pj � 1

ci j � min (nj, 2ij pj ÿ (1ÿ δ j) pj):

We use the convention that the sum is equal to 0 if aj . cj for some j � 1, . . . , d. Now Ui(δ)
is the sum of the X (t) over the non-overlapping blocks defined by the ai j and ci j and by
definition we have

Sn �

X

t2Dn

Yn(t) �
X

δ2f0,1gd

Vn(δ),

where we define

Vn(δ) �
X

i2E n

Ui(δ):

Now notice that, for a fixed δ, the Ui(δ), for i 2 E n, may be seen as a sequence of strong-
mixing random variables indexed by Z with strong-mixing coefficients satisfying

α(k) < αY ( p
�
ÿ 1, [2ÿd

~Nn], [2ÿd
~Nn]): (28)

We have under (i) and (ii), EfUi(δ)g � 0 and jUi(δ)j < Pn. Moreover, under (iii),

~σ 2
n(k) � max

A�E n
card(A)�k

E
X

i2A

Ui(δ)

 !2

< σ 2
n(Pnk):

Now we may write

P(jSnj. ~NnEn) <
X

δ

P(jVn(δ)j. 2ÿd
~N nEn)
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and by applying Rhomari’s (1993) Bernstein inequality on each Vn(δ) and using (28) we
obtain that, for any 1 < ~Rn < [Qn=2], we have

P(jVn(δ)j. 2ÿd
~NnEn) � P(jVn(δ)j. Qn(2ÿd

~NnEnQÿ1
n ))

< 4 exp fÿ ~N 2
n
~RnE

2
n2ÿ2d

=f16~σ 2
n(~Rn)Qn � 4Pn ~Nn ~Rn(~Rn � 1)En2ÿd

gg

� 33Eÿ1=2
n Qn ~Rÿ1

n αY ( p
�
ÿ 1, [2ÿd

~Nn], [2ÿd
~Nn]):

Since we have Qn < 2ÿd Pÿ1
n

~N n, it follows that

P(jSnj. ~NnEn) < 2d�2 exp fÿ ~Nn ~RnE
2
n2ÿd

=f16σ 2
n(Pn ~Rn)Pÿ1

n � 4Pn ~Rn(~Rn � 1)Engg

� 2d33Eÿ1=2
n

~Nn Pÿ1
n

~Rÿ1
n αY ( p

�
ÿ 1, [2ÿd

~N n], [2ÿd
~Nn]):

Now if we choose ~Rn � 1, we obtain the result of Lemma 3. u

We now return to the proof of Theorem 3. The random variables If~Tb(n),i < xgi2Bn, h,b ,
n 2 N, define an array of stationary strong-mixing random fields with strong-mixing
coefficients which satisfy, for any (l1, l2) 2 N and for k . k0 � b�=h�,

α�(k, l1, l2) < αX (kh� ÿ b�, l1B(n), l2B(n)):

Now, it is easy to check the assumptions of Lemma 3 with

Yn(i) � If~Tb(n),i < xg ÿ EIf~Tb(n),i < xg:

In that case, we have Mn � 2 and

V
X

i2A

Yn(i)

 !

< card(A)�
X

i2A

X

j2A
i 6� j

cov (Yn(i), Yn( j)): (29)

But, for ∆(i, j) � maxk (jik ÿ jk j) > k0, the covariance inequality gives

cov (Yn(i), Yn( j)) < 4α�(∆(i, j)h� ÿ b�, B(n), B(n)):

Let c0, c1, c2, . . . be some non-negative constants. Now, following the arguments of Politis
and Romano (1994) the right-hand side of inequality (29) is bounded by

σ 2
n(A) � card(A)� c0 card (A)B(n)H(n)ÿ1

� 4 card (A)
Xn
�

k�k0�1

kdÿ1α�(kh� ÿ b�, B(n), B(n)):

Now, apply inequality (27) to obtain that, for any E . 0, for any Pn < 2ÿd N n,h,b,

PfjUb(n)(xjXn)ÿ Kb(n)(x, P)j. E f I (b(n))ÿ1
g < En(α)

with

En(α) � c1 exp fÿc5 Nn,h,bE
2 f I (b(n))ÿ2

f1� c2B(n)H(n)ÿ1
� c3ân � c4 PnE f I (b(n))ÿ1

g
ÿ1
g

� c6E
ÿ1=2 f I (b(n))1=2 Nn,h,b Pÿ1

n αX ( p
�

h� ÿ b�, [2ÿd Nn,h,b]B(n), [2ÿd Nn,h,b]B(n):
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Now apply the arguments of Lemma 1 to obtain the uniform bound

Pfsup
x
jUb(n)(xjXn)ÿ Kb(n)(x, P)j. E f I (b(n))ÿ1

g < c7 f I (b(n))En(α): (30)

Then, it is easy to see that under Assumption α3[I] the right-hand side of inequality (30)
converges to 0 as n converges to 1. u

Remark 6. Assume that αX satisfies

αX (k, B(n), B(n)) < cÿ1eÿck , (31)

for some constant c . 0. This inequality holds, for instance, for finite stationary ARMA
models, some strictly stationary homogeneous Markov chain and m-dependent random fields.
A similar condition may be found in Götze and Hipp (1983) and is used to obtain asymptotic
expansions for sums of weakly dependent processes.

Consider the case with a maximum overlap: H(n) � 1 and all the dimensions ni going to
1. In this case ân is bounded, and if we put pj � (nj ÿ bj)1=2, j � 1, . . . , d, it is easy to
check that (26) and (25) hold, for i � 1, if we choose bj(n) � o(n1=2

j log (nj)ÿ1=2).

Example 5. In the real case, validity of Edgeworth expansions for functionals of stationary
ARMA processes may be derived from the conditions of Götze and Hipp (1983). The validity
of the bootstrap in estimating the parameters of a stationary autoregressive model has been
proved by Bose (1988). The result mainly relies on the fact that the residuals are assumed to
be i.i.d. This allows resampling in the estimated residuals. Our results include the more
general case when the residuals are stationary MA(q) (where q is unknown). Moreover, it is
possible to check that M-estimators in time series based on a criterion ψ (see Künsch 1984)
satisfy the conditions of Götze and Hipp (1983) provided that ψ is sufficiently differentiable.
Since in that case the explicit Edgeworth expansion may be difficult to obtain, the corrected
moving-block bootstrap without replacement may be a useful tool for constructing second-
order correct confidence regions for the parameters.

Example 6. Politis and Romano (1992; 1994) proposed different methods based on the
moving-block bootstrap to construct confidence intervals for the spectral density of a strong-
mixing process based on a kernel spectral density estimate. Our results may be used to
improve confidence intervals for pointwise estimation. However, asymptotic confidence bands
for the spectral density using a supremum norm may yield a very inadequate level. Indeed,
following Hall (1991b), since (under some regularity assumptions) the spectral density kernel
estimator may be approximated by a Gaussian process, the error induced uniformly on the
level by using the asymptotic approximation is of order f 1(n)ÿ1

� log (n)ÿ1. It is a very poor
approximation that may be improved by the corrected WoRB. A more complete study of this
case will be given in a forthcoming paper.

Example 7. Asymptotic expansions up to o(Nÿd=2), when n � (N , . . . , N ), for a potential
function of m-dependent random fields generated by i.i.d. variables may be found in Götze
and Hipp (1989). It is easy to see that the first term in the Edgeworth expansion (of size
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Nÿd=2) satisfies the regularity conditions of Theorem 2. Since in that case, the strong-mixing
coefficients are of type (31), if we choose h � (1, 1, . . . , 1), the adequate size for b(n) is
given by bi(n) � o(N 1=2 log (N )ÿ1=2) (see Remark 6).

5. Further refinements: generalized jackknife of WoRB
distributions

5.1. IMPROVING THE APPROXIMATIONS

In the preceding sections we have seen that a linear combination of two bad approximations
of the same distribution may lead to a better approximation. As already noted, we can see this
as a transposition of jackknife techniques to get rid of some bad orders. More generally,
compute I ÿ 1 different WoRB distributions �Kb n,k , k � 1, . . . , I ÿ 1. They are different in
the sense that they are constructed for different values of bn,k satisfying Assumptions
A3[I ÿ 1], A4[I ÿ 1]. From Theorem 1 and 2 under their respective hypotheses, such
distributions admit Edgeworth expansions

�Kb n,k(xjXn) � E( Iÿ1)
bn, k

(x, P)� oP( f Iÿ1(bn,k)ÿ1), k � 1, . . . , I ÿ 1, (32)

so that we obtain a Cramér system, k � 1, . . . , I ÿ 1,

�Kb n,k(xjXn)ÿ Kn(x, P) �
XIÿ1

i�1

( f i(bn,k)ÿ1
ÿ f i(n)ÿ1) pi(x, P)� oP( f Iÿ1(bn,k)ÿ1)

� oP( f Iÿ1(n)ÿ1):

This leads to a new approximation of Kn(x, P), linear in Φ and the �Kb n,1(xjXn), by
inverting the system. Classical linear algebra leads to the generalized jackknife estimator
(see Gray et al. 1972)

G( Iÿ1)
n (x) � aÿ1 det A(K(x), �Kbn,1(xjXn), . . . , �Kb n, Iÿ1(xjXn)),

with

a � det A(1, 1, . . . 1),

where we define

A(x1, x2, . . . , xI ) �

x1 ÿ f 1(n)ÿ1
. . . ÿ f Iÿ1(n)ÿ1

x2 f 1(bn,1)ÿ1
ÿ f1(n)ÿ1 .

.

.

f Iÿ1(bn,1)ÿ1
ÿ f Iÿ1(n)ÿ1

x3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xI f 1(bn, Iÿ1)ÿ1
ÿ f 1(n)ÿ1

. . . f Iÿ1(bn, Iÿ1)ÿ1
ÿ f Iÿ1(n)ÿ1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:
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In the case f i(x) � xi=2, G( Iÿ1)
n may also be seen as the Richardson extrapolation of the

asymptotic distributions and the WoRB distributions studied by Bickel and Yahav (1988).
We clearly have G(1)

n (:) � �K�n (:jXn). The fact that G( Iÿ1)
n may improve the preceding

approximations is stated in the following theorem.

Theorem 4. (i) Assume that (32) holds uniformly and that the (bn,k)1<k<Iÿ1 are subject to
the conditions

0 ,
YIÿ1

j�1

max
1<k<Iÿ1

f j(bn,k)= min
1<k<Iÿ1

f j(bn,k) ,1 (33)

and, for some positive constant C,

jaj
YIÿ1

j�1

min
1<k< Iÿ1

( f j(bn,k)ÿ1) > C: (34)

Denote

νn � max
1<i<Iÿ1

f i(n)ÿ1( min
1<k<n

f Iÿ1(bn,k))ÿ1 min
1<k<n

f i(bn,k):

Then we have

∆( Iÿ1)
n � sup

x
jG( Iÿ1)

n (x)ÿ Kn(x, P)j � oP(vn) � oP( f 1(n)ÿ1):

(ii) Assume that (32) holds uniformly in a neighbourhood of c(1ÿ α) in addition to
conditions (33) and (34). If we define

c( Iÿ1)
n (1ÿ α) � inf fx: G( Iÿ1)

n (x) > 1ÿ αg,

the (1ÿ α) quantile of the generalized jackknife of the WoRB distributions, then we have

P(~Tn < c( Iÿ1)
n (1ÿ α))ÿ 1� α � o(vn) � o( f 1(n)ÿ1):

Proof. Under (34), we have a 6� 0 and classical linear algebra calculation leads to

G( Iÿ1)
n (x)ÿ Kn(x, P) � OP(δn),

with

δn � aÿ1 det A(µn,0 f Iÿ1(n)ÿ1, µn,1 f Iÿ1(bn,1)ÿ1, . . . , µn, Iÿ1 f Iÿ1(bn, Iÿ1)ÿ1)

for some stochastic sequences (µn,i)0<i<Iÿ1 converging to 0. The results follow by
straightforward algebra. u

Remark 7. Expression (33) means that the range of the (bn,k)1<k<Iÿ1 satisfying Assumptions
A3[I ÿ 1] and A4[I ÿ 1] should not be too big and is fixed by the order of the functions f i.
However, (34) means that the bn,k should not be too close. In many situations, this condition
is not satisfied if the differences between each bn,i do not converge to 1. Nevertheless, in
many applications the f i are of each type f i(x) � xâi, â . 0. In that case one may choose bn,1
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according to Assumptions A3[I ÿ 1] and A4[I ÿ 1] and take bn,i � Kibn,1, where the
fKig1<i< Iÿ1 are distinct non-negative constants. In that case, a is no more than the
determinant of a Vandermond matrix. Since the Ki are distinct, (34) holds.

If f i(x) � xi=2, Assumptions A3[I ÿ 1] and A4[I ÿ 1] are satisfied for instance if
bn,i � Ki n1= I log (n)ÿ1. In that case, under Assumptions A1 and B2[I ÿ 1], we obtain

∆( Iÿ1)
n � op(nÿ1�1= I log (n)( Iÿ2)=2):

This means that when I increases, the order of the extrapolated approximation becomes better
and approaches the rate of the usual bootstrap OP(nÿ1). However, this holds only if we have
sufficient regularity conditions on the statistic Tn to have Edgeworth expansion up to
o(nÿ( Iÿ1)=2) (for conditions, see Bhattacharya and Ghosh 1978; Sargan 1976; 1979; Götze
1984).

Remark 8. The idea of using two different resampling plans to get a better estimator of the
distribution may also be found in Barbe and Bertail (1995). In their case, however, the aim
was to obtain some estimators of the terms involved in the Edgeworth expansion in order to
invert it. It is noteworthy that the system may also be used to obtain simultaneous estimators
of the functions involved in the Edgeworth expansion.

Remark 9. In practice the I ÿ 1 WoRB distributions are also approximated by Monte Carlo
simulations as in Section 3.4. Let f ^K (Bn,i)

bn,i
g
�1,:::, Iÿ1 be such approximations respectively

constructed with Bn,i, i � 1, . . . , I ÿ 1. Then the Monte Carlo approximation of G( Iÿ1)
n (x) is

given by

^G( Iÿ1)
n (x) � aÿ1 det A(Φ(x), ^K (Bn,1)

b,1 (x, P), . . . , ^K (Bn, Iÿ1)
b n, Iÿ1

(x, P)):

Since the error induced by using ^K (Bn,i)
bn,i

instead of �Kbn,i is of order O(Bÿ1=2
n,i ), if we choose

Bÿ1=2
n,i � o( f i(bn,i)ÿ1) then the total error induced by the simulation does not destroy the

higher-order correction.
Take, for instance, τn � n1=2, f i(x) � xi=2 and I � 4. If Assumption B2[3] holds, then we

may choose bn,i � in1=4 log (n)ÿ1 and Bn,i � n1=2, i � 1, . . . , I ÿ 1. In that case we need
only 3n1=2 simulations to obtain an approximation correct up to op(nÿ3=4) whereas, in
general, we need at least Bn � n3=2 simulations to construct the usual bootstrap distribution
to obtain an error of the same order. This method thus seems computationally less
expensive. However, for small and moderate sample sizes, the bn,i that are supposed to
converge to 1 may be rather small and a simulation study is required to validate these
results.

6. Some simulation results

Some simulation results on the encouraging performance of extrapolations even for small
sample sizes are given in Bickel and Yahav (1988) for the mean case. We shall show in this
section that the extrapolated WoRB leads to some interesting improvements over the
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bootstrap and the asymptotics, even if the sample size is small (which implies that bn may be
very small). In regular cases, this may be explained heuristically by the fact that the WoRB
distribution gives, up to the correcting factor (bn=n)1=2, the correct skewness of the
distribution. We mainly study a non-regular case, confidence intervals for quantiles, a
problem which has its own statistical interest (see Hall and Martin 1991).

Let X 1, X 2, . . . , X n be i.i.d. real random variables with distribution function F. Let
X 1,n < X 2,n < . . . < X n,n be the ordered sample. Denote, for α 2 ]0, 1[,

θ � Fÿ1(α) � inf ft, F(t) > αg,

the quantile of order α, estimated by X r,n � Fÿ1
n (α), where Fn � nÿ1

Pn
i�11

fX i<xg. It is
known that the bootstrap does not provide second-order correction for the distribution of
Fÿ1

n (α). The asymptotic distribution typically has an error of size nÿ1=2, whereas the
bootstrap yields an error of size nÿ1=4 (see, for instance, Falk and Reiss 1989). Smoothing Fn

and using a smooth bootstrap improves this result but we do not obtain second-order results
even for two-sided confidence intervals. The coverage probability of bootstrap confidence
intervals turns out to be of order O(nÿ1=2) in both cases and does not reach second-order
correctness. Moreover, for a fixed given level, even distribution-free methods based on order
statistics are known not to be second-order correct (except for very special levels and sizes of
the sample): indeed, in that case the two-sided confidence interval is of the form
I l,u � [X l,n, X u,n]. The coverage probability is then given by P(l < B(n, α) < u) where
B(n, α) is a binomial random variable, which has jumps of size nÿ1=2. To standardize the
distribution and apply our results, we use Maritz and Jarrett’s (1978) variance estimator,

σ̂ 2
n � n

Xn

i�1

(X i,n ÿ X r,n)2wi

with

wi � r
n
r

� �� i=n

(iÿ1)=n
x rÿ1(1ÿ x)nÿr dx,

which turns out to be the exact computation of the bootstrap estimator of the variance (Efron
1979).

Hall and Martin (1991) prove that, under EjX jE ,1 and, if f � F9 (with f (θ) . 0) has
two bounded derivatives in the neighbourhood of θ, the following Edgeworth expansion
holds:

P(n1=2(X r,n ÿ θ)=σ̂ n < x) � Φ(x)� nÿ1=2Q(x, f )φ(x)� O(nÿ3=4),

where Q(x, f ) is a polynomial in x depending on f and its derivatives. As noted by Hall and
Martin (1991), for unilateral confidence intervals, an explicit Edgeworth correction by
inversion may be difficult and illusory, because of the bad performance of kernel estimators
of the density and its derivatives for small sample sizes. However, it is easy to construct the
WoRB distribution of the root ^t � n1=2(X r,n ÿ θ)=σ̂ n and use the extrapolation.

The following simulations were performed on the exponential distribution. We chose
respectively n � 25, n � 50 and n � 100. We chose an undersampling size bn,1 �
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[3n1=2 log (n)ÿ1], that is, the undersampling sizes become 4, 5 and 6 respectively for the
three values of n. We also chose an undersampling size bn,2 � 4bn,1. For the theoretical
reasons discussed in Section 3, we expect to obtain less accurate results with this
undersampling size. In the following the Ei(â) denote bounds for ^t at level â, where i
indexes the different methods used. i � 0 corresponds to the true bound (estimated with
10 000 simulations). i � 1 corresponds to the asymptotic bound, i � 2 to the extrapolation
of the WoRB distribution with bn,1, i � 3 to the same method with bn,2, i � 4 to the
extrapolation of the two undersampling distributions as done in Bickel et al. (1994), i � 5
to the usual bootstrap.

Table 1 gives the mean of the estimated bounds over 2000 repetitions of the procedure,
for α � 75% at level â � 5%; the empirical standard deviations (Std) of the bounds are
given in parentheses. The estimated coverage probability C (as a percentage), over the 2000
repetitions of the procedure (except for E0 which gives the true one) is also given.

Among all the methods studied, the extrapolation of the undersampling distribution with
a small undersampling size, i.e. E2, gives the best results in terms of coverage probability.
On average, the estimated bound is closest to the true one and its standard deviation is
rather small compared to others. Even if we take into account this variability, it performs
better than the asymptotic E1. The gain is not negligible for the construction of confidence
intervals for θ because the variance of the estimated fractile may be rather big. To give
some idea, on average, over the repetitions of the procedure, for n � 25, we have
Fÿ1

n (0:75) � 1:416 with standard deviation 0.372. If the undersampling size is too big
(corresponding to E3), as we expect, we do not obtain an accurate approximation. On
average, the usual bootstrap E5 gives satisfactory results for the bound. It is even better
than the asymptotic, but the standard deviations are so big that it seems quite dangerous to
rely on this method for small sample sizes. The extrapolation of the two undersampling
distributions performs very badly in these simulations. The adequate choice of the
undersampling sizes in that case is an open problem. Similar results have been obtained for
different levels â and different values of α 2 [25%, 75%]. However, for α . 75%, the
estimator of the quantile in the subsamples tends to coincide with the maximum. Since we
recentre at Fÿ1

n (α), we expect the undersampling distribution to have very long tails, so that
we may wonder if, for large quantiles and a smaller level, it may be possible to keep the

Table 1. Bounds for ^t, with α � 75% at level â � 5%

n � 25 n � 50 n � 100

Mean (Std) C (%) Mean (Std) C (%) Mean (Std) C (%)

E0(â) ÿ2.074 (–) 5.0 ÿ1.842 (–) 5.0 ÿ1.701 (–) 5.0
E1(â) ÿ1.645 (–) 9.1 ÿ1.645 (–) 7.9 ÿ1.645 (–) 5.3
E2(â) ÿ1.886 (0.048) 6.3 ÿ1.774 (0.043) 5.5 ÿ1.671 (0.029) 5.2
E3(â) ÿ1.485 (0.354) 11.9 ÿ1.584 (0.207) 10.6 ÿ1.628 (0.150) 5.6
E4(â) ÿ1.127 (0.525) 18.1 ÿ1.280 (0.366) 14.6 ÿ1.428 (0.396) 10.7
E5(â) ÿ1.791 (0.652) 15.8 ÿ1.743 (0.462) 12.3 ÿ1.639 (0.416) 10.2
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second-order properties of the extrapolation. Moreover, for two different fractiles, the WoRB
differs only by the recentring factor. So we may wonder whether the WoRB works better for
some α than for others. Table 2 illustrates what happens for α � 80% and α � 90% at level
â � 1%. It is constructed, like Table 1, over 2000 repetitions of the procedure.

In every case the extrapolation with a small undersampling size improves the coverage
probability. E3(â) gives also good results but with a greater variability. It is clear that the
results are better for α � 80% than for α � 95%. This may be explained by the fact that the
recentring factor for α � 95% is not estimated accurately for small sampling size.
Curiously, the bootstrap seems to perform relatively well for a large quantile compared to
the asymptotics.

Finally, to study the robustness of these empirical results for quantiles we give in Table 3
the performance of E2 against the asymptotics, for n � 50 and bn � 5 and 2000 repetitions
of the procedure. We study the Gaussian N (0, 1), the chi-square ÷2(1), the negative chi-
square ÿ÷2(1) (with opposite skewness) and the lognormal LN(0, 1) distributions. The
results confirm what was observed for the exponential case. The standard deviations are
relatively stable for the different distributions.

Our conclusion (limited, of course, by the case studied and the range of the simulations)
is that extrapolating an undersampling distribution with the asymptotics may yield some
substantial improvements, even if the undersampling distribution is constructed with a very
small resampling size. We would also like to emphasize the importance of the finite
population factor bn=n which may have strong effects on the accuracy of the results if it is
too big. Further investigations, as started in Bickel et al. (1994) and Bertail and Politis
(1996), may be needed to validate the use of the extrapolation of undersampling
distributions when the asymptotic distribution is unknown.
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Bertail, P. (1992) La méthode du bootstrap, quelques applications et résultats théoriques. Doctoral
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Liu, R. and Singh, K. (1992) Moving blocks jackknife and bootstrap capture weak dependence. In R.

Le Page and L. Billard (eds), Exploring the Limits of the Bootstrap. New York: Wiley.
Maritz, J.S. and Jarrett, R.G. (1978) A note on estimating the variance of the sample median. J. Amer.

Statist. Assoc., 82, 155–162.
Mason, D. and Newton, M.A. (1992) A rank statistics approach to the consistency of a general

bootstrap. Ann. Statist. 20, 1611–1624.
Pfanzagl, J. and Wefelmeier, W. (1985) Asymptotic Expansions for General Statistical Models. New

York: Springer-Verlag.
Politis, D.N. and Romano, J.P. (1992) A general resampling scheme for triangular arrays of α-mixing

random variables with applications to the problem of spectral density estimation. Ann. Statist., 20,
1985–2007.

Politis, D.N. and Romano, J.P. (1993) Nonparametric resampling for homogeneous strong-mixing
random fields. J. Multivariate Anal., 47, 301–328.

Politis, D.N. and Romano, J.P. (1994) A general theory for large sample confidence regions based on
subsamples under minimal assumptions. Ann. Statist., 22, 2031–2050.
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