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Second-Order Response SurfaceModel
with Neighbor Effects

SARIKA, SEEMA JAGGI, AND V. K. SHARMA

Indian Agricultural Statistics Research Institute, New Delhi, India

This article considers the second-order response surface model in which the
experimental units, i.e., plots experience the neighbor effects from immediate left and
right neighboring plots assuming the plots to be placed adjacent linearly with no
gaps. Conditions have been derived for the estimation of coefficients of second-order
response surface model. A method of constructing designs for fitting second-order
response surface in the presence of neighbor effects has been developed. The designs
so obtained are found to be rotatable.

Keywords Border plots; Neighbor effects; Response surface; Rotatable design;
Second-order model.

Mathematics Subject Classification Primary 62K20; Secondary 62K15.

1. Introduction

Response surface methodology explores the relationship between response variable
and several explanatory variables and the main idea is to obtain an optimal response
using a set of designed points. A second-degree response surface in general is written
as follows:

yu = �0 +
�∑

i=1

�ixiu +
�∑

i=1

�iix
2
iu +

�−1∑
i=1

�∑
i′=i+1

�ii′xiuxi′u + eu�

where u = 1� 2� � � � � N (number of observations), xiu is the level of the ith factor,
�i = 1� 2� � � � � �� in the uth treatment combination, yu denotes the response obtained
from uth treatment combination. �0 is a constant, �i is the ith linear regression
coefficient, �ii is the ith quadratic regression coefficient, and �ii′ is the (i� i′�th
interaction coefficient. eu is the random error associated with the uth observation
which is assumed to be identically independently distributed normally with mean
zero and common variance �2. Details of response surface methodology can be seen
in Box and Draper (1987), Myers and Montgomery (1995), and Khuri and Cornell
(1996).
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In response surface methodology, it is assumed that the observations are
independent and there is no effect of neighboring units. But in certain situations, this
assumption seems to be unrealistic. For example, in field experiments, the neighbor
effects from the treatments applied to the adjacent neighboring plots may arise. If
one plot receives a spray chemical treatment, wind drift may cause the effect of spray
spill over adjacent plots. Therefore, it is more realistic to postulate that the response
depends not only on the treatment combination applied to that particular plot but
also depends on the treatment combination applied to the neighboring plots. Hence,
it is important to include the neighbour effects in the model to have the proper
specification.

Draper and Guttman (1980) suggested a general linear model for response
surface problems in which it is anticipated that the response on a particular plot
will be affected by overlap effects from neighboring plots and the same have been
illustrated. Designs with neighbor effects for single factor in block design setup have
been extensively studied in the literature (see, e.g., Azais et al., 1993; Jaggi et al.,
2006; Tomar et al., 2005).

Here, we have studied the second order response surface model with no
interaction terms in which the experimental plots exhibit the neighbor effects from
immediate left and right neighboring plots assuming the plots to be adjacent
linearly with no gaps. Interaction terms have not been considered because of
complexity and analytical difficulties. Inclusion of interaction terms in the presence
of immediate left and right neighbor effects does not permit to have neat expression
for the estimates of parameters included in the model with their variance–covariance
matrix. Conditions have been derived for the estimation of coefficients of second-
order response surface model. A method of constructing designs for fitting second-
order response surfaces in the presence of neighbor effects has also been developed
and has been illustrated. The rotatable property of these designs has also been
studied.

2. Second-Order Response Surface Model with Neighbor Effects

We consider here the following model (Draper and Guttman, 1980) with no
interaction terms where the response is a function of input factors and incorporating
the neighbor effects from immediate left and right neighboring plots:

yu =
N∑

u′=1

guu′f�xu�+ eu� (2.1)

where

f�xu� = �0 +
�∑

i=1

�ixiu +
�∑

i=1

�iix
2
iu�

and

guu′ = 1� if u = u′ (2.2)

= �� ��� < 1� if �u− u′� = 1� i.e., plots that are physically adjacent

= 0� otherwise�
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It may be mentioned here that the layout of the experiment for estimating this model
includes border plots for the end plots. The treatment combinations applied on them
are the treatment combinations from the experiment. Observations for border plots
are not modelled. Thus, Model (2.1) can be written as

Y = GX� + e� (2.3)

where G = ��guu′ �� is the N × �N + 2� neighbor matrix, X is a �N + 2�× �2�+ 1�
matrix of predictor variables and mean, � is a �2�+ 1�× 1 vector of parameters, and
e is N × 1 vector of errors which is N�0� �2IN �. If G is known, using Ordinary Least
Squares (OLS) procedure, estimates of �’s are obtained as follows in the presence
of neighbor effects:

�̂ = �Z ′Z�−1Z ′Y � (2.4)

where Z = GX and D��̂� = �2�Z ′Z�−1

The �N + 2�× �2�+ 1� matrix X of predictor variables and mean is written as:

X =




1 x1N x2N · · · x�N x21N x22N · · · x2�N

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 x11 x21 · · · x�1 x211 x221 · · · x2�1

1 x12 x22 · · · x�2 x212 x222 · · · x2�2

1 x13 x23 · · · x�3 x213 x223 · · · x2�3

· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
1 x1u x2u · · · x�u x21u x22u · · · x2�u

· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
1 x1N x2N · · · x�N x21N x22N · · · x2�N

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 x11 x21 · · · x�1 x211 x221 · · · x2�1




The N × �N + 2� neighbor matrix G as defined in (2.2) is
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where

Ai = 2�2
[ N∑
u=1

xiuxi	�u+2� modN


]
+ 4�

[ N∑
u=1

xiuxi	�u+1� modN


]
i = 1� 2� � � � � �

Bi = 2�2
[ N∑
u=1

x2iux
2
i	�u+2�modN


]
+ 4�

[ N∑
u=1

x2iux
2
i	�u+1� modN


]
i = 1� 2� � � � � �

Cii′ = �2
[ N∑
u=1

xiuxi′	�u+2� modN
 +
N∑

u=1

xi	�u+2�modN
xi′u

]

+ 2�
[ N∑
u=1

xiuxi′	�u+1�modN
 +
N∑

u=1

xiuxi′	�u−1� modN


]
i �= i′ = 1� 2� � � � � �

Di = �2
[ N∑
u=1

xiux
2
i	�u+2� modN
 +

N∑
u=1

x2iu xi	�u+2� modN

]

+ 2�
[ N∑
u=1

xiux
2
i	�u+1� modN
 +

N∑
u=1

x2iuxi	�u+1� modN


]
i = 1� 2� � � � � �

Eii′ = �2
[ N∑
u=1

xiux
2
i′	�u+2� modN
 +

N∑
u=1

xi	�u+2� modN
x
2
i′u

]

+ 2�
[ N∑
u=1

xiux
2
i′	�u+1� modN
 +

N∑
u=1

xi	�u+1� modN
x
2
i′u

]
i �= i′ = 1� 2� � � � � �

Fii′ = �2
[ N∑
u=1

x2iux
2
i′	�u+2� modN
 +

N∑
u=1

x2i	�u+2� modN
x
2
i′u

]

+ 2�
[ N∑
u=1

x2iux
2
i′	�u+1� modN
 +

N∑
u=1

x2i	�u+1� modN
x
2
i′u

]
i �= i′ = 1� 2� � � � � ��

For the orthogonal estimation of parameters, Z ′Z has to be diagonal which is
not feasible here for a second-order response surface model with neighbor effects
because of some cross product terms. Hence, we try to obtain the diagonal matrix
to the maximum extent possible, i.e., we try to make it nearly orthogonal so that
some of the covariances are zero and others are constant. For obtaining this and for
constancy of variances of linear parameters and quadratic parameters, the following
conditions are required:

i)
∑N

u=1

∏�
i=1 x

�i
iu = 0 for �i = 0, 1, or 3 and

∑
�i ≤ 3

ii)
∑N

u=1 x
2
iu = constant = N� =  ∀i = 1� 2� � � � � �

iii)
∑N

u=1 x
2
iux

2
i′u = constant = N� = L

iv)
∑N

u=1 x
4
iu = constant = CL

v� Ai = A�Bi = B and Fii′ = F ∀i �= i′ = 1� 2� � � � � �� (2.5)

Therefore,

Z ′Z =




N�1+ 2��2 0′1×� �1+ 2��21′1×�

0�×1 	�1+ 2�2�+ A
I� 0�×�

�1+ 2��21�×1 0�×� H�×�
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with � �= −0�5 and

�Z ′Z�−1 =




1
N�1+ 2��2

+ �


N
� 0′1×� −�1′1×�

0�×1
1

	�1+ 2�2�+ A

I� 0�×�

−�1�×1 0�×� �



�

where,

� = 

N

[ 	�1+ 2�2�L�C − 1�+ B − F
+ ��− 1�
[
�1+ 2�2�L+ F − 2

N
�1+ 2��2

]
�

]

� =
[ �1+ 2�2�L�C + �− 1�+ B + ��− 1�F − �

2

N
�1+ 2��2

�

]
I�

−
[ �1+ 2�2�L+ F − 2

N
�1+ 2��2

�

]
11′

and

� = 	�1+ 2�2�L�C − 1�+ B − F


×
{
	�1+ 2�2�L�C − 1�+ B − F
+ �	�1+ 2�2�L+ F − 2

N
�1+ 2��2


}
�

Thus, variances of the estimates are

V��̂0� =
�2

N�1+ 2��2
	1+ ��1+ 2��2�


V��̂i� =
�2

	�1+ 2�2�+ A

for i = 1� 2� � � � � �

V��̂ii� = �2

[ �1+ 2�2�L�C + �− 1�+ B + ��− 1�F − �
2

N
�1+ 2��2

�

]

with

Cov��̂0� �̂ii� = −�2�

Cov��̂ii� �̂i′i′� = −�2

[
�1+ 2�2�L+ F − 2

N
�1+ 2��2

�

]

Cov��̂0� �̂i� = 0� Cov��̂i� �̂i′� = 0� Cov��̂i� �̂ii� = 0� i �= i′ = 1� 2� � � � � �




�

(2.6)
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Here, the linear effects of all the factors are estimated orthogonal to all other
effects. However, the quadratic effects are non orthogonal to mean effect and among
themselves.

The estimated response at the point x0 is ŷ0 = x′
0� = �̂0 +

∑�
i=1 �̂ixi0 +∑�

i=1 �̂iix
2
i0 with its variance

V�ŷ0� = x′
0V��̂�x0 = �2x′

0�Z
′Z�−1x0�

Thus,

V�ŷ0� = V��̂0�+ V��̂i�
�∑

i=1

x2i0 + V��̂ii�
�∑

i=1

x4i0

+ 2Cov��̂0� �̂ii�
�∑

i=1

x2i0 + 2Cov��̂ii� �̂i′i′�
v−1∑
i=1

�∑
i′=i+1

x2i0x
2
i′0�

Using (2.6) we get:

V�ŷ0��
−2 = 1

N�1+ 2��2
	1+ ��1+ 2��2�


+
{

1
	�1+ 2�2�+ A


− 2�
} �∑

i=1

x2i0

+
�1+ 2�2�L�C + �− 1�+ B + ��− 1�F − �

2

N
�1+ 2��2

�

�∑
i=1

x4i0

− 2
	�1+ 2�2�L+ F − 2

N
�1+ 2��2


�

�−1∑
i=1

�∑
i′=i+1

x2i0x
2
i′0�

If this variance is same for all points x, then the design is said to be rotatable. The
designs satisfying this property are called as Second Order Rotatable Designs with
Neighbor Effects (SORDNE). We now present a method of constructing SORDNE.

3. Designs for Fitting Second-Order Response Model
with Neighbor Effects

Construct a s� (s > 2) full factorial for � factors each at s levels and arrange the
combinations in lexicographic order starting from the highest order interaction and
reaching to lowest one. Obtain ��− 1�s� more combinations by circularly rotating
the columns of s� factorial such that each column occupies all the positions of
the � columns. Two extra points are added as border plots for neighbor effects.
The resulting design in �s� points is a rotatable design for fitting second-order
response model with neighbor effects. The design obtained here are found to be
rotatable.

Example 3.1. Let � = 2 with each factor at three levels, then we get nine runs in
full factorial. There are two columns for two factors, x1 and x2. Next, we write the
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contents of second column below first column and that of first column below second
column. Finally, we add the first run at the bottom and last run at the top. The
design matrix, X with 5 columns (1 x1 x2 x21 x22� and 18 points with two border
points is as follows:

The 18× 20 neighbor matrix G is defined as:
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and

Z = GX =




�1+ 2�� �1− �� 1 �1+ �� �1+ 2��

�1+ 2�� 0 �1+ 2�� 2� �1+ 2��

�1+ 2�� ��− 1� �1+ �� �1+ �� �1+ ��

�1+ 2�� �1− �� � �1+ �� �

�1+ 2�� 0 0 2� 0

�1+ 2�� ��− 1� −� �1+ �� �

�1+ 2�� �1− �� �−�− 1� �1+ �� �1+ ��

�1+ 2�� 0 �−1− 2�� 2� �1+ 2��

�1+ 2�� ��− 1� −1 �1+ �� �1+ 2��

�1+ 2�� 1 �1− �� �1+ 2�� �1+ ��

�1+ 2�� �1+ 2�� 0 �1+ 2�� 2�

�1+ 2�� �1+ �� ��− 1� �1+ �� �1+ ��

�1+ 2�� � �1− �� � �1+ ��

�1+ 2�� 0 0 0 2�

�1+ 2�� −� ��− 1� � �1+ ��

�1+ 2�� �−�− 1� �1− �� �1+ �� �1+ ��

�1+ 2�� �−1− 2�� 0 �1+ 2�� 2�

�1+ 2�� −1 �1− �� �1+ 2�� �1+ ��




Z ′Z =




18�1+ 2��2 0 0
6�1− ��2 + 2�1+ ��2

+ 2�1+ 2��2 + 2�2 + 2
0

6�1− ��2 + 2�1+ ��2

+ 2�1+ 2��2 + 2�2 + 2

12�1+ 2��2 12�1+ 2��2

0 0
0 0

8�1+ ��2 + 14�2

+ 4�1+ 2��2
4	�1+ ��2 + ��1+ ��
+ �1+ 2���1+ 3��
8�1+ ��2 + 14�2

+ 4�1+ 2��2



�

It may be noted that �Z ′Z � = 0, if � = −0�5.
For � = 0�1,

Z ′Z =




25�92 0 0 17�28 17�28

0 12�18 0 0 0

0 0 12�18 0 0

17�28 0 0 15�58 11�52

17�28 0 0 11�52 15�58



�
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�Z ′Z�−1 =




0�2575 0 0 −0�1642 −0�1642

0 0�0821 0 0 0

0 0 0�0821 0 0

−0�1642 0 0 0�2463 0

−0�1642 0 0 0 0�2463



�

Thus,

V��̂0� = 0�2575�2� V��̂i� = 0�0821�2� V��̂ii� = 0�2463�2 and

Cov��̂0� �̂ii� = −0�1642�2� i = 1� 2�

It can be seen that V�ŷ� = 0�2575�2 for all points in x. Hence, the design is rotatable.
It is interesting to note that for the class of designs presented here, Cov��̂ii� �̂i′i′� = 0.
Hence, the quadratic effects are also estimated orthogonal to other effects except
mean effect.

Figure 1 presents the variance of estimated response at different values of �

varying from 0 to 1 for a second-order model (� = 2� 3� 4) with neighbor effects. It
is seen that as the value of � increases, Var�ŷ� as well as the variance of parameter
estimates decreases.

For negative values of �, as the value of � decreases, the variance of estimated
response increases till � = −0�5 (Fig. 2). At � = −0�5, the matrix Z ′Z becomes
singular and thus we do not get the variance. After � = −0�5, the variance keeps on
decreasing with the value of � until � = −1.

It is thus concluded that incorporation of neighbor effects in the model influence
the precision of predicted response and therefore should not be ignored.

Figure 1. Relation between variance of estimated response and positive values of �.
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Figure 2. Relation between variance of estimated response and negative values of �.
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