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Abstract. Continuously operated clarifier-thickener units can be modeled by

a non-linear, scalar conservation law with a flux that involves two parameters
that depend discontinuously on the space variable. This paper presents two nu-

merical schemes for the solution of this equation that have formal second-order

accuracy in both the time and space variable. One of the schemes is a stan-
dard total variation diminishing (TVD) method, while the other scheme, the

so-called flux-TVD (FTVD) scheme, is based on the property that due to the

presence of the discontinuous parameters, the flux of the solution (rather than
the solution itself) has the TVD property. The FTVD property is enforced by

a new nonlocal limiter algorithm. We prove that the FTVD scheme converges

to a BVt solution of the conservation law with discontinuous flux. Numerical
examples for both resulting schemes are presented. They produce comparable

numerical errors, while the FTVD scheme is supported by convergence analy-

sis. The accuracy of both schemes is superior to that of an available monotone
first-order scheme. In the clarifier-thickener application there is interest in

modelling sediment compressibility by an additional strongly degenerate dif-

fusion term. Second-order schemes for this extended equation are obtained by
combining either the TVD or the FTVD scheme with a Crank-Nicolson dis-

cretization of the degenerate diffusion term in a Strang-type operator splitting
procedure. Numerical examples illustrate the resulting schemes.

1. Introduction

In a series of papers including [5, 6, 7], we proposed and analyzed difference
schemes for conservation laws with discontinuous flux modelling so-called clarifier-
thickener (CT) units for the continuous solid-liquid separation of suspensions in
engineering applications. Most spatially one-dimensional mathematical models of
these units are based on the kinematic sedimentation theory [17], which describes
the batch settling of small, equal-sized rigid spheres suspended in a viscous fluid
by the conservation law

ut + b(u)x = 0(1.1)
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for the solids volume fraction u as a function of depth x and time t. The flux b(u),
called batch flux density function in the context of CT models, describes material
specific properties of the suspension. The extension of this theory to CT units with
continuous feed, sediment removal, and clarified liquid overflow leads to an initial
value problem for a conservation law of the type

ut + f
(
γ(x), u

)
x

= 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(1.2)

with a flux f(γ(x), u) that depends discontinuously on x via a vector γ(x) =
(γ1(x), γ2(x)) of discontinuous parameters. The flux discontinuities are a conse-
quence of the assumption that within a CT unit, the suspension feed flow is split
into upwards- and downwards-directed bulk flows, and of the particular description
of vessel outlets. It is the purpose of this paper to introduce second-order accu-
rate finite difference schemes for the approximate solution of (1.2) under specific
assumptions of the context of the CT model.

The discontinuous flux makes the well-posedness analysis and numerical simula-
tion of the CT model rather difficult. For example, if we express the discontinuous
parameter γ(x) as an additional conservation law γt = 0, we obtain a system of
conservations laws for the “unknowns” (γ, u). The equation γt = 0 introduces
linearly degenerate fields with eigenvalues that are zero. Indeed, if fu = 0 at some
points (γ, u), then the system is non-strictly hyperbolic and it experiences so-called
nonlinear resonant behavior. Consequently, one cannot in general expect to bound
the total variation of the conserved quantities directly, but only when measured
under a certain singular mapping, as was done first in [22] for a related system.

The papers [3, 4, 5, 6] cited above were inspired by previous work on conserva-
tion laws with discontinuous flux (cf. these papers for lists of relevant references).
This area has enjoyed a lot of interest in recent years due to its intrinsic mathemat-
ical difficulties and the large number of its applications including, besides the CT
model, two-phase flow in porous media, traffic flow with discontinuous road sur-
face conditions, and shape-from-shading problems (again we refer to [3, 4, 5, 6] for
long lists of relevant references). On the other hand, CT models have been studied
extensively in the literature by several authors (see, e.g., [1, 9, 18]). Important
contributions to the mathematical analysis and the determination of solutions to
these first-order models have been made by Diehl, see, e.g., [10, 11, 12].

In many applications, suspensions are flocculated and form compressible sedi-
ment layers, which cannot be described by (1.1). A suitable extended model is
provided by a sedimentation-consolidation theory (see, e.g., [7]), whose governing
equation (for one-dimensional batch settling) is

ut + b(u)x = A(u)xx,(1.3)

where the diffusion term A(u)xx accounts for sediment compressibility. This theory
postulates a material-dependent critical concentration (or gel point) uc such that
A(u) = 0 for u ≤ uc and A(u) ≥ 0 for u > uc. Thus, (1.3) degenerates into the first-
order equation (1.1) when u ≤ uc, and is therefore called strongly degenerate. If we
combine this extension of (1.1) to continuously operated CTs (with the degenerate
diffusion term describing sediment compressibility), then the resulting model for a
CT treating a flocculated suspension is of the type

ut + f
(
γ(x), u

)
x

=
(
γ1(x)A(u)x

)
x
, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(1.4)

where the strongly degenerating (with respect to u) diffusion term is modulated
by the discontinuous parameter γ1(x). In this paper we will mostly consider the
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purely hyperbolic CT model (1.2), which can be obtained by taking A ≡ 0 in (1.4),
but see Sections 2 and 7.

In [6, 8], our interest was focused on the well-posedness analysis for conservation
laws with discontinuous flux. Although these papers include numerical experiments,
our main interest in numerical schemes, in particular in a suitable adaptation of the
first-order Engquist-Osher scheme [13] to account for flux discontinuities, has so far
been motivated by providing a constructive proof of existence of a weak solution,
or even of an entropy solution, by proving convergence of the scheme. However,
the schemes used so far are only first-order accurate in space and time, and due to
their poor resolution are not recommended for practical simulations.

It is the purpose of this paper to present, and in part analyze, finite difference
schemes that form second-order accurate approximations (both in space and in
time) of the CT model. These schemes utilize our previous first-order scheme
and a new flux-total variation diminishing (FTVD) method. In more detail, by a
truncation error analysis we identify a correction term that formally upgrades our
scheme to second-order accuracy. As is well known, the resulting Lax-Wendroff-
type scheme produces spurious oscillations near discontinuities. A well-established
way to correct this is the application of a limiter function to the solution itself.
This results in a TVD scheme. The problem with the application of the TVD
methodology, however, lies in the fact that for equations involving a discontinuous
flux, it is not ensured that the solution itself satisfies the TVD property; rather,
we can only say that the flux has the TVD property. This observation leads us
to propose here the so-called flux-TVD (FTVD) schemes, which precisely mimic
the latter property of the exact solution. The new correction terms introduced by
the flux-TVD approach should be as large as possible in order to ensure overall
second-order accuracy. This requirement has inspired us to propose a new non-
local limiter algorithm, which as we prove, indeed diminishes total variation and
preserves second-order accuracy wherever possible.

We prove that the FTVD scheme converges to a BVt weak solution of the CT
model. A decisive ingredient of the proof is the application of a so-called singular
mapping, which maps the sequence of approximate solution values, which do not
necessarily satisfy a spatial TVD property, to a sequence of transformed quantities,
which does have this property. A standard compactness argument yields that the
transformed sequence has a limit, and applying the inverse of the singular mapping
we see that the sequence of solution itself has a limit. This analysis puts the FTVD
scheme on a rigorous ground. Regarding the first-order version of the scheme, we
know that it satisfies a discrete entropy inequalities, the continuous version of which
implies L1 stability and uniqueness, cf. [6, 8]. For the second-order extension, we
have not been able to establish such discrete entropy inequalities, although the
numerical results seem to indicate that they are satisfied.

The remainder of this paper is organized as follows: In Section 2 we outline the
CT model. Moreover, we state the definition of a BVt weak solution. In Section 3,
we recall from [6] our first-order scheme for the discretization of (1.2), which forms
the starting point of our analysis, and identify a correction term that formally
upgrades our scheme to second-order accuracy. To avoid that the resulting Lax-
Wendroff-type scheme produces spurious oscillations near discontinuities, we utilize
limiter functions, including a simple minmod TVD limiter and a novel (nonlocal)
flux-TVD limiter. The nonlocal limiter function and some of its properties are
further discussed in Section 4. In Section 5, we prove that the flux-TVD scheme
converges to a BVt weak solution of the CT model. In Section 6 we provide several
numerical examples illustrating the proposed schemes. While in Sections 3–6, which
form the core of this paper, we are concerned with the CT model defined by (1.2),
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Figure 1. Schematic illustration of a clarifier-thickener (CT) unit.

in Section 7 we propose an extension of the TVD and flux-TVD to the version
of the CT model that incorporates a strongly degenerate parabolic term modelling
sediment compressibility via an operator splitting procedure with a Crank-Nicolson
discretization of the parabolic term, and provide some numerical examples for this
extension.

2. The clarifier-thickener model

In this section we outline a general CT model. For the case of a varying cross-
sectional area, the final model equation slightly differs from the one stated in [7],
since by a simple transformation of the spatial variable, we now rewrite the gov-
erning PDE in conservative form, while in previous papers [5, 7] we still had the
(possibly discontinuous) cross-sectional area function multiplying the time deriva-
tive of the solution.

We here derive the complete CT model that also includes the effect of sediment
compressibility modeled by a degenerate diffusion term since the particular alge-
braic form of that term, and the discontiuous parameter that appears in it, are
most easily motivated by extensions of expressions that appear in the derivation
of the first-order hyperbolic model. However, we are mainly analyzing the special
case of a first-order hyperbolic model for which this term is not present. If this
term is not present, we speak of an ideal suspension.

2.1. The clarifier-thickener unit. We consider a continuously operated axisym-
metric clarifier-thickener (CT) vessel as drawn in Figure 1, and assume that all flow
variables depend on depth ξ and time t only. We subdivide the vessel into four dif-
ferent zones: the thickening zone (0 < ξ < ξR), the clarification zone (ξL < ξ < 0),
the underflow zone (ξ > ξR) and the overflow zone (ξ < ξL). The vessel is continu-
ously fed at depth ξ = 0, the feed level, with fresh feed suspension at a volume feed
rate QF(t) ≥ 0. The concentration of the feed suspension is uF(t). The prescribed
volume underflow rate, at which the thickened sediment is removed from the unit,
is QR(t) ≥ 0. Consequently, the overflow rate is QL(t) = QF(t) − QR(t), where
we assume that the two control functions QF(t) and QR(t) are chosen such that
QF(t) ≥ 0.

2.2. Derivation of the mathematical model. The spatially one-dimensional
balance equation for u = u(ξ, t) in a vessel with varying cross-sectional area S(ξ)
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is given by

S(ξ)ut +
(
Q(t)u+ S(ξ)u(1− u)vr

)
ξ

= 0,(2.1)

where Q(t) is the controllable volume average flow rate and vr is the solid-fluid
relative velocity; see [7] for details. Within the kinematic sedimentation theory [17]
for ideal suspensions, vr is assumed to be a function of u only, vr = vr(u). In terms
of the batch flux density function b(u) we get

vr(u) =
b(u)

u(1− u)
.(2.2)

The function b is usually assumed to be continuous and piecewise twice differentiable
with b ∈ C2([0, umax]) and b(u) = 0 for u ≤ 0 or u ≥ umax, where umax is the
maximum solids concentration, b(u) > 0 for 0 < u < umax, b′(0) > 0 and b′(umax) ≤
0. A typical example that satisfies these assumptions is

b(u) =

{
v∞u(1− u)C if 0 < u < umax,
0 otherwise,

(2.3)

where C ≥ 1 and v∞ > 0 is the settling velocity of a single particle in pure fluid.
If we include the effect of sediment compressibility, then (2.2) is replaced by

vr =
b(u)

u(1− u)

(
1− σ′e(u)

∆%gu
ux

)
,(2.4)

where ∆% > 0 denotes the solid-fluid density difference, g the acceleration of gravity,
and σe(u) is the effective solid stress function, which is now the second constitutive
function (besides b) characterizing the suspension. This function is assumed to
satisfy σe(u) ≥ 0 for all u and

σ′e(u) :=
dσe(u)
du

{
= 0 for u ≤ uc,

> 0 for u > uc.

Clearly, the first-order model based on (2.2) is included as the sub-case of (2.4)
produced by setting uc = umax.

Inserting (2.4) into (2.1) and defining

a(u) :=
b(u)σ′e(u)

∆%gu
, A(u) :=

∫ u

0

a(s) ds,(2.5)

we obtain the governing equation(
S(ξ)u

)
t

+
(
Q(t)u+ S(ξ)b(u)

)
ξ

=
(
S(ξ)A(u)ξ

)
ξ
.(2.6)

Since a(u) = 0 for u ≤ uc and u = umax and a(u) > 0 otherwise, (2.6) is first-order
hyperbolic for u ≤ uc and second-order parabolic for u > uc, and therefore (2.6) is
called strongly degenerate parabolic. The location of the type-change interface u =
uc (denoting the sediment level) is in general unknown beforehand. In accordance
with (2.5), we will assume that A ∈ Lip([0, 1]), A′(u) = 0 for u < uc, and that
A′(u) > 0 for u ∈ (uc, 1).

In the present model, the volume bulk flows are Q(ξ, t) = QR(t) for ξ > 0 and
Q(ξ, t) = QL(t) for ξ < 0. This suggests employing (2.6) with Q(t) = QR(t) for
0 < ξ < ξR and Q(t) = QL(t) for ξL < ξ < 0, however, we herein choose the control
functions uF(t), QL(t) and QR(t) to be time-independent constants. Furthermore,
we assume that in the overflow and underflow zones the solid-fluid relative velocity
vanishes, vr = 0. Moreover, the cross-sectional area S(ξ) needs to be positive
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outside the interval [ξL, ξR]. We assume that S(ξ) = S0 for ξ < ξL and ξ > ξR,
where S0 > 0 is a small but positive pipe diameter. We now obtain that

S(ξ)uvs|ξ 6∈[ξL,ξR] = S0uvs =

{
QLu for ξ < ξL,
QRu for ξ > ξR,

where vs is the solids phase velocity. The feed mechanism is introduced by adding
the singular source term QFuFδ(ξ) to the right-hand part of the solids continuity
equation. We can summarize the resulting PDE as

S(ξ)ut + G̃(ξ, u)ξ =
(
β1(ξ)A(u)ξ

)
ξ

+QFuFδ(ξ), ξ ∈ R, t > 0,(2.7)

G̃(ξ, u) = S(ξ)uvs =


QLu for ξ < ξL,
QLu+ S(ξ)b(u) for ξL < ξ < 0,
QRu+ S(ξ)b(u) for 0 < ξ < ξR,
QRu for ξ > ξR,

β1(ξ) :=

{
S(ξ) if ξL ≤ ξ ≤ ξR,
0 otherwise.

Finally, we may express the singular source term in terms of the derivative of the
Heaviside function. Adding −H(ξ)QFuF to G̃(ξ, u) and subtracting the constant
term QLuF, and starting from a known initial concentration distribution u0, we
obtain the strongly degenerate convection-diffusion problem

S(ξ)ut + g
(
β(ξ), u

)
ξ

=
(
β1(ξ)A(u)ξ

)
ξ
, ξ ∈ R, t > 0,(2.8)

u(ξ, 0) = u0(ξ), ξ ∈ R, u0(ξ) ∈ [0, umax],

where we define the flux

g
(
β(ξ), u

)
:= β1(ξ)b(u) + β2(ξ)(u− uF),

β(ξ) :=
(
β1(ξ), β2(ξ)

)
, β2(ξ) :=

{
QL for ξ < 0,
QR for ξ > 0.

Our numerical algorithms and their analysis are greatly simplified if we do not have
the term S(ξ) multiplying ut. With the change of variables

x =
∫ ξ

0

S(η) dη, dx/dξ = S, xL = x(ξL), xR = x(ξR),(2.9)

we can rewrite the initial value problem for (2.8) as (1.4), where we define

f
(
γ(x), u

)
:= γ1(x)b(u) + γ2(x)(u− uF),(2.10)

γ1(x) :=

{
S(ξ(x)) for x ∈ (xL, xR),
0 for x /∈ (xL, xR),

, γ2(x) :=

{
QL for x < 0,
QR for x > 0.

If we consider an ideal suspension not exhibiting sediment compressibility, then
(1.4) takes the purely hyperbolic form (1.2), which is the equation that will be
mainly concerned with in this paper.

We assume that the function x 7→ S(ξ(x)) is piecewise smooth with a finite
number of discontinuities, and for the initial data in (1.2) we assume that u0 satisfies

u0 ∈ BV (R); u0(x) ∈ [0, 1] for a.e. x ∈ R.

By a solution to the hyperbolic problem (1.2), we understand the following.

Definition 2.1 (BVt weak solution). A measurable function u : ΠT → R is a
BVt weak solution of the initial value problem (1.4) if it satisfies the following
conditions:
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(D.1) u ∈ (L∞ ∩BVt) (ΠT ).
(D.2) For all test functions φ ∈ D(R× [0, T )),∫∫

ΠT

(
uφt + f

(
γ(x), u

)
φx

)
dx dt+

∫
R
u0φ(x, 0) dx = 0.

The notation BVt refers to the space of locally integrable functions on ΠT for
which ut (but not ux) is a locally bounded measure, which is a superset of BV .

3. The difference schemes

3.1. Algorithm preliminaries. We start with a positive spatial mesh size ∆x >
0, set xj := j∆x, and discretize the parameter vector γ and the initial data by
γj+1/2 := γ(xj+1/2+) and U0

j := u0(xj+) for j ∈ Z. Here xj+1/2 := xj+∆x/2, i.e.,
the midpoint in the interval [xj , xj+1). Let tn := n∆t and let χn denote the char-
acteristic function of [tn, tn+1), χj the characteristic function of [xj−1/2, xj+1/2),
and χj+1/2 the characteristic function of the interval [xj , xj+1). Our difference al-
gorithm will produce an approximation Unj associated with the point (xj , tn). We
then define

(3.1) u∆(x, t) :=
∑
n≥0

∑
j∈Z

Unj χj(x)χn(t), γ∆(x) :=
∑
j∈Z

γj+1/2χj+1/2(x).

Our algorithm is defined by the simple marching formula

(3.2) Un+1
j = Unj − λ∆−

(
hnj+1/2 + F̂nj+1/2

)
, λ =

∆t
∆x

, j ∈ Z, n = 0, 1, 2, . . . .

Here hnj+1/2 := h(γj+1/2, U
n
j+1, U

n
j ), where h is the Engquist-Osher flux [13]:

(3.3) h(γ, v, u) :=
1
2
(
f(γ, u) + f(γ, v)

)
− 1

2

∫ v

u

∣∣fu(γ, w)
∣∣ dw,

and the quantity F̂nj+1/2 is a correction term that is required in order to achieve
second-order accuracy. Without those terms, (3.2) is the first-order scheme that we
have analyzed in previous papers. The simplicity of the scheme derives in large part
from the fact that the discretization of γ is staggered with respect to that of the
conserved quantity u, making it possible to avoid solving 2× 2 Riemann problems
that would result otherwise.

Finally, we will assume that λ remains constant as we refine the mesh, so that
∆t = λ∆x.

3.2. Truncation error analysis. In this section we focus on the difference scheme
(3.2) for (1.2). We start by defining second-order correction terms dnj+1/2, enj+1/2

that are appropriate if γ is piecewise constant. We are seeking formal second-order
accuracy at points (x, t) where the solution u is smooth. At jumps in γ the solution
will generally be discontinuous, so for the purpose of defining correction terms, we
may restrict our attention to points located away from the jumps in γ. Combined
with our (temporary) assumption that γ is piecewise constant we see that we can
simply use correction terms that are appropriate for a constant γ conservation law.
Specifically, we use the following Lax-Wendroff type correction terms that are well
known to provide for formal second-order accuracy in both space and time (see e.g.
[21]):

dnj+1/2 =
1
2
a+
j+1/2

(
1− λa+

j+1/2

)
∆+U

n
j ,

enj+1/2 =
1
2
a−j+1/2

(
1 + λa−j+1/2

)
∆+U

n
j .

(3.4)
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Here the quantities a±j+1/2 are the positive and negative wave speeds associated
with the cell boundary located at xj+1/2:

a+
j+1/2 :=

1
∆+Unj

∫ Un
j+1

Un
j

max
(
0, fu(γj+1/2, w)

)
dw

=
f(γj+1/2, U

n
j+1)− hnj+1/2

∆+Unj
≥ 0,

a−j+1/2 :=
1

∆+Unj

∫ Un
j+1

Un
j

min
(
0, fu(γj+1/2, w)

)
dw

=
hnj+1/2 − f(γj+1/2, U

n
j )

∆+Unj
≤ 0.

(3.5)

The scheme discussed thus far is only first-order accurate if γ is variable. We
now set out to find second-order correction terms that are required when x 7→ γ is
piecewise C2, and start by identifying the truncation error of the first-order scheme.
For the moment, we restrict our attention to the case fu(γ, u) ≥ 0, so the first-order
version of the scheme (3.2) simplifies to

(3.6) Un+1
j − Unj + λ∆−f

(
γj+1/2, U

n
j

)
= 0.

Inserting a smooth solution u(x, t) into (3.6) and using unj to denote u(xj , tn), we
get the following expression for the truncation error at the point (xj , tn):

TE+ := un+1
j − unj + λ∆−f

(
γj+1/2, u

n
j

)
= ∆t (ut)

n
j +

1
2

∆t2 (utt)
n
j + λ∆−f

(
γj+1/2, u

n
j

)
+O(∆3).

(3.7)

Here we are using the abbreviation O(∆ν) = O(∆tν), which is also equal to
O(∆xν), since ∆t = λ∆x. From the differential equation (1.2) we have

ut = −f(γ, u)x, utt =
(
fu(γ, u)f(γ, u)x

)
x
.

If we substitute these relationships into (3.7), then the truncation error becomes

TE+ = −∆t
(
f(γ, u)x

)n
j

+
1
2

∆t2
(
(fu(γ, u)f(γ, u)x)x

)n
j

+ λ∆−f
(
γj+1/2, u

n
j

)
+O(∆3).

(3.8)

Abbreviating fu(γ, u) := fu, f(γ, u)x := fx, etc., for the last term in (3.8), we
obtain by a straightforward but lengthy calculation

∆−f
(
γj+1/2, u

n
j

)
= ∆x (fx)nj −

1
2

∆x2
(
(fuux)x

)n
j

+O(∆3).

Inserting this expression into (3.8) we obtain

(3.9) TE+ = ∆x2λ

[
1
2
λ (fufx)x −

1
2

(fuux)x

]n
j

+O(∆3).

Substituting fx = fuux + fγγx into (3.9), where we define fγ := ∇γf , and sup-
pressing the dependence on the point (xj , tn) gives

TE+ = ∆x2λ

[
1
2
λfufuux +

1
2
λfufγγx −

1
2
fuux

]
x

+O(∆3)

= −∆x2λ

[
1
2
fu(1− λfu)ux −

1
2
λfufγγx

]
x

+O(∆3).
(3.10)

Similarly, when fu ≤ 0, the first-order scheme reduces to

Un+1
j − Unj + λ∆+f

(
γj−1/2, U

n
j

)
= 0,
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and we arrive at the following formula for the truncation error:

(3.11) TE− = ∆x2λ

[
1
2
fu(1 + λfu)ux +

1
2
λfufγγx

]
x

+O(∆3).

So, when γ is piecewise smooth (not piecewise constant), we see from (3.10) and
(3.11) that appropriate second-order correction terms are the following modified
versions of (3.4):

Fnj+1/2 := Dn
j+1/2 − Enj+1/2,

Dn
j+1/2 :=

1
2
a+
j+1/2

(
1− λa+

j+1/2

)
∆+U

n
j −

1
2
λa+

j+1/2fγ

(
γj+1/2, U

n
j+1/2

)
∆+γj

= dnj+1/2 −
1
2
λa+

j+1/2fγ

(
γj+1/2, U

n
j+1/2

)
∆+γj ,

Enj+1/2 :=
1
2
a−j+1/2

(
1 + λa−j+1/2

)
∆+U

n
j +

1
2
λa−j+1/2fγ

(
γj+1/2, U

n
j+1/2

)
∆+γj

= enj+1/2 +
1
2
λa−j+1/2fγ

(
γj+1/2, U

n
j+1/2

)
∆+γj .

(3.12)

For the values fγ(γj+1/2, U
n
j+1/2) appearing in (3.12), we use the approximation

(3.13) fγ(γj+1/2, U
n
j+1/2) ≈ 1

2
(
fγ(γj+1/2, U

n
j ) + fγ(γj+1/2, U

n
j+1)

)
.

Even without the jumps in γ, the solution will generally develop discontinuities.
If we use the correction terms above without further processing, the solution will de-
velop spurious oscillations near these discontinuities. To damp out the oscillations,
we apply so-called flux limiters, resulting in the flux-limited quantities F̂j+1/2.

3.3. A simple minmod TVD scheme. In the constant γ case, the actual solu-
tion of the conservation law will be TVD, meaning that its total spatial variation
decreases (or at least does not increase) in time. There are any number of ways to
apply flux limiters in this situation so that the approximations Unj are also TVD. A
simple limiter that enforces the TVD property when γ is constant is the following:

F̂nj+1/2 = D̂n
j+1/2 − Ênj+1/2,

D̂n
j+1/2 = minmod

(
Dn
j+1/2, 2D

n
j−1/2

)
,

Ênj+1/2 = minmod
(
Enj+1/2, 2E

n
j+3/2

)
,

(3.14)

where we recall that the m-variable minmod function is defined by

minmod(p1, . . . , pm) =


min{p1, . . . , pm} if p1 ≥ 0, . . . , pm ≥ 0,
max{p1, . . . , pm} if p1 ≤ 0, . . . , pm ≤ 0,
0 otherwise.

Of course, when γ is not constant, the actual solution u is not TVD, and thus
our algorithm should not attempt to impose a TVD requirement on the conserved
quantity Unj . Fortunately, the TVD limiter (3.14) only forces Unj to be TVD when
γ is constant, and in practice turns out to be a reasonable approach to dampening
oscillations even in the variable γ context considered here. Moreover, it is consistent
with formal second accuracy away from extrema of u. Although we are unable to
put the resulting algorithm on a firm theoretical footing, for the most part it is
very robust. The one negative aspect that we have observed is a small amount of
overshoot in certain cases when a shock collides with a stationary discontinuity at
a jump in γ, see Figure 2.
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Figure 2. Same setup as Figure 3. Second-order schemes, with
simple TVD and flux-TVD limiters. Shows overshoot produced
by TVD1 but not TVD2. This is the same problem as shown in
Figure 5 of [6]. Here ∆x = 1/25, ∆t = 1/400, 1020 time steps.

3.4. A flux-TVD (FTVD) scheme. We wish to eliminate the non-physical over-
shoot observed with the simple TVD limiter (3.14), and also put the resulting dif-
ference scheme on a firm theoretical basis. In the constant γ setting, the TVD
concept originated by requiring that the numerical approximations satisfy a prop-
erty (TVD) that is also satisfied by the actual solution. In the variable γ setting,
the actual solution is not TVD, so we should enforce some other regularity property.
For a conservation law having a flux with a discontinuous spatial dependency, it
is natural to expect not the conserved variable, but the flux, to be TVD; see [23].
Consequently, we require that the first-order numerical flux also be TVD, i.e.,∑

j∈Z

∣∣∆+h
n+1
j−1/2

∣∣ ≤∑
j∈Z

∣∣∆+h
n
j−1/2

∣∣, n = 0, 1, . . . .

We call this property flux-TVD, or FTVD. We will see (Lemmas 5.1 and 5.3) that
under an appropriate CFL condition, the FTVD property (along with a bound on
the solution) holds if

(3.15)
∣∣∆+F̂

n
j+1/2

∣∣ ≤ ∣∣∆+h
n
j+1/2

∣∣, j ∈ Z, n = 0, 1, 2, . . . .

Wherever the solution is smooth, the quantity on the left side of (3.15) is O(∆2),
while the quantity on the right side is O(∆), making it seem plausible that we can
satisfy these inequalities without sending Fnj+1/2 all the way to zero, which would
just give us the first-order scheme. It is reasonable to also impose the condition

(3.16) 0 ≤ F̂nj+1/2/F
n
j+1/2 ≤ 1, j ∈ Z, n = 0, 1, 2, . . . .

in addition to (3.15), so that after we have applied the correction terms, the nu-
merical flux lies somewhere between the first-order flux and the pre-limiter version
of the second-order flux, i.e.,

hnj+1/2 + F̂nj+1/2 ∈ co
(
hnj+1/2, h

n
j+1/2 + Fnj+1/2

)
, j ∈ Z, n = 0, 1, 2, . . . .

We can view (3.15), (3.16) as a system of inequalities, and ask if it is possible to
find a solution that keeps the ratio F̂nj+1/2/F

n
j+1/2 appearing in (3.16) close enough
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Figure 3. Comparison of the nonlocal flux-TVD limiter and the
simple TVD limiter (3.14). This is the same problem as shown
Figure 5 of [6]. Here ∆x = .02, ∆t = .00125, 800 time steps.

to unity that we still have formal second-order accuracy. This leads us to propose
the nonlocal limiter algorithm that we describe in the next section. Via this al-
gorithm we are in fact able to solve the system of inequalities (3.15), (3.16) in a
manner that is compatible with formal second-order accuracy. Although the algo-
rithm is nonlocal in nature, computationally it is (at least with our implementation)
only slightly slower than the simpler TVD limiter (3.14). A nonlocal limiter seems
to be unavoidable here—we believe that there is no FTVD limiter that depends on
only some fixed finite number of the quantities Fnj+1/2 and is consistent with formal
second-order accuracy.

For the case of piecewise constant γ, the results produced by the two algorithms
(TVD and FTVD) usually differ by only a small amount; see Figure 3. However,
we have observed one situation where there is a discernable difference—the case of
a shock impinging on a discontinuity in γ. As mentioned above, the simple TVD
limiter sometimes allows overshoots by a small amount in this situation. We have
not observed any such overshoot with the flux-TVD limiter. See Figure 3.

3.5. A refinement of the FTVD scheme. At a steady sonic rarefaction, both
the EO scheme and the Godunov scheme are slightly overcompressive, leading to
a so-called dogleg feature in the solution. This feature vanishes as the mesh size
tends to zero, but it is distracting. The second order scheme above does not correct
this behavior. One way to improve the situation is to replace the corrections (3.4)
by

dnj+1/2 =
1
2
a+
j+1/2

(
pj+1/2 − λa+

j+1/2

)
∆+U

n
j ,

enj+1/2 =
1
2
a−j+1/2

(
qj+1/2 + λa−j+1/2

)
∆+U

n
j ,

where

pj+1/2 =
a+
j+1/2

a+
j+1/2 − a−j+1/2

, qj+1/2 =
−a−j+1/2

a+
j+1/2 − a−j+1/2

.
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This only changes the scheme near sonic points. The result is that the dogleg
feature diminishes noticeably.

4. The nonlocal limiter algorithm

In this section we describe our method for solving the system of inequalities
(3.15), (3.16), keeping in mind that we are also trying to maximize the ratio
F̂nj+1/2/F

n
j+1/2 to maintain formal second-order accuracy wherever possible.

4.1. Description of the nonlocal limiter algorithm. We can simplify the no-
tation somewhat, and also discuss the limiter algorithm more generically, by setting

zi := Fni+1/2, θi :=
∣∣∆+h

n
i+1/2

∣∣, ẑi := F̂ni+1/2,

and then restating the system of inequalities (3.15), (3.16) in the form

|ẑi+1 − ẑi| ≤ θi,(4.1)

0 ≤ ẑi/zi ≤ 1.(4.2)

The unknowns are ẑi, and the data are zi, θi ≥ 0. The zi are assumed to vanish
for sufficiently large values of the index i. Specifically, there are indices i∗, i∗ such
that

i ≤ i∗ ⇒ zi = 0, i ≥ i∗ ⇒ zi = 0.
That this assumption is valid for our scheme is evident from the assumption that
u0 has compact support. Even when the parabolic terms are present, the initial
data has a finite range of influence (for both the actual and numerical solutions).
Thus we may always assume that Unj and Fnj+1/2 vanish for sufficiently large j.

The nonlocal limiter algorithm.
Preprocessor: For i = i∗ increasing to i = i∗ − 1:

If zi+1zi < 0 and |zi+1 − zi| > θi, then

zi ← sgn(zi) min
{
|zi| , θi/2

}
,

zi+1 ← sgn(zi+1) min
{
|zi+1| , θi/2

}
.

Forward sweep: For i = i∗ increasing to i = i∗ − 1:
If |zi+1| > |zi|, then

zi+1 ← zi + sgn(zi+1 − zi) min
{
|zi+1 − zi|, θi

}
.

Backward sweep: For i = i∗ decreasing to i = i∗ + 1:
If |zi−1| > |zi|, then

zi−1 ← zi + sgn(zi−1 − zi) min
{
|zi−1 − zi|, θi−1

}
.

Here the left arrow ← is the replacement operator. The algorithm can be written
compactly as

Ẑ = Φ(Z,Θ) = Φ−
(
Φ+(Z̃,Θ),Θ

)
, Z̃ = Pre(Z,Θ),

where Φ+ and Φ− represent the forward and backward sweeps, Pre represents the
preprocessor step, and

Ẑ = {ẑi}, Z̃ = {z̃i}, Z = {zi}, Θ = {θi}.
The operation of the limiter algorithm is best understood by first considering

the case where all of the zi are nonnegative. In this case, the preprocessor step
leaves the data zi unchanged. The forward sweep visits each point zi in the order
of increasing i. If zi−1 ≥ zi, nothing happens to zi on the forward sweep. If
zi−1 < zi, the constraint |zi− zi−1| ≤ θi−1 is checked. Nothing happens to zi if the
constraint is satisfied, but if it is violated, then zi is moved toward zi−1 (decreased)
by exactly enough to satisfy the constraint. The points zi∗ and zi∗ are clamped at
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zero, so they never change. On the backward sweep, each point zi is visited, this
time in the order of decreasing i. Nothing happens to zi if zi ≤ zi+1. Otherwise the
constraint |zi−zi+1| ≤ θi is checked, and if there is a violation, then zi is decreased
just enough to satisfy the constraint. The algorithm behaves in an analogous way
when all of the zi are nonpositive. At any contiguous pair of data (zi, zi+1) where
the zi and zi+1 have opposite signs, the effect of preprocessor step is to satisfy the
inequalities without changing the sign of either zi or zi+1. Afterwards, neither the
forward sweep nor the backward sweep will cause a constraint violation at that
particular pair (zi, zi+1). Thus the algorithm operates more or less independently
on intervals where the zi do not change sign.

Remark 4.1. The preprocessor part of the algorithm that we have proposed is not
the only reasonable way to deal with sign changes in the data {zi}. The preprocessor
above is simple and and is consistent with second-order accuracy wherever fx 6= 0.
In some situations, it is sufficient (and simpler) to set both zi and zi+1 to zero at a
sign change. At least in the case where γ is piecewise constant, this simpler strategy
does not add an additional class of points where formal second-order accuracy is
lost.

4.2. Properties of the nonlocal limiter.

Lemma 4.1. The output of the nonlocal limiter algorithm solves the system of
inequalities (4.1), (4.2).

Proof. We use the notation Ẑ, Z̄, Z̃ for the outputs of the three portions of the
algorithm. It is easy to check by induction on i (increasing i for the preprocessor
and the forward sweep, decreasing i for the backward sweep) that

0 ≤ z̃i/zi ≤ 1, 0 ≤ z̄i/z̃i ≤ 1, 0 ≤ ẑi/z̄i ≤ 1.

Combining these three inequalities, we have inequality (4.1), i.e.,

(4.3) 0 ≤ ẑi/zi ≤ 1.

Next, we claim that as a result of the preprocessor step Pre, wherever there is
a sign change in Z̃, the constraint (4.2) is satisfied, i.e., |z̃i+1 − z̃i| ≤ θi. Indeed
consider the operation of Pre on a pair (zi, zi+1) where zizi+1 < 0. It is clear that
after Pre operates on this pair, (4.2) is satisfied (for this pair). Since Pre moves
from left to right, it may or may not also operate on the pair (zi+1, zi+2). If it does
not, then the constraint (4.2) obviously remains satisfied for the pair (zi, zi+1). If
it does operate on the pair (zi+1, zi+2), then |zi+1| decreases (or at least does not
increase), thus moving zi+1 closer to zi (since they have opposite signs), making it
clear that the constraint remains satisfied for the pair (zi, zi+1). Thus our claim is
proved by induction.

We have seen that at any pair (z̃i, z̃i+1) where there is a sign change, (4.2) is
satisfied. We claim that (4.2) remains satisfied at this pair after both the forward
and backward sweeps. To see this, it suffices to observe that neither sweep increases
the absolute value of z̃i or z̃i+1, and thus |z̃i − z̃i+1| does not increase after either
sweep.

From our observations about the effect of the preprocessor, along with the defi-
nitions of the forward and backward sweeps, it is clear that

|z̄i+1| ≥ |z̄i| ⇒ |z̄i+1 − z̄i| ≤ θi,(4.4)

|ẑi−1| ≥ |ẑi| ⇒ |ẑi−1 − ẑi| ≤ θi−1.(4.5)

Now, suppose that |ẑi+1| ≥ |ẑi|. It follows from the definition of the backward
sweep that ẑi = z̄i. Then since |ẑi+1| ≤ |z̄i+1|,

|z̄i+1| ≥ |z̄i|.
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By (4.4), |z̄i+1 − z̄i| ≤ θi. and since ẑi+1 lies between ẑi and z̄i+1,

(4.6) |ẑi+1 − ẑi| ≤ θi.
The proof that ẑi solves the inequalities is completed by combining (4.3), (4.5), and
(4.6). �

Next, we demonstrate that the limiter Φ is consistent with formal second-order
accuracy. This consistency property does not rely on the fact that the function u is
a solution of a PDE, and so we suppress the dependence on t. For a fixed mesh size
∆ = ∆x, and a smooth function u(x), we define uj := u(xj), γj+1/2 := γ(xj+1/2),
and

h∆
j+1/2 := h(γj+1/2, uj+1, uj), h∆ :=

{
h∆
j+1/2

}
j∈Z,∣∣∆+h

∆
∣∣ :=

{∣∣∆+hj+1/2

∣∣}
j∈Z, F∆

j+1/2 := Fj+1/2, F∆ =
{
F∆
j+1/2

}
j∈Z.

Here the flux hj+1/2 and the flux corrections Fj+1/2 are defined by (3.3), (3.4),
(3.5), (3.12), and (3.13). Finally, for ξ ∈ R we define Br(ξ) := {x : |x− ξ| < r}.
Lemma 4.2. Let x 7→ u(x) and x 7→ γ(x) be C2 in a neighborhood of the point ζ
where

f
(
γ(ζ), u(ζ)

)
x
6= 0.

Assume that u(±x) = u±∞ for x sufficiently large, so that the limiter Φ is well-
defined on the flux corrections F∆

j+1/2 = Fj+1/2. Let

F̂∆ = Φ
(
F∆,

∣∣∆+h
∆
∣∣).

Then there is a mesh size ∆0(ζ) > 0 and a δ(ζ) > 0 such that for ∆ ≤ ∆0, we have

F̂∆
j+1/2 = F∆

j+1/2 for all xj ∈ Bδ(ζ).

Remark 4.2. The condition f(γ(ζ), u(ζ))x 6= 0 is analogous to the well-known fact
in the constant γ setting that a TVD scheme can be at most first-order accurate
at a nonsonic extremum.

Proof of Lemma 4.2. Choose δ > 0 and ε > 0 so that u,γ ∈ C2(B3δ(ζ)) and for
x ∈ B3δ(ζ)

(4.7)
∣∣f(γ(x), u(x)

)
x

∣∣ > 2ε.

Due to our regularity assumptions concerning the flux f(γ, u), and the easily
verified fact that both partial derivatives hu(γ, v, u) and hv(γ, v, u) are Lipschitz
continuous with respect to all of u, v,γ, it is a straightforward exercise to show that
for x ∈ B3δ(ζ)

(4.8) ∆+h
∆
j+1/2 = f(γ(xj), u(xj))x∆ +O

(
∆2
)
.

Next, we claim that it is possible to choose ∆0 > 0 such that the following
conditions hold for ∆ < ∆0 and xj ∈ B2δ(ζ):∣∣∆+F

∆
j+1/2

∣∣ ≤ ∣∣∆+h
∆
j+1/2

∣∣,(4.9) ∣∣F∆
j+1/2

∣∣ < εδ/2,(4.10) ∣∣h∆
j+1/2

∣∣ > ∆ε.(4.11)

To verify (4.9), note that because of (4.8) and (4.7), the right side of (4.9) is O (∆).
At the same time, the left side is O

(
∆2
)
. For (4.10), the left side is O (∆), while

the right side is fixed (with respect to ∆). Finally, by combining the assumption
|f(γ(x), u(x))x| > 2ε and (4.8), it is clear that we will have (4.11) for sufficiently
small ∆ > 0.
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Let x− := ζ − δ and x+ := ζ + δ. The immediate objective is to prove that for
∆ ≤ ∆0,

(4.12) F̄∆
j+1/2 = F∆

j+1/2, ∀xj ∈ (x−, ζ + 2δ),

where F̄∆
j+1/2 is the output of the forward sweep of the limiter Φ.

By way of contradiction, suppose that (4.12) fails, and choose xJ ∈ (x−, ζ + 2δ)
and ∆1 ≤ ∆0 such that

F̄∆1
J+1/2 6= F∆1

J+1/2.

Because of assumption (4.9), it must be that the preprocessor has not modified any
of the flux corrections F∆

j+1/2 with xj ∈ [x−− δ, xJ), and that the forward pass has
modified all of them. For the forward pass to have modified them all, it must be
that F∆

j−1/2F
∆
j+1/2 ≥ 0 for xj ∈ [x− − δ, xJ). Without loss of generality, assume

that F∆
j+1/2 ≥ 0 in the area of interest. Since the forward pass modified all of the

F∆
j+1/2 for xj ∈ [x− − δ, xJ), we have

(4.13)
∣∣∆+F̄

∆1
j+1/2

∣∣ =
∣∣∆+h

∆
j+1/2

∣∣ for x− − δ ≤ xj < xJ .

Since all of the flux corrections in the area of interest have been modified by the
forward pass of the limiter,

(4.14) F̄∆1
j−1/2 ≤ F̄∆1

j+1/2

for x− − δ ≤ xj < xJ . Let P := max{p ∈ Z+ : p ≤ δ/∆1}.
Summing (4.13) over p, we get telescoping due to (4.14), and find that

F̄∆1
J+1/2 − F̄

∆1
J+1/2−P =

P−1∑
p=0

∣∣∆+hJ+1/2−p−1

∣∣ ≥ Pε∆1 ≥ δε.

On the other hand, it follows from (4.10) and (4.14) that

F̄∆1
J+1/2 − F̄

∆1
J+1/2−P ≤ F̄

∆1
J+1/2 =

∣∣F̄∆1
J+1/2

∣∣ < δε/2,

which gives the desired contradiction.
A symmetric argument applied to the backward sweep of the nonlocal limiter

algorithm, operating on {F̄∆
j+1/2}, proves that for some 0 < ∆̃0 ≤ ∆0,

F̂∆
j,k = F∆

j,k, ∀xj ∈ (x−, x+),

for ∆ ≤ ∆̃0. Replacing ∆0 by ∆̃0 completes the proof. �

5. Convergence of the second-order scheme

In this section we analyze the flux-TVD scheme

(5.1) Un+1
j = Unj − λ∆−

(
hnj+1/2 + F̂nj+1/2

)
.

We assume the nonlocal limiter has been applied to the flux corrections Fnj+1/2,
i.e., we are focusing on the FTVD algorithm. We analyzed the first-order version
of this scheme,

(5.2) Un+1
j = Unj − λ∆−hnj+1/2,

that results by deleting the second-order corrections in [6], where γ was piecewise
constant, and [5], where we dealt with the more general case of piecewise smooth γ.
Wherever possible in the analysis that follows, we will rely on results from our
analysis in [5] and [6]. In this section we will assume that the following CFL
condition is satisfied:

λ
(

max{−qL, qR}+ ‖γ1b
′‖
)
≤ 1

4
,(5.3)
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where we define

‖γ1b
′‖ := max

{
|γ1(x)b′(u)| : x ∈ [xL, xR], u ∈ [0, 1]

}
.

In [6], we imposed essentially the same CFL condition, but with 1/2 on the right-
hand side. The halving of the allowable time step implied by this new CFL condition
(5.3) is required to prove Lemma 5.1 guaranteeing that the computed solutions
remain in the interval [0, 1]. This halving of the time step to achieve a bound on
the solution is also common when designing second-order TVD schemes for the case
of constant γ. In practice one finds that it is often not necessary to impose the
reduced time step.

Our theorem concerning convergence is the following.

Theorem 5.1 (Convergence of the FTVD scheme). Let u∆ be defined by (3.1),
(3.2), (3.3), (3.4), (3.5), (3.12), (3.13). Assume that the flux corrections F̂nj+1/2

are produced by applying the limiter algorithm of Section 4 to the flux corrections
Fnj+1/2. Let ∆ → 0 with λ constant and the CFL condition (5.3) satisfied. Then
u∆ converges along a subsequence in L1

loc(ΠT ) and boundedly a.e. in ΠT to a BVt
weak solution of the CT model (1.2).

The proof of Theorem 5.1 amounts to checking that Lemmas 5.1 through 5.7,
along with the relevant portion of Theorem 5.1, of [5] remain valid in the present
context. We start with two lemmas that replace Lemma 5.1 of [5].

Lemma 5.1. Under the CFL condition (5.3) we get a uniform bound on Unj ,
specifically Unj ∈ [0, 1].

Proof. Let V nj denote the result of applying the first-order version of the scheme
to Un, with the time step doubled, i.e.,

(5.4) V n+1
j = Unj − 2λ∆−hnj+1/2.

The proof Lemma 5.1 of [5], or the proof of Lemma 3.1 of [6], gives us 0 ≤ V nj ≤ 1,
assuming that we impose the more restrictive CFL condition (5.3) to account for
doubling the time step. Now let Un+1

j be the result of applying our second-order
scheme

(5.5) Un+1
j = Unj − λ∆−

(
hnj+1/2 + F̂nj+1/2

)
.

Comparing (5.4) and (5.5), we find after some algebra that the following relationship
holds:

Un+1
j − Unj

V n+1
j − Unj

=
1
2

[
1 +

∆+F̂
n
j−1/2

∆+hnj−1/2

]
.

Because of the conditions (3.15), (3.16) enforced on F̂nj−1/2 by the flux-TVD limiter
we find that

0 ≤
Un+1
j − Unj

V n+1
j − Unj

≤ 1,

and from this relationship (along with V nj ∈ [0, 1]) it follows that 0 ≤ Unj ≤ 1. �

In Section 3, we stated that the flux limiter (3.14) was designed to enforce a TVD
condition on the first-order numerical flux hnj+1/2. The following lemma shows that
our limiter performs as advertised.

Lemma 5.2. The flux-TVD property is satisfied, i.e.,∑
j∈Z

∣∣hn+1
j+1/2 − hn+1

j−1/2

∣∣ ≤∑
j∈Z

∣∣hnj+1/2 − hnj−1/2

∣∣, n = 0, 1, 2, . . . .
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Proof. We start from the relationship

hn+1
j+1/2 = hnj+1/2 − ηn+1/2

j+1

(
Un+1
j+1 − Unj+1

)
+ ζ

n+1/2
j

(
Un+1
j − Unj

)
,

where

η
n+1/2
j+1 := −

∫ 1

0

hv
(
γj+1/2, U

n
j+1 + θ

(
Un+1
j+1 − Unj+1

))
dθ ≥ 0,

ζ
n+1/2
j :=

∫ 1

0

hu
(
γj+1/2, U

n
j + θ

(
Un+1
j − Unj

))
dθ ≥ 0.

(5.6)

Now using the definition (3.2) of the scheme to substitute for Un+1
j+1 − Unj+1 and

Un+1
j − Unj , we get (after some algebra)

hn+1
j+1/2 = hnj+1/2 + Pnj+1/2∆+h

n
j+1/2 −Qnj−1/2∆−hnj+1/2,

where

Pnj+1/2 = λη
n+1/2
j+1

[
1 +

∆+F̂
n
j+1/2

∆+hnj+1/2

]
, Qnj−1/2 = λζ

n+1/2
j

[
1 +

∆+F̂
n
j−1/2

∆+hnj−1/2

]
.

By Harten’s lemma [16], we will have the flux-TVD property if

(5.7) Pnj+1/2 ≥ 0, Qnj−1/2 ≥ 0, Pnj−1/2 +Qnj−1/2 ≤ 1.

In more detail, the second condition in (5.7) is

(5.8) λη
n+1/2
j

[
1 +

∆+F̂
n
j−1/2

∆+hnj−1/2

]
+ λζ

n+1/2
j

[
1 +

∆+F̂
n
j−1/2

∆+hnj−1/2

]
≤ 1.

From (5.6) and the CFL condition (5.3), we obtain

0 ≤ ληn+1/2
j + λζ

n+1/2
j

≤
∫ 1

0

∣∣fu(γj−1/2, U
n
j + θ(Un+1

j − Unj )
)∣∣ dθ

+
∫ 1

0

∣∣fu(γj+1/2, U
n
j + θ(Un+1

j − Unj )
)∣∣ dθ ≤ 1

2
.

(5.9)

It is immediate from (3.15) that

(5.10) 0 ≤ 1 +
∆+F̂

n
j+1/2

∆+hnj+1/2

≤ 2.

Combining (5.8), (5.9) and (5.10), we see that both conditions in (5.7) are satisfied.
�

For our first-order scheme (5.2), we derived a discrete time continuity estimate
(Lemma 5.1 of [5]) using the fact that the scheme was both conservative and mono-
tone. In the process of making the scheme second-order accurate, we have sacrificed
the monotonicity property, and so the proof of time continuity requires a different
approach. The flux-TVD property is the ingredient that allows us to maintain time
continuity in the absence of monotonicity.

Lemma 5.3. There exists a constant C, independent of ∆ and n, such that

∆x
∑
j∈Z

∣∣Un+1
j − Unj

∣∣ ≤ ∆x
∑
j∈Z

∣∣U1
j − U0

j

∣∣ ≤ C∆t.
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Proof. Starting from the marching formula (5.1), we take absolute values, apply
the triangle inequality, and then sum over j. This yields

(5.11)
∑
j∈Z

∣∣Un+1
j − Unj

∣∣ ≤ λ∑
j∈Z

∣∣∆−hnj+1/2

∣∣+ λ
∑
j∈Z

∣∣F̂nj+1/2

∣∣.
By the flux-TVD property, the first of these sums satisfies

λ
∑
j∈Z

∣∣∆−hnj+1/2

∣∣ ≤ λ∑
j∈Z

∣∣∆−h0
j+1/2

∣∣.
Referring to (3.15), we see that also

λ
∑
j∈Z

∣∣F̂nj+1/2

∣∣ ≤ λ∑
j∈Z

∣∣∆−h0
j+1/2

∣∣.
Proceeding as in Lemma 5.1 of [5] we can show that∑

j∈Z

∣∣∆−h0
j+1/2

∣∣ = O(1),

and thus ∑
j∈Z

∣∣Un+1
j − Unj

∣∣ = O(1).

Multiplying both sides of this estimate by ∆x completes the proof. �

To continue with our analysis, we introduce the the so-called singular mappingΨ,
defined by

Ψ(γ, u) :=
∫ u

0

|fu(γ, w)| dw,

and let

z∆(x, t) := Ψ
(
γ(x), u∆(x, t)

)
.

As in [5], to prove that the difference scheme converges, we establish compactness
for the transformed quantity z∆, the critical ingredient being a bound on its total
variation. We then derive compactness for u∆ by appealing to the monotonicity
and continuity of the mapping u 7→ Ψ(γ, u).

Thus our goal now is to show that z∆ has bounded variation. For this it suffices
to invoke Lemmas 2 through 7 of [5], making modifications where necessary to
account for the addition of the second-order correction terms. In what follows, we
use the notation ∆u

+ and ∆u
− for spatial difference operators with respect to u only,

keeping γ fixed, e.g.,

∆u
+f
(
γj , U

n
j

)
= f

(
γj , U

n
j+1

)
− f

(
γj , U

n
j

)
.

Also, we use the notation O (∆γj) to mean terms which sum (over j) to O (|γ|BV ).
Finally, we will use the Kružkov entropy-entropy flux pair indexed by c:

q(u) := |u− c|, η(γ, u) := sgn(u− c)
(
f(γ, u)− f(γ, c)

)
,

where sgn(w) = w/|w| if w 6= 0 and sgn(0) = 0.
The following is basically Lemma 5.2 of [5], modified to accommodate the second-

order correction terms.

Lemma 5.4. For each c ∈ R, the following inequality holds:

q
(
Un+1
j

)
≤ q
(
Unj
)
− λ∆u

−H
(
γj+1/2, U

n
j+1, U

n
j

)
+ λ
∣∣∆+h

n
j−1/2

∣∣+ λO (∆γj) , j ∈ Z, n = 0, 1, 2 . . . ,
(5.12)
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where the EO numerical entropy flux is given by

H(γ, v, u) =
1
2
(
η(γ, u) + η(γ, v)

)
− 1

2

∫ v

u

sgn(w − c)
∣∣fu(γ,w)

∣∣ dw.
Proof. Let a ∨ b := max{a, b} and a ∧ b := min{a, b}. With

ρn+1
j = Unj − λ∆u

−h
(
γj+1/2, U

n
j+1, U

n
j

)
,

the following discrete entropy inequality holds:

q
(
ρn+1
j

)
≤ q

(
Unj
)
− λ∆u

−H
(
γj+1/2, U

n
j+1, U

n
j

)
,

since H can be written in the form

H(γ, v, u) = h(γ, v ∨ c, u ∨ c)− h(γ, v ∧ c, u ∧ c).
Then we obtain the inequality

q(Un+1
j ) ≤ q(Unj )− λ∆u

−H
(
γj+1/2, U

n
j+1, U

n
j

)
− q

(
ρn+1
j ) + q(Un+1

j

)
.

It remains to show that q(ρn+1
j )− q(Un+1

j ) = λO (∆γj) + λ
∣∣∆+h

n
j−1/2

∣∣:∣∣q(ρn+1
j )− q(Un+1

j )
∣∣ ≤ ∣∣ρn+1

j − Un+1
j

∣∣
= λ

∣∣∆−h(γj+1/2, U
n
j+1, U

n
j )

−∆u
−h(γj+1/2, U

n
j+1, U

n
j ) + ∆−F̂nj+1/2

∣∣
≤ λ(2‖fγ‖+ Luγ)

∣∣γj+1/2 − γj−1/2

∣∣+ λ
∣∣∆−hnj+1/2

∣∣
= λO (∆γj) + λ

∣∣∆−hnj+1/2

∣∣,
where Luγ denotes the Lipschitz constant of fu. Here we have used the proof of
Lemma 5.2, which ensures that inequality (3.15) holds. �

It is now possible to repeat the proofs of Lemmas 3 through 7 of [5], the only
change being the contribution of the term λ|∆−hnj+1/2| appearing in (5.12). In
order for the proofs of those lemmas to remain valid, we must have∑

j∈Z

∣∣∆−hnj+1/2

∣∣ = O (1) ,

independently of n and ∆. But this follows directly than our flux-TVD property,
which we established in Lemma 5.2, along with the relationship∑

j∈Z

∣∣∆−h0
j+1/2

∣∣ = O (1) ,

which we established in the proof of Lemma 5.3.

6. Numerical results

6.1. Examples 1 and 2: ideal suspension in a cylindrical unit. Consider
a suspension characterized by the function b(u) given by (2.3) with v∞ = 1.0 ×
10−4m/s, C = 5 and umax = 1 (as in [7]). In this example, we assume that the
effect of sediment compressibility is absent (A ≡ 0). In Examples 1 and 2, we
consider a cylindrical CT with xL = −1 m and xR = 1 m with (nominal) interior
cross-sectional area S = 1 m. This vessel is assumed to initially contain no solids
(u0 ≡ 0), is operated with a feed suspension of concentration uF = 0.3 in Example 1
and uF = 0.5 in Example 2, and the relevant flow velocities are qL = QL/S =
−1.0×10−5 m/s and qR = QR/S = 2.5×10−6 m/s. Note that in Examples 1 and 2
it is not necessary to distinguish between the ξ and x variables.

Figures 4 and 5 show the numerical solution of the continuous fill-up of the CT
calculated by the first-order scheme described in [7] (BKT), the scheme described
herein that uses the simple TVD limiter (TVD1) described in Section 3.3, and the
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Figure 4. Example 1: numerical solution at (a)–(d) t = 150000 s
with (a) J = 20, (b) J = 40, (c) J = 200 (enlarged view around
x = 0.6), (d) J = 400 (enlarged view around x = 0.6), and at (e,
f) t = 250000 s with (e) J = 20 and (f) J = 40. The solid line is
the reference solution.

scheme that involves the non-local limiter (TVD2), which is outlined in Sections 3.4
and 3.5. All calculations were performed with λ = 2000 s/m, and errors were
compared against a reference solution calculated by the first-order scheme presented
in [2] with J = 10000, where J = 1/∆x (in meters). Table 1 shows approximate
L1 errors (errors measured over the finite interval [−1.1, 1.1]).

Example 2 has been designed to illustrate the effect of the overshoot. Figure 6
shows the numerical solution at t = 272760 s for three different spatial discretiza-
tion. The time has been chosen such that the “overshoot” mentioned in Section 3.3
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Figure 5. Example 1: numerical solution at t = 500000 s with (a)
J = 20, (b) J = 40, (c) J = 200 (enlarged view around x = . . . ),
(d) J = 400 (enlarged view around x = −0.61). The solid line is
the reference solution.

and shown in Figure 2 becomes visible. As the enlarged views, Figures 6 (b) to (d)
illustrate, this phenomenon diminishes as ∆x→ 0.

6.2. Example 3: ideal suspension in a unit with varying cross-sectional
area. In Example 3 we consider a vessel whose non-constant cross-sectional area
is given by

S(ξ) =



0.04 m2 for ξ < ξR := −1 m,
1 m2 for ξL ≤ ξ < −0.5 m,
0.75 m2 for −0.5 m ≤ ξ < 0 m,
1 m2 for 0 m ≤ ξ < 0.5 m,
(α+ βξ)2 for 0.5 m ≤ ξ ≤ ξR := 1 m,
S1 for ξ > ξR,

where we define the parameters

α :=
5−
√

2
2

m, β :=
√

3− 3, S1 =
(
√

3− 1)2

4
m2.

In Example 3, we consider the same model functions as in Example 1; in partic-
ular, we assume that there is no sediment compressibility. We assume that u0 ≡ 0,
and that the vessel is filled up with feed suspension of concentration uF = 0.5. The
volume bulk flows are QL = −1.0× 10−5 m3/s and QR = 2.5× 10−6 m3/s. Figure 7
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t = 150000 s t = 250000 s t = 500000 s
J = 1

∆x approx. conv. approx. conv. approx. conv.
L1 error rate L1 error rate L1 error rate

First-order scheme BKT
10 5.43e-2 5.77e-2 5.20e-2
20 2.96e-2 0.875 3.25e-2 0.830 2.78e-2 0.903
40 1.67e-2 0.823 1.85e-2 0.810 1.55e-2 0.845
100 8.11e-3 0.790 8.84e-3 0.808 6.76e-3 0.905
200 4.42e-3 0.877 4.83e-3 0.870 3.61e-3 0.906
400 2.31e-3 0.932 2.51e-3 0.946 1.82e-3 0.984

Simple TVD scheme TVD1
10 3.93e-2 3.89e-2 3.71e-2
20 1.85e-2 1.090 1.86e-2 1.065 1.87e-2 0.989
40 8.85e-3 1.060 9.12e-3 1.028 1.01e-2 0.884
100 3.97e-3 0.875 3.85e-3 0.943 4.46e-3 0.894
200 1.94e-3 1.033 2.23e-3 0.787 2.42e-3 0.883
400 1.03e-3 0.917 1.14e-3 0.964 1.24e-3 0.969

Nonlocal TVD scheme TVD2
10 4.02e-2 3.92e-2 3.88e-2
20 1.96e-2 1.039 2.04e-2 0.945 1.93e-2 1.005
40 9.98e-3 0.970 1.09e-2 0.902 1.00e-2 0.945
100 4.37e-3 0.902 4.87e-3 0.878 4.58e-3 0.857
200 2.56e-3 0.774 2.98e-3 0.712 2.42e-3 0.918
400 1.58e-3 0.691 2.14e-3 0.474 1.21e-3 1.002

Table 1. Example 1: approximate L1 errors.

shows the numerical solution for this case at three selected times obtained by the
BKT, TVD1 and TVD2 schemes. Note that the equi-distant spatial discretization
∆x = 1 m3/J corresponds to the x variable obtained from (2.9), while the numerical
results shown in Figures 7 and 8 are referred to the original (physical) ξ variable,
and therefore are non-equidistant.

6.3. Observations and conclusions. A general observation visible in both all
test cases is that the newly introduced schemes, TVD1 and TVD2, are significantly
more accurate than their first-order counterpart, the first-order BKT scheme in-
troduced in [6]. Clearly, due to the appearance of discontinuities in the solution,
the measured order of convergence for these schemes is lower than the theoretically
possible value of two. It seems that both TVD schemes, TVD1 and TVD2, have
comparable accuracy.

7. A note on second-order degenerate parabolic equations

7.1. Operator splitting and Crank-Nicolson scheme. For the more complete
model (1.4) that includes a degenerate diffusion term we propose a Strang-type
operator splitting scheme. To describe it, let Un denote the approximate solution
at time level n, and we describe the marching algorithm (3.2) in operator notation
via Un+1 = H(∆t)Un. Then the proposed operator splitting scheme for (1.4) is

Un+1 =
[
H(∆t/2) ◦ P(∆t) ◦ H(∆t/2)

]
Un, n = 0, 1, 2, . . . .

Here P(∆t) represents a second-order scheme for the purely diffusive problem
ut = (γ1(x)A(u)x)x written as Un+1 = P(∆t)Un.
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Figure 6. Example 2: numerical solution at t = 272760 s (a)
with J = 100 and (b, c, d) enlarged views around x = −1 for
(b) J = 100, (c) J = 200 and (d) J = 400. The solid line is the
reference solution.

For the parabolic portion of the scheme, we can use the Crank-Nicolson scheme,
which has second-order accuracy in both space and time. Specifically, the operator
P(∆t) is defined by

Un+1
j = Unj +

µ

2
[
∆+

(
sj−1/2∆−Anj

)
+ ∆+

(
sj−1/2∆−An+1

j

)]
, µ =

∆t
∆x2

.(7.1)

Here sj−1/2 denotes our discretization of the parameter γ1(x).
The Crank-Nicolson scheme is stable with linear stability analysis. For our non-

linear problem, we generally need a very strong type of stability, both from a
practical and theoretical point of view. It seems that it is impossible to get this
type of strong stability for implicit schemes of accuracy greater than one [15]. On
the other hand, we know from [7] that the solution u is continuous in the regions
where the parabolic operator is in effect, and thus we may not require such strong
stability in order to keep the numerical approximation well-behaved.

We briefly describe the implementation of the Crank-Nicolson scheme. To sim-
plify the notation, we write Uj = Unj , Vj = Un+1

j . We start by writing the single
step of (7.1) in the form

Vj = Uj +
1
2
µ∆+

(
sj−1/2∆−A(Uj)

)
+

1
2
µ∆+

(
sj−1/2∆−A(Vj)

)
.

We can rewrite this nonlinear system of equations as

(7.2) Ej(V )Vj−1 + Fj(V )Vj + Gj(V )Vj+1 = Rj , V := {Vj}j∈Z,



24 BÜRGER, KARLSEN, TORRES, AND TOWERS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

 

 
 BKT (EO)
 TVD1− simple TVD limiter
 TVD2−flux−TVD limiter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

 

 
 BKT (EO)
 TVD1− simple TVD limiter
 TVD2−flux−TVD limiter

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

 

 

 

 
 BKT (EO)
 TVD1− simple TVD limiter
 TVD2−flux−TVD limiter

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

 

 

 

 
 BKT (EO)
 TVD1− simple TVD limiter
 TVD2−flux−TVD limiter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

 

 
 BKT (EO)
 TVD1− simple TVD limiter
 TVD2−flux−TVD limiter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

 

 
 BKT (EO)
 TVD1− simple TVD limiter
 TVD2−flux−TVD limiter

ξ

u

ξ

u

ξ

u

ξ

u

ξ

u

ξ

u

(e) (f)

(c) (d)

(a) (b)

Figure 7. Example 3: numerical solution at (a)–(d) t = 25000 s
with (a) J = 50, (b) J = 100, (c, d) enlarged views around ξ = 0.6
for (c) J = 50 and (d) J = 100; (e), (f) numerical solution at
t = 200000 s with (e) J = 50, (f) J = 100.

where

Ej(V ) :=

−
1
2
µsj−1/2

∆−A(Vj)
∆−Vj

if ∆−Vj 6= 0,

0 otherwise,

Gj(V ) :=

−
1
2
µsj+1/2

∆+A(Vj)
∆+Vj

if ∆+Vj 6= 0,

0 otherwise,
Fj(V ) = 1− Ej(V )− Gj(V ),
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Figure 8. Example 3: numerical solution at t = 225000 s with (a)
J = 50, (b) J = 100, (c, d) the solutions of (a) and (b), respectively,
referred to x instead of ξ, (e, f) enlarged views around x = −1 for
(e) J = 50 and (f) J = 100.

and the right-hand side Rj is defined by

Rj = Uj +
1
2
µ∆+

(
sj−1/2∆−A(Uj)

)
.

To solve the nonlinear system (7.2), we set V 0 = U , and proceed via iteration, at
each step solving the tridiagonal linear system

Ej(V k)V k+1
j−1 + Fj(V k)V k+1

j + Gj(V k)V k+1
j+1 = Rj .

Our experience is that these iterations converge rather quickly.
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Figure 9. Example 4: numerical solution at t = 25000 s with (a)
J = 50, (b) J = 100, (c, d) enlarged views around ξ = 0.7 for (c)
J = 50 and (d) J = 100.

In the purely linear setting, the Crank-Nicolson scheme is unconditionally stable,
meaning that no condition on the time step is required. Our experience is that this
is not true for the nonlinear degenerate problems that we are considering, mostly
due to the presence of the discontinuous parameter γ1. Nevertheless, we find that by
using Crank-Nicolson the allowable time step size for our overall scheme is dictated
by the hyperbolic portion of the problem rather than the parabolic portion.

Since each of the parabolic and hyperbolic operators has formal second-order
accuracy in both space and time, we will maintain overall second order accuracy
with the Strang splitting [20]. This is a well-known result, see, e.g., [14, 19].

7.2. Examples 4 and 5: flocculated suspension. Next, we include the strongly
degenerate diffusion term by considering the effective solid stress function σe(u)
defined by the commonly used formula

σe(u) =

{
0 for u ≤ uc,
σ0

(
(u/uc)k − 1

)
for u > uc,

(7.3)

where we use the parameters σ0 = 1 Pa, uc = 0.1 and k = 6 along with ∆% =
1500 kg/m3 and g = 9.81 m/s2 [7]. The vessel and control variables are the same
as in Example 1, and we again set u0 ≡ 0. Note that the derivative σ′e(u) of σe(u)
defined in (7.3) is in general discontinuous at u = uc.

Figures 9 and 10 show the numerical solution of the continuous fill-up of the
CT (operating at this state) calculated by the semi-implicit scheme described in
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Figure 10. Example 4: numerical solution at (a, b) t = 50000 s
and (c, d) t = 100000 s with (a, c) J = 50 and (b, d) J = 100.

[7] (BKT), the operator splitting scheme described herein (BKTS), the the opera-
tor splitting scheme including the simple TVD limiter (TVD1), and the operator
splitting scheme involving the non-local limiter (TVD2). All calculations were per-
formed with λ = 2000 s/m.

Finally in Example 5, we include the same effective solid stress function as in
Example 1, and the control variables and the function b(u) are the same as in
Example 3. Figure 11 shows the numerical solution for this case at three selected
times obtained by the BKT, BKTS, TVD1 and TVD2 schemes.
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