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Second-Order Sliding Mode Control of a Doubly Fed
Induction Generator Driven Wind Turbine

Brice Beltran, Mohamed El Hachemi Benbouzid, Senior Member, IEEE, and Tarek Ahmed-Ali

Abstract—This paper deals with power extraction maximization
of a doubly fed induction generator (DFIG)-based wind turbine.
These variable speed systems have several advantages over the tra-
ditional wind turbine operating methods, such as the reduction
of the mechanical stress and an increase in the energy capture.
To fully exploit this latest advantage, many control schemes have
been developed for maximum power point tracking (MPPT) con-
trol schemes. In this context, this paper proposes a second-order
sliding mode to control the wind turbine DFIG according to refer-
ences given by an MPPT. Traditionally, the desired DFIG torque
is tracked using control currents. However, the estimations used to
define current references drive some inaccuracies mainly leading to
nonoptimal power extraction. Therefore, using robust control, such
as the second-order sliding mode, will allow one to directly track
the DFIG torque leading to maximum power extraction. Moreover,
the proposed control strategy presents attractive features such as
chattering-free behavior (no extra mechanical stress), finite reach-
ing time, and robustness with respect to external disturbances
(grid) and unmodeled dynamics (generator and turbine). Simu-
lations using the wind turbine simulator FAST and experiments on
a 7.5-kW real-time simulator are carried out for the validation of
the proposed high-order sliding mode control approach.

Index Terms—Control, doubly fed induction generator (DFIG),
second-order sliding mode (SOSM), wind turbine (WT).

NOMENCLATURE

WT Wind turbine.

DFIG Doubly fed induction generator.

SOSM Second-order sliding mode.

MPPT Maximum power point tracking.

v Wind speed (m/s).

ρ Air density (kg/m3).

R Rotor radius (m).

Pa Aerodynamic power (W).

Ta Aerodynamic torque (N·m).

λ Tip speed ratio.

Cp (λ) Power coefficient.

ωmr WT rotor speed (rad/s).

ωmg Generator speed (rad/s).
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Tg Generator electromagnetic torque (N·m).

Jt Turbine total inertia (kg·m2).

Kt Turbine total external damping (N·m/rad·s).

d, q Synchronous reference frame index.

s, (r) Stator (rotor) index.

V (I) Voltage (current).

P (Q) Active (reactive) power.

φ Flux.

Tem Electromagnetic torque.

R Resistance.

L (M) Inductance (mutual inductance).

σ Leakage coefficient, σ = 1 − M2 /LsLr .

θr Rotor position.

ωr (ωs) Angular speed (Synchronous speed).

s Slip.

p Pole pair number.

I. INTRODUCTION

ACTUALLY, variable speed WTs are continuously increas-

ing their market share, since it is possible to track the

changes in wind speed by adapting shaft speed and, thus, main-

taining optimal power generation. The more the variable speed

WTs are investigated, the more it becomes obvious that their

behavior is significantly affected by the control strategy used.

Typically, they use aerodynamic controls in combination with

power electronics to regulate torque, speed, and power. The

aerodynamic control systems, usually variable-pitch blades or

trailing-edge devices, are expensive and complex, especially

when the turbines are larger [1]. This situation provides a moti-

vation to consider alternative control approaches [2].

The main control objective of variable speed WTs is power

extraction maximization. To reach this goal, the turbine tip speed

ratio should be maintained at its optimum value despite wind

variations. Nevertheless, control is not always aimed at cap-

turing as much energy as possible. In fact, in previously rated

wind speed, the captured power needs to be limited. Although

there are both mechanical and electrical constraints, the more

severe ones are commonly on the generator and the converter.

Hence, regulation of the power produced by the generator is

usually intended and this is the main objective of this paper

for a DFIG-based WT using an SOSM [3]. Experiments on a

7.5-kW real-time simulator are carried out for the validation of

the proposed high-order sliding mode control approach.

II. WT MODELING [4]

The global scheme for a grid-connected WT is given in Fig. 1.

0885-8969/$31.00 © 2012 IEEE
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Fig. 1. WT global scheme.

Fig. 2. WT power coefficient.

A. Turbine Model

The turbine modeling is inspired from [4]. In this case, the

aerodynamic power Pa captured by the WT is given by

Pa =
1

2
πρR2Cp (λ) v3 (1)

where

λ =
Rωmr

v
. (2)

The Cp–λ characteristics, for different values of the pitch angle

β, are illustrated in Fig. 2. This figure indicates that there is one

specific λ at which the turbine is most efficient. Normally, a

variable speed WT follows the Cpmax to capture the maximum

power up to the rated speed by varying the rotor speed to keep

the system at λopt . Then, it operates at the rated power with

power regulation during high wind periods by active control of

the blade pitch angle or passive regulation based on aerodynamic

stall.

The rotor power (aerodynamic power) is also defined by

Pa = ωmrTa . (3)

According to [4], the following simplified model is adopted

for the turbine (drive train) for control purposes:

Jt ω̇mr = Ta − Ktωmr − Tg . (4)

B. Generator Model

The WT adopted generator is the DFIG (see Fig. 3). DFIG-

based WT will offer several advantages including variable speed

Fig. 3. Schematic diagram of a DFIG-based WT.

operation (±33% around the synchronous speed), and four-

quadrant active and reactive power capabilities. Such system

also results in lower converter costs (typically 25% of total sys-

tem power) and lower power losses compared to a system based

on a fully fed synchronous generator with full-rated converter.

Moreover, the generator is robust and requires little mainte-

nance [5].

The control system is usually defined in the synchronous dq

frame fixed to either the stator voltage or the stator flux. For the

proposed control strategy, the generator dynamic model written

in a synchronously rotating frame dq is given by
⎧

⎪

⎪
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⎪

⎩

Vsd = RsIsd +
dφsd

dt
− ωsφsq

Vsq = RsIsq +
dφsq

dt
+ ωsφsd

Vrd = RrIrd +
dφrd

dt
− ωrφrq

Vrq = RrIrq +
dφr q

dt + ωrφrd

φsd = LsIsd + MIrd

φsq = LsIsq + MIrq

φrd = LrIrd + MIsd

φrq = LrIrq + MIsq

Tem = pM (IrdIsq − IrqIsd) .

(5)

For simplification purposes, the q-axis is aligned with the

stator voltage and the stator resistance is neglected [6]. These

will lead to
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dIrd

dt
=

1

σLr

(

Vrd − RrIrd + sωsσLrIrq −
M

Ls

dφsd

dt

)

dIrq

dt
=

1

σLr

(

Vrq − RrIrq − sωsσLrIrd − sωs
M

Ls
φsd

)

Tem = −p M
L s

φsdIrq .
(6)

III. CONTROL OF THE DFIG-BASED WT

A. Problem Formulation

WTs are designed to produce electrical energy as cheaply

as possible. Therefore, they are generally designed so that they

yield maximum output at wind speeds around 15 m/s. In case
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Fig. 4. WT control regions.

of stronger winds, it is necessary to waste part of the excess

energy of the wind in order to avoid damaging the WT. All WTs

are, therefore, designed with some sort of power control. This

standard control law keeps the turbine operating at the peak of

its Cp curve

Tref = kω2 , with k =
1

2
πρR5 Cp max

λ
3
opt

. (7)

There is a significant problem with this standard control. In-

deed, wind speed fluctuations force the turbine to operate off

the peak of its Cp curve much of the time. Tight tracking Cpmax

would lead to high mechanical stress and transfer aerodynamic

fluctuations in to the power system. This, however, will result

in less energy capture.

To effectively extract wind power while at the same time

maintaining safe operation, the WT should be driven according

to the following three fundamental operating regions associated

with wind speed, maximum allowable rotor speed, and rated

power. The three distinct regions are shown in Fig. 4, where

vr max is the wind speed at which the maximum allowable ro-

tor speed is reached, while vcutoff is the furling wind speed

at which the turbine needs to be shut down for protection. In

practice, there are three possible regions of turbine operation,

namely the high-, constant-, and low-speed regions. High-speed

operation (III) is frequently bounded by the power limit of the

machine while speed constraints apply in the constant-speed

region. Conversely, regulation in the low-speed region (I) is

usually not restricted by speed constraints. However, the sys-

tem has nonlinear nonminimum phase dynamics in this region.

This adverse behavior is an obstacle to perform the regulation

task [7].

A common practice in addressing DFIG control problem is

to use a linearization approach [8]–[10]. However, due to the

stochastic operating conditions and the inevitable uncertainties

inherent in DFIG-based WTs, much of these control methods

come at the price of poor system performance and low reliabil-

ity. Hence, the need for nonlinear and robust control to take into

account these control problems. Although many modern tech-

niques can be used for this purpose [11], sliding mode control

has proved to be especially appropriate for nonlinear systems,

presenting robust features with respect to system parameter un-

certainties and external disturbances. For WT control, sliding

mode should provide a suitable compromise between conver-

sion efficiency and torque oscillation smoothing [4], [12], [13].

Sliding mode control copes with system uncertainty keeping

a properly chosen constraint by means of high-frequency control

switching. Featuring robustness and high accuracy, the standard

(first-order) sliding mode usage is, however, restricted due to

the chattering effect caused by the control switching, and the

equality of the constraint relative degree to 1.

High-order sliding mode approach suggests treating the chat-

tering effect using a time derivative of control as a new control,

thus integrating the switching [14]–[16].

B. SOSMs Control Design

As the chattering phenomenon is the major drawback of prac-

tical implementation of sliding mode control, the most efficient

ways to cope with this problem is higher order sliding mode.

This technique generalizes the basic sliding mode idea by act-

ing on the higher order time derivatives of the sliding manifold,

instead of influencing the first time derivative as it is the case

in the standard (first order) sliding mode. This operational fea-

ture allows mitigating the chattering effect, keeping the main

properties of the original approach [17].

The DFIG stator-side reactive power is given by

Qs =
3

2
(VsqIsd − VsdIsq ) . (8)

For a decoupled control, a dq reference frame attached to the

stator flux was used. Therefore, setting the stator flux vector

aligned with the d-axis, the reactive power can be expressed as

Qs =
3

2

Vs

Ls
(φs − MIrd) . (9)

Setting the reactive power to zero will, therefore, lead to the

rotor reference current

Ird ref =
Vs

ωsM
. (10)

The DFIG-based WT control objective is to optimize the wind

energy capture by tracking the optimal torque Tref (7). This

control objective can be formulated by the following tracking

errors:
{

eIr d
= Ird − Ird ref

eTem
= Tem − Tref .

(11)

Then, we will have
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ėIr d
=

1

σLr

×

(

Vrd − RrIrd + sωsLrσIrq −
M

Ls

dφsd

dt

)

− İrd ref

ėTem
= −p

M

σLsLr
φs

×

(

Vrq − RrIrq − sωsLrσIrd − sωs
M

Ls
φsd

)

− Ṫref .

(12)
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If we define the functions G1 and G2 as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

G1 =
1

σLr

(

sωsσLrIrq −
M

Ls

dφsd

dt
− RrIrd

)

− İrd ref

G2 = −p
M

σLsLr
φs

×
(

−RrIrq − sωsσLrIrd − sωs
M
L s

φsd

)

− Ṫref

(13)

then we have
⎧

⎪

⎨

⎪

⎩

ëIr d
=

1

σLr
V̇rd + Ġ1

ëΓem
= −p

M

σLsLr
φs V̇rq + Ġ2 .

(14)

To overcome standard sliding mode control chattering, a natu-

ral modification is to replace the discontinuous function in the

vicinity of the discontinuity by a smooth approximation. Nev-

ertheless, such a smooth approximation is not easy to carry out.

This is why common approaches use current references. There-

fore, a high-order sliding mode seems to be a good alternative.

The main problem with high-order sliding mode algorithm

implementations is the increased required information. Indeed,

the implementation of an nth-order controller requires the

knowledge of Ṡ, S̈, . . ., S(n−1) . The exception is the supertwist-

ing algorithm, which only needs information about the sliding

surface S [17]. Therefore, the proposed control approach has

been designed using this algorithm.

Now, let us consider the following SOSM controller based

on the supertwisting algorithm [17]. In the considered case,

the control could be approached by two independent SOSM

controllers. Indeed, the control matrix is approximated by a

diagonal one. Hence, Vrd controls Ird (reactive power) and Vrq

controls the torque MPPT strategy

{

Vrd = y1 − B1 |eIr d
|1/2 sgn (eIr d

) , ẏ1 = −B2sgn (eIr d
)

Vrq = y2 + B3 |eTem
|1/2 sgn (eTem

) , ẏ2 = +B4sgn (eTem
)

(15)

where the constants B1 , B2 , B3 , and B4 are defined as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

B2
1 > 2σ 2 L2

r ((B2 /σL r )+Φ1 )
((B2 /σL r )−Φ1 ) , B2 > σLrΦ1 ,

∣

∣

∣
Ġ1

∣

∣

∣
< Φ1

B2
3 > 2

(

σL s L r

pM

)2
(p(M/σL s L r )B4 +Φ2 )
(p(M/σL s L r )B4 −Φ2 ) , B4 > σL s L r

pM Φ2
∣

∣

∣
Ġ2

∣

∣

∣
< Φ2 .

(16)

Proof: Let us consider the case of Vrd . In this case, we have

ëIr d
=

1

σLr

(

−B2sgn(eIr d
) − B1

1

2

ėIr d

|eIr d
|1/2

)

+ Ġ1 (17)

and, therefore, the supertwisting algorithm phase trajectory is

illustrated in Fig. 5.

Assume now, for simplicity, that the initial values are eIr d
= 0

and ėIr d
= ė0 > 0 at t = 0. Let eM be the intersection of the

curve ëIr d
= − (B2/σLr − Φ1) with ėIr d

= 0. We have then

2eM

(

B2

σLr
− Φ1

)

= ė2
0 (18)

Fig. 5. Supertwisting algorithm phase trajectory.

Fig. 6. Proposed control structure.

eIr d
> 0, ėIr d

< −
2

B1
(σLrΦ1 + B2) e2

Ir d
⇒ ëIr d

> 0.

Thus, the majorant curve with eIr d
> 0 may be taken as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ė2
Ir d

= 2
(

B2

σL r
− Φ1

)

(eM − eIr d
) with ėIr d

> 0

eIr d
= eM with 0 ≥ ėIr d

≥ − 2
B1

(σLrΦ1 + B2) e
1/2
Ir d

ėIr d
= ėM = − 2

B1
(σLrΦ1 + B2) e

1/2
M

with ėIr d
> − 2

B1
(σLrΦ1 + B2) e

1/2
Ir d

.

Let the trajectory next intersection with eIr d
= 0 axis be e1 .

Then, it follows that

∣

∣

∣

∣

ė1

ė0

∣

∣

∣

∣

≤ q with q =

∣

∣

∣

∣

ėM

ė0

∣

∣

∣

∣

=

√

2 ((B2/σLr ) + Φ1)

(B1/σLr )
2 ((B2/σLr ) − Φ1)

.

(19)

Extending the trajectory into the half plane eIr d
< 0 and car-

rying out a similar reasoning show that successive crossings of

the eIr d
= 0 axis satisfy the inequality

∣

∣

∣

∣

ėi+1

ėi

∣

∣

∣

∣

≤ q.
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Fig. 7. FAST WT block.

The q < 1 condition is sufficient for the algorithm conver-

gence. Indeed, the real trajectory consists of an infinite number

of segments. The function total variance is given by

Var (ėIr d
) =

∑

|ėi | ≤ |ė0 |
(

1 + q + q2 + · · ·
)

=
|ė0 |

1 − q
.

(20)

Therefore, the algorithm converges.

The convergence time is to be estimated now. Consider an

auxiliary variable

η =
1

σLr
y1 + G1

η = ėIr d
when eIr d

= 0, and y1 → σLrG1 as t → ∞. Thus,

η tends to zero. Its derivative

η̇ = −
1

σLr
B2sgn(eIr d

) + Ġ1

satisfies the inequalities

0 <
B2

σLr
− Φ1 ≤ −η̇sgn(eIr d

) ≤
B2

σLr
+ Φ1 . (21)

The real trajectory consists of an infinite number of segments

between ηi = ėi and ηi+1 = ėi+1 associated with the time ti
and ti+1 , respectively. Consider tIr d

, the total convergence time
⎧

⎪

⎨

⎪

⎩

tIr d
=

∑

(ti+1 − ti) ≤
∑ |η i |

((B2 /σL r )−Φ1 )

tIr d
≤ 1

((B2 /σL r )−Φ1 )

∑

|ėi |

tIr d
≤ |ė0 |

((B2 /σL r )−Φ1 )(1−q) .

(22)

Thus, there exists finite times tT em and tI rd so as
{

Ird ref = Ird ∀t > tIr d

Tref = Tem ∀t > tTem

(23)

This means that the control objective is achieved.

In practice, the parameters are never assigned according to

inequalities. Usually, the real system is not exactly known, the

model itself is not really adequate, and the parameters estima-

tions are much larger than the actual values. The larger the

controller parameters, the more sensitive the controller to any

switching measurement noises. The right way is to adjust the

controller parameters during computer simulations.

The earlier proposed SOSM control strategy for a DFIG-

based WT is illustrated by the block diagram in Fig. 6.

IV. SIMULATION RESULTS USING FAST WT SIMULATOR

The proposed SOSM control strategy has been tested for val-

idation using the NREL FAST code [4], [18], [19]. The fatigue,

aerodynamics, structures, and turbulence (FAST) code is a com-

prehensive aeroelastic simulator capable of predicting both the

extreme and fatigue loads of two- and three-bladed horizontal-

axis WTs. This simulator has been chosen for validation because

it is proven that the structural model of FAST is of higher fidelity

than other codes [20].

An interface has been developed between FAST and MAT-

LAB Simulink enabling users to implement advanced turbine

controls in Simulink convenient block diagram form (see Fig. 7).

Hence, an electrical model (DFIG, grid, control system,

etc.) designed in the Simulink environment is simulated while

making use of the complete nonlinear aerodynamic WT mo-

tion equations available in FAST (see Fig. 8). This introduces

tremendous flexibility in WT controls implementation during

simulation.

A. Test Conditions

Numerical validations, using FAST with MATLAB Simulink

have been carried out on the NREL WP 1.5-MW WT. The WT

and the DFIG ratings are given in the Appendix.

B. Simulation Results

Validation tests were performed using turbulent FAST wind

data with 7 and 14 m/s minimum and maximum wind speeds,

respectively (see Fig. 9).

As clearly shown in Figs. 10 and 11, very good tracking

performances are achieved in terms of DFIG rotor current and

WT torque with respect to wind fluctuations. The proposed

SOMS control strategy does not induce increased mechanical
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Fig. 8. Simulink model.

Fig. 9. Wind speed profile.

Fig. 10. Current Ir d tracking performance: reference (blue) and real (green).

stress as there are no strong torque variations. Indeed and as

expected, the aerodynamic torque remains smooth (see Fig. 11).

To assess the effectiveness of the proposed advanced control

strategy, it has been compared to more traditional techniques

with the same control objectives. The first one is that using the

active power as reference [21]

Pref = Trefω = kω3 ⇒ Irq ref = −
Ls

VsM
Pref . (24)

This approach supposes that the active power is equal to the

DFIG electromagnetic power. This approximation drives a dif-

Fig. 11. Torque tracking performance: reference (blue) and real (green).

Fig. 12. Torque: reference (blue) and real (green) [21].

Fig. 13. Torque: reference (blue) and real (green) [22].

ference between the desired torque given by (7) and the gener-

ated torque (see Fig. 12).

The second assessed approach is the one using the following

reference [22]:

Irq ref = −
Ls

pMφs
Tref . (25)

In this case, bad tracking performances are also achieved (see

Fig. 13). Indeed, the control reference is quite inaccurate due to

some adopted simplifications (e.g., a constant stator flux).

In terms of power extraction and maximization, Fig. 14 shows

the effectiveness of the proposed SOSM control with respect to

(25) approach. This is mainly due to an inaccurate determination

of kopt (7). Indeed, there is no accurate way to determine k, es-

pecially since blade aerodynamics can change significantly over

time. This fact is, therefore, an extra justification of the proposed

control strategy. If it is assumed that k can be accurately deter-

mined via simulations or experiments, Fig. 15 shows that (24)

and (25) approaches bad torque tracking can be balanced by the

adjustment of kopt . This delicate task, which requires a number

of simulation tests, remains less efficient as it is illustrated in

Fig. 16.
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Fig. 14. Generated power: SOSM (blue) and (25) approach (green).

Fig. 15. Generated power: HOSM (blue), (24), and (25) approaches (green
and red) with kopt adjustment.

Fig. 16. Generated energy: HOSM (blue), (24), and (25) approaches (green
and red) with kopt adjustment.

V. EXPERIMENTAL RESULTS

A. Test Bench

The test bench presented in Fig. 17 allows the physical sim-

ulation of the WT power system. The WT is emulated by a dc

motor, which reproduces the torque and the inertia with respect

to wind speeds and turbine rotational speed. The dc motor is

coupled to a 7.5-kW DFIG (see the Appendix) [14].

B. Experimental Tests

Figs. 18 and 19 show experimental control performances of

the emulated DFIG-based WT. These results show very good

tracking performances in terms of the DFIG torque and rotor

current. Indeed, Fig. 18 illustrates good tracking of the desired

torque given by the MPPT. This is an indication that the WT

power capture is optimized.

Fig. 17. Components of the G2Elab test bench, Grenoble, France:©1 dc motor,
©2 DFIG, ©3 Power electronics for driving the dc motor, ©4 Power electronics
for driving the DFIG, ©5 DSP TMS320F240 implementing dc motor control, ©6
DSP DS1005 (dSPACE) implementing PMSG-based MCT control.

Fig. 18. Torque: reference (red) and real (blue).

Fig. 19. Ir d : reference (red) and real (blue).

Fig. 20. Torque: reference (red) and real (blue).
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Fig. 21. Ir d : reference (red) and real (blue).

Fig. 22. DFIG generated power.

For comparison purposes, a classical PI control, using current

references, has been tested. Figs. 20 and 21 show the achieved

performances. In this case, poor torque tracking performances

are achieved (see Fig. 20).

In the case of Ird tracking, which allows the reactive power

minimization, one can observe chattering with SOSM control

(see Fig. 19). This is mainly due to measurements as it is con-

firmed by PI control (see Fig. 21). It should be mentioned that

this phenomenon is largely amplified by Park transform.

For illustration, Fig. 22 shows the generated power.

VI. CONCLUSION

This paper dealt with an SOSM control of doubly fed

induction-based WT. Its main features are a chattering-free be-

havior, a finite reaching time, and robustness with respect to

external disturbances (grid) and unmodeled dynamics (DFIG

and WT). The proposed SOSM control the WT DFIG accord-

ing to references given by an MPPT. In this case, the DFIG

torque is directly tracked, therefore leading to maximum power

extraction.

The proposed control strategy has been tested using the NREL

FAST simulator on a 1.5-MW three-blade DFIG-based WT.

Moreover, experiments on a 7.5-kW real-time simulator have

been carried out. The obtained results clearly show the SOSM

approach effectiveness in terms of power extraction maximiza-

tion compared to more traditional techniques. Moreover, it has

been confirmed that there is no mechanical extra stress induced

on the WT drive train as there are no strong torque variations.

APPENDIX

CHARACTERISTICS OF THE SIMULATED WT:
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