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Second-Order Statistics of Complex Signals
Bernard Picinbono,Fellow, IEEE, and Pascal Bondon,Member, IEEE

Abstract—The second-order statistical properties of complex
signals are usually characterized by the covariance function.
However, this is not sufficient for a complete second-order de-
scription, and it is necessary to introduce another moment called
the relation function. Its properties, and especially the conditions
that it must satisfy, are analyzed both for stationary and nonsta-
tionary signals. This leads to a new perspective concerning the
concept of complex white noise as well as the modeling of any
signal as the output of a linear system driven by a white noise.
Finally, this is applied to complex autoregressive signals, and it is
shown that the classical prediction problem must be reformulated
when the relation function is taken into consideration.

I. INTRODUCTION

COMPLEX SIGNALS are used in various areas of signal
processing. In the continuous-time (CT) case, they ap-

pear, for example, in the description of narrowband signals.
Indeed, the appropriate definition of instantaneous phase or
amplitude of such signals requires the introduction of the so-
calledanalytic signal, which is necessarily complex [1]. In the
discrete-time (DT) case, the parametric representation of sig-
nals is not restricted to real signals [2]. In fact, ARMA signals
can very well be complex either because the coefficients of the
rational function used in the transfer function are complex or
because the driving white noise is complex. Finally, sampling
of CT complex signals introduces complex DT signals. This
paper is mainly restricted to the DT case, even though many
results can be transferred to the CT case without any difficulty.

Let be a complex DT signal, where is an integer
describing the time dependence. Being interested in statistics
concerning , we shall assume that it is random and
that its expectation is zero. This last assumption simplifies
the mathematical processing with no loss of generality. The
second-order statistics of are usually described by the
covariance function (CF) defined by

(1)

where the star indicates the complex conjugate. However,
this CF is not sufficient to entirely describe the second-order
statistics of For this purpose, one is obliged to introduce
another function, called, for simplicity, the relation function
(RF), and defined by

(2)
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14), École Suṕerieure d’́Electricit́e, 91192 Gif-sur-Yvette, France.

Publisher Item Identifier S 1053-587X(97)01181-1.

In various instances, this RF is equal to zero and can, therefore,
be omitted. This is the case for the analytical signal of
any stationary signal (see [1 p. 230]) and, more generally,
for any circular signal [3]. Indeed, a second-order circular
signal isdefinedby the property The term of
circularity comes from the following remark. It is clear from
(1) that the CF’s of and of are equal for any
real number Now, the RF’s of and of
are equal if and only if A second-order
circular signal is a signal whose second-order statistics are
invariant in any phase transformation. Hence, the relation

characterizes the circularity of As an
obvious consequence, real signals cannot be circular. However,
the RF has generally no reason to be equal to zero, and
therefore, it is necessary to describe the second-order statistics
of a random signal completely. Complex signals are introduced
in many textbooks, especially in [4], which is entirely devoted
to properties of complex stochastic processes that are not
trivial extensions of those of real processes. However, it is
worth pointing out that the RF has never been introduced and
analyzed. This is one of the purposes of this paper.

More precisely, our aim is to study various properties of
the pair of correlation and relation functions. In particular,
it is well known that the CF is not an arbitrary function
because it must be nonnegative definite. Conversely, any
nonnegative definite function is a CF. Then, the class of
CF’s and the class of nonnegative definite functions are
the same. In the same perspective, the RF cannot be ar-
bitrary, and this is analyzed in Section II. More precisely,
we establish a necessary condition that must be satisfied
by or its Fourier transform in order to be an
RF. Various consequences of this condition are analyzed in
Section III. In order to show that the condition introduced
in Section II is sufficient, it is appropriate to solve the
modeling (or inverse) problem. It consists of showing that
to any pair of CF and RF satisfying the previous condition, it
is possible to associate at least one complex random signal
having these functions as CF or RF. A classical way for
this purpose is a modeling procedure in which the random
signal is generated by filtering a white noise. However, the
concept of complex white noise must be clarified. Indeed,
whiteness is a property concerning only the CF. Then, there
exits a degree of freedom on the RF, which permits us
to introduce many kinds of white noises, extending some
results known for real signals [5], [6]. As in the real case,
the modeling problem is much more complex than the di-
rect one and has no unique solution. Indeed, it is easy to
see that many different complex signals can have the same
second-order statistics. Various procedures of modeling are
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analyzed in Section IV, and this introduces new perspectives
on the concepts of AR signals that are analyzed in Section
V.

II. CONDITIONS ON SECOND-ORDER STATISTICS

A. The Concepts of Stationarity

A complex signal is said to be wide sense stationary
(WSS) if its mean value is constant and if its CF (1) is only a
function of (see [2, p. 51], [7, p. 95], [8, p. 15], [9, p.
120], or [10, p. 66], among others). This definition does not
imply any condition on the RF (2).

We shall say that a signal issecond-order stationary(SOS)
if it is WSS and if its RF is also only depending on It
is clear that for real signals, the two concepts are equivalent.
On the other hand, for complex signals, WS stationarity does
not imply SO stationarity, and some examples of this fact will
be presented in Section III.

B. Second-Order Stationary Signals

The assumption of SO stationarity means that the CF and the
RF of are only depending on the difference Let us
also assume that they have Fourier transforms denoted
and , respectively. The problem we want to discuss is
to exhibit some necessary properties that these functions must
satisfy. If is real, these functions are equal, and
is the power spectrum of the signal. It is known that
must be symmetric, nonnegative, and with a finite integral over
the interval Conversely, any function satisfying
these conditions can be considered to be the Fourier transform
of the CF of a real signal.

Suppose now that is complex. As is the power
spectrum, must satisfy the same conditions as in the
real case, except for the symmetry property. On the other
hand, the stationarity implies that the RF is symmetric, and
then, the same property appears for its Fourier transform, i.e.,

However, notice that is, in general,
a complex function.

Let us introduce the complex vector

(3)

Its CF is the matrix where the symbol
means transposition and complex conjugation. The Fourier

transform of this matrix is the spectral matrix of noted
and it is known (see [1, p. 235] and [2, p. 454])

that must be a nonnegative definite matrix. A simple
calculation gives

(4)

This matrix is nonnegative definite if and only if one of its
diagonal elements and its determinant are nonnegative. This
property is obvious for the diagonal elements. By using the
symmetry of , the condition on the determinant yields

(5)

This is a necessary condition that the function must
satisfy in order to be the Fourier transform of an RF of a
signal with power spectrum We shall verify in Section
IV that this condition is also sufficient.

It is now of interest to investigate the case when the upper
bound of the inequality (5) is reached, which means that the
rank of is one. It is shown in Appendix A that the
rank of is one for any value of if and only if the
two components of the vector can be deduced from each
other by a linear filtering. This can be written as

(6)

We shall examine some examples of this situation in Section
III.

C. Nonstationary Signals

Suppose now that the two moments (1) and (2) are not
functions of only and that they have bounded Fourier
transforms noted and Consider two
linear filters and characterized by their frequency
response and , respectively. Let be the
output of when its input is , and let be the random
variable equal to It results from the classical formulae
of the harmonic analysis that

(7)

The same relation can be obtained for by replacing
with Furthermore, we have

(8)

Suppose now that the frequency response is equal to 1
for and 0 otherwise. In this case,
(7) can be approximated for sufficiently small by

(9)

Introducing the same assumption for where is
replaced by yields

(10)

Applying the Schwarz inequality to and yields

(11)

This is the transposition to the nonstationary case of (5).

D. Wide-Sense Stationary Signals

Assume now that is WSS but not SOS. This means that
there exists a power spectrum and a function
that cannot be reduced to a function of only one frequency.
This situation is much more complicated to analyze. First, note
that introduced above can be expressed as

(12)

where is the power spectrum, and is the Dirac
distribution. This shows that is no longer bounded
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and that is zero in except
on the stationary manifold defined by (see [1, p.
238], [11, ch. VI], or [12, p. 238]).

If remains bounded, then (11) is always sat-
isfied, and there is no specific condition on the function

Therefore, the only case of interest appears when
is not bounded. In order to avoid too sophisticated

calculations, let us limit our study to the simplest situation that
appears when

(13)

where is bounded. This means that there is
a continuous distribution in the plane and another
component distributed in the curve defined by
In the SOS case, we necessarily have and

which again introduces the stationary manifold
Since the function is symmetric,

must also be symmetric. For the same reason,
the function cannot be arbitrary. We deduce from (13)
that the symmetry of implies
which means that the curve in the plane
is symmetric with respect to the straight line of
the plane. Applying the same reasoning as in the previous
subsection yields

(14)

This shows that there is no condition on the function
whereas the function must satisfy (14).

Notice that (14) is equivalent to (5) when is SOS because,
in this case,

III. EXAMPLES

In the previous section, several necessary conditions on the
RF have been introduced, but no example of signals satisfying
these conditions has been given. This is the purpose of this
section. In particular, we present some examples of signals
that are WSS and analytic without being circular.

A. Degenerate Second-Order Stationary Signals

Is it possible to find some signals satisfying (6)? They are
called degenerate because the rank of (4) is equal to one
instead of two. A trivial example is the case of real signals:
They satisfy (6) with However, in a study devoted
to complex signals, it is worth finding other examples.

For this, let us recall the classical expressions of linear
filtering. If an SOS signal is passed through a linear
filter of frequency response , the Fourier transforms of
the covariance and relation functions of the input and the
output are related by

(15a)

(15b)

In order to obtain (15b), we start from the convolution
relation As a result, the RF of

satisfies

(16)

Introducing the Fourier transform of yields

(17)

which gives (15b).
Suppose now that is real. This implies that

Suppose also that the filter is not real,
which is characterized by It is therefore
clear that cannot be real. However, we have

Furthermore, we verify that (6) is satisfied
with the filter of frequency response
Therefore, by filtering a real signal in a nonreal filter, we obtain
a complex signal satisfying (6).

B. Analytic Signals

As indicated above, the simplest example of a complex
signal is theanalytic signal. When it is WSS, it is characterized
by the property for This property does not
imply that it is SOS.

Assume that the analytic signal is SOS. In this case, its
second-order properties are characterized by and
introduced in the previous section. We can then apply (5), and
since for , we deduce that

(18)

This means that the RF defined by (2) is zero. Thus, we deduce
that if a random analytic signal is SOS, it is second-order
circular.

More generally, this property of zero RF, or of second-
order circularity, holds for any SOS signal satisfying

, and the analytic signal is only a particular
case of this relation. Notice that implies
that the CF cannot be real. Indeed, if this were true, we
would have , which is impossible when

Suppose now that the analytic signal is WSS but not
SOS. In this case, the signal is not necessarily circular. Let
us present a simple example of this situation. Let be
a real WSS signal with a bandlimited power spectrum. This
means that the power spectrum is zero for
Consider the signal with
This condition implies that is an analytic signal. However,
its RF is

(19)

where is the CF of By Fourier transformation, we
immediately obtain

(20)
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which has the structure (13) with , and
This function satisfies the symmetry property
Noting that , the condition

(14) becomes

(21)

As is a symmetric function, (21) is satisfied and
becomes an equality. This does not mean that (6) is satisfied
because this equation was shown in the SOS case. However,
as is real, we have

(22)

which introduces a linear time dependent relation between
and We then have an example of a WSS analytic

signal that is not circular. Note at this stage that the real and
imaginary parts of are no longer stationary. Indeed, the
real part is and is not stationary, even if
has this property.

C. Signals Satisfying (13)

Let us now present an example of a non SOS signal, the
RF of which has the structure (13). In order to introduce some
diversity in the presentation, we describe this signal in the CT
case. There exists, of course, an obvious DT version of it. Let

and be two zero-mean SOS complex signals, and
consider the signal

(23)

In this equation, is a real random amplitude, and we
assume that and Similarly, is
a random frequency. We denote and to be the
probability density function and the characteristic function of

, respectively. Furthermore, we assume that and
are independent. It is clear that From all

these assumptions, we find that is WSS, and its CF is

(24)

It results from (24) that the power spectrum takes the form

(25)

On the other hand, the RF is

(26)

and by Fourier transformation, we obtain

(27)

This expression has the structure (13) with
and Since is SOS, the pair
satisfies (5). Then, it results from (25) that

(28)

Hence, we check that (14) is satisfied.

IV. M ODELING PROBLEM

The inequality (5) introduced in Section II is a necessary
condition for the pair of functions to be the
Fourier transforms of the CF and the RF of an SOS signal

The purpose of this section is to show that this condition
is also sufficient. This means that to a given pair of functions

satisfying the three following conditions:

(29a)

(29b)

(29c)

it is possible to associate at least one random signal such that
the Fourier transforms of its CF and RF are and ,
respectively. Finding such a signal is realized by a modeling
approach.

This approach is well known in thereal case. It consists
of showing that to any symmetric and nonnegative function

, it is possible to associate at least one signal such that
is its power spectrum. The solution is obtained by a linear

procedure. Indeed, passing a unit white noise through a linear
filter with frequency response gives an output with a
power spectrum equal to

Extending this method to the complex case requires that the
concept of complex white noise be introduced first.

A. Second-Order White Noises

A WSS signal is said to be white if its power spectrum
is constant. In terms of its CF, this condition is equivalent to

(30)

where is the variance of the signal, and the Kronecker-
delta function. However, whiteness does not introduce any
property on the RF that can even be nonstationary. This implies
that there are different kind of white noises. Now, if SO
stationarity is introduced, the RF must satisfy the constraint
(5), which takes the form

(31)

In order to avoid this freedom concerning , it is often
assumed that whiteness implies that is equal to zero [2].
In this case, which remains particular, it is better to use the
expression ofcircular white noise. It is thus easy to deduce
from (30) and from the fact that the RF is zero that the real
and imaginary parts of are uncorrelated and white. The
introduction of circularity especially appears in the studies
using the concept of complex Gaussian white noise. In [2,
p. 54], it is explicitly indicated in the definition of a complex
white Gaussian noise that its RF is zero or that a complex
Gaussian white noise is circular, which is equivalent. More
generally, the circularity is introduced in the definition of a
complex Gaussian stochastic process in many excellent books
such as [7, p. 72] and [13], which is entirely devoted to this
question, and [14, vol. 2, p. 128], where the term strongly
normal is used instead of circular normal.

Another conception of whiteness consists of saying that it
involves only instantaneous relationships. This means that the
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RF must have a structure similar to (30) or that

(32)

where can be complex but must satisfy as a
consequence of (5). Because of the analogy between (30) and
(32), this kind of whiteness will be calleddouble whiteness
in what follows.

Note that, contrary to the CF, the RF can be equal to zero
for The simplest example is the case of a white noise
for which is nonzero for one value of only. Because
of the symmetry, can be written as

(33)

where is a complex number, andis a positive integer. In
this case, takes the form

(34)

and (31) becomes

(35)

Let us verify that it is possible to construct a white signal with
this RF. Suppose that is a circular unit white noise. This
means that Let be the signal

(36)

where is a complex number. It is obvious that remains
a unit white noise. However, its RF is given by (33), where

(37)

It is clear that , and the upper bound is obtained
when

B. Linear Modeling

As one of the advantages of linear models is, above all, their
simplicity, it seems appropriate to extend the linear procedure
used in the real case to the complex one. We shall now prove
that this is not possible.

At first, the same argument of simplicity results in the
assumption that the driving noise is doubly white or
characterized by the parameters and appearing in (30)
and (32), where is replaced by This means that

and , and without any loss of
generality, we can assume that , which implies that

Consider now an arbitrary pair of functions
satisfying (29). We are looking for a complex linear filter
with frequency response and a doubly white noise
characterized by such that the Fourier transforms of the
CF and the RF of the output are and , respectively.
Applying (15) yields

(38)

These relations imply

(39)

Consequently, if the pair satisfies (29) but not
(39), the linear procedure fails. A simple example of this
situation appears when and is not constant
but such that This is the case with the white
noise defined by (36) for example.

On the other hand, there are cases where the linear procedure
can be applied. This appears, for instance, when (29c) becomes
an equality, which corresponds to the degenerate case studied
in Section III-A. Another specific situation appears when

In this case, it suffices to take
, and the modeling is then made possible by using a

circular white noise. Hence, when the modeling
problem can be solved exactly as in the real case. This justifies
the importance of the assumption of circularity.

In conclusion, by using a linear procedure, it is not possible
to extend the method used for real signals to prove that the
conditions (29) are sufficient in the sense indicated at the
beginning of this section. In the next subsection, we show that
this becomes possible by using another class of linear systems.

C. Widely Linear Modeling

Recently, it was shown in [15] and [16] that for processing
complex signals, it is of interest to use widely linear systems.
The input-output relationship of such systems is

(40)

This means that is the sum of the two signals, respectively,
obtained by a linear filtering of and of It is
clear that (40) is not a linear filtering in the classical sense.
Indeed, if and are the outputs associated with the
inputs and , respectively, the output associated
with is This introduces a kind
of linearity. However, the output associated with is
generally not when is a complex number, which is
a necessary property of classical linear filters. On the other
hand, the second-order characteristics of the output of
(40) can be obtained from those of the input These
properties justify the denomination of widely linear systems.
As (40) introduces a large degree of freedom because of the
introduction of two linear filters, we shall restrict the degree of
freedom on the input and assume that is circular and white
with a unit power As said above, this assumption is
almost always introduced when talking about complex white
noises. Let us call and the Fourier transform of

and , respectively. The Fourier transforms of the CF
and the RF of given by (40) are calculated in Appendix
B. In the modeling procedure, these functions must be equal
to and , respectively, which gives

(41)

(42)

It is worth pointing out that (36) is a particular case of
(40) with and

It is then easy to check that (41) and
(42) are verified when , and is given by (34)
and (37).
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Coming back to the modeling problem, we now have
to show that if satisfy (29), there is at least
one pair that is the solution to (41) and (42).
Note that (41) and (42) obviously imply that (29a) and
(29b) are satisfied. Now, consider an arbitrary frequency
in , and let us assume that

(43)

Then, by multiplying (41) by , we obtain

(44)

and by using the symmetry of , we deduce that

(45)

By multiplying (44) by , we get

(46)

If , then, according to (29c), In
this case, we take Then, (42) is
satisfied, and the problem consists of solving (41), which can
be done easily. Take, for instance, , and define

by This equation is not sufficient to
determine because the phase is unknown. However, for
the modeling problem, we only have to show that there exists
at least one solution. In the same way, if
Then, we take so that (42) is satisfied,
and we can choose and define by

Assume now that Then, (46) is a second-
order polynomial equation in The sum and the
product of the roots being positive, (46) admits two positive
solutions if and only if

(47)

Due to (29a) and (29c), this inequality is satisfied.
When , there are two distinct positive roots for

(46): and Any one of these roots can be
taken as a value for , whereas the phase of
is arbitrary. Next, is completely determined by (43).
Take, for instance, It results from (43) that

, where satisfies

(48)

Now, as a consequence of (46),

(49)

Hence, we deduce from (48), (49), and (45) that
Therefore, , whereas the phase of

is determined by (43).
Let us now consider the case where , which means

that (29c) becomes an equality. In this case, we obtain from
(46) that , and is still defined by
(43). It is easy to verify that

In conclusion, any pair of functions and sat-
isfying the three conditions (29) can be considered to be the

Fourier transform of the CF and RF of the output of at least one
widely linear filter driven by a circular unit white noise. This
solves the modeling problem and shows that the three previous
conditions are necessary and sufficient for the second-order
statistics of an SOS complex signal.

Finally, note that the modeling of any complex signal from
a circular unit white noise is not unique, and, as in the case of
real signals, it is possible to reduce the degree of freedom by
introducing some constraints such as the causality for example.
We shall analyze this point by studying prediction problems
and generalizing the concept of complex autoregressive (AR)
signals.

V. AUTOREGRESSIVEMODELING AND PREDICTION

Complex AR models are widely used in signal processing
and especially in spectral analysis (see [2, chs. 5 and 6]).
However, it is almost always assumed that the driving white
noise is circular, which leads to a zero relation function.
The purpose of this section is to examine the second-order
properties of AR signals and, especially, to calculate the RF
and apply the results to prediction problems.

An AR signal is defined by the difference equation

(50)

where is the regression vector with components
is the past vector with components

and is a driving noise. We assume that is SOS
and white in the sense that its power spectrum is constant,

Nevertheless, we do not make any assumption
on its RF All the terms appearing in (50) are usually
complex, and the vector is such that the filter defined by
(50) is stable. As a consequence, the signal is SOS, and
its second-order properties are entirely specified by those of

and by the regression vector.

A. Autoregressive Modeling

The purpose of AR modeling is to find an AR model of a
given order such that its second-order properties are a good
approximation of those of an observed signal. Suppose that
the CF of the observed signal is known for
and that its RF is known for any The problem is then
to find the vector appearing in (50), the variance of ,
and the relation function of such that
and , where is the output of (50).

Let be the covariance matrix , and let be
the correlation vector The elements of and
are defined by the values for and are identified
to the corresponding values of We deduce from (50) that

(51a)

(51b)

Then, the determination of and can be obtained by the
standard normal equations (51). It is worth pointing out that
these equations are independent of the structure of the RF

Without any a priori knowledge or assumption on ,
this function can be determined by using (15b). Indeed, as the
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vector is determined from (51), the linear filter defined by
(50) is also determined, and its transfer function is equal
to with

(52)

Written in the domain, (15b) can be expressed as

(53)

It results from (52) that

(54)

where the coefficients can easily be deduced from thes.
As has the structure (54), where the sum is, in general,
an infinite series, and is replaced by , we deduce that
the RF can easily be deduced from the coefficients
and the observed RF using (53).

In reality, this very general method can be greatly simplified
if some assumptions on can be introduced. The simplest
consists of saying that the driving noise is doubly white
or that (30) and (32), where is replaced by , are valid.
However, this assumption cannot be arbitrarily introduced, and
its validity must be verified. Indeed, when (32) is valid, we
deduce from (50) that

(55a)

(55b)

where and These
quantities are entirely determined from the values of the
observed RF for Therefore, it is clear that
(55b) can give the value of appearing in (32), provided
that the vector satisfies simultaneously (51) and (55). This
gives a new illustration of the fact discussed in the previous
section that a given signal generally cannot be modeled as the
output of a linear filter driven by a doubly white noise.

B. Prediction

AR modeling is strongly related to prediction problems. If,
in (50), and are real, is also real, and its best mean
square linear prediction in terms of its entire past is
Suppose now that, as previously,is complex, and is a
complex white noise characterized by its varianceand by
its RF By using the finite past of order, i.e. the vector

, it is possible to introduce two linear predictors. The first
is the strictly linear predictor defined by The
second is the widely linear predictor (see [15]) defined by

(56)

Of course, the mean square error obtained with the widely
linear predictor is always less than or equal to the one obtained
with the strictly linear predictor. Our purpose in the following
is twofold. First, we show that the two predictors are equal if
the driving noise is doubly white. Second, when is
not doubly white, we quantify the difference between the two
mean square errors in the simple case of an AR(1) model.

Assume that is doubly white. Let
be the strictly linear innovation. Since

Therefore, it results from (50) that
is uncorrelated with and for any positive

integer Hence, is orthogonal to and Then,
, which is equivalent to

Therefore, the advantage of the widely linear procedure
disappears when is doubly white. It is worth presenting
some comments on this result. It is known that when the
assumption of circularity is valid, widely linear mean square
estimation does not introduce any advantage with respect
to strictly linear estimation [15]. The fact that circularity is
very often introduced explicitly or implicitly justifies that
the procedure of linear mean square estimation used for real
signals can be transposed to the complex case. However, it
was shown in [15] that the assumption of circularity is only
a sufficient condition for the equivalence between linear and
widely linear procedure. The case of prediction of complex
AR signals shows that this equivalence is also valid for
noncircular signals, provided that the driving noise is doubly
white. Indeed, when is doubly white but not circular

, it results from (53) that is not
circular As a conclusion, the only possibility to
find a difference between the two procedures appears when
the driving white noise is no longer doubly white.

Assume now that is not doubly white. In order to quan-
tify the difference between strict and widely linear prediction
without using calculations that are too complicated, we shall
now restrict our analysis to AR(1) signals. This means that the
regression term in (50) is now , where Then,

, and the strictly linear prediction error is
the variance of the driving noise The widely linear
predictor is given by (56), where is replaced by ,
and the predictor is now defined by two complex numbers
and These numbers are calculated by writing that
is orthogonal to and its conjugate. This leads to the
system of equations

(57)

(58)

where, for notational convenience, we noted that ,
and Let be the determinant As a
consequence of the Schwarz inequality applied to the pair

, and if and only if and
are linearly dependent.

Assume that Because of the stationarity, the linear
dependence between and can be written

, where is a real nonrandom number. Then,
,

and we deduce immediately that
This provides another example of a situation where there is no
interest to introduce (56) in terms of the mean square error.

Assume now that Then, and can be determined
from (57) and (58). In particular, is given by

(59)
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The corresponding mean square error is given by
, and a simple calculation yields

(60)

From a calculation presented in Appendix C, we obtain

(61)

As and are positive, this difference is zero only when
In this case, is strictly linear. Otherwise,

always yields better results than
Note that and have been calculated in terms of the

CF and the RF of the signal However, as in the real
case, it is necessary to express the widely linear predictor
and its performance in terms of the parameters defining the
model. An AR(1) signal defined by (50) is characterized at
the second order by the complex regression parameterand
by the variance and the RF of the driving noise

In the following, we denote for any
It results from the Schwarz inequality applied with the pair

that for all It is shown in Appendix
D that

(62)

(63)

These relations correspond to the normal equations (51). The
results are more complicated for the RF of because
is not assumed to be doubly white. Letbe the quantity

(64)

It is shown in Appendix D that

(65)

(66)

Then, and can be explicitly calculated in terms of the
parameters of the model using (62), (63), (65), and (66).

Let us now give some examples of applications of these
expressions. Suppose first that is doubly white. This
is characterized by the fact that if As a
consequence , and we easily verify from (59) that
Therefore, in this particular case, we verify the general result,
which has been indicated previously, that is strictly
linear. Assume now that is not doubly white. In this
case, the main difficulty is the calculation ofdefined by (64).
However, this becomes very easy if the RF of is given by
(33), where is replaced by Indeed, in this case, the
series (64) contains only one term. Suppose then that
in (33), and to simplify further, assume that the coefficient
of the AR(1) model is real. Then, the parameters of the model
are , and , which appears in (33). By using all the
previous relations and after simple algebra, we obtain

(67)

where Because of (35), the parameter
satisfies If , the white noise is circular,

and the interest of the widely linear prediction disappears. On
the other hand, if , which is its maximum possible
value, which is the maximum value of the gain
of the widely linear prediction with respect to the strictly
linear one. As , we deduce that
This very simple example of an AR(1) signal shows the
interest of taking the RF into account in prediction problems.
It illustrates the fact that the CF is not sufficient to calculate
the optimal prediction. The same result can be obtained with
more complicated models.

VI. CONCLUSION

In order to describe the second-order properties ofcomplex
random signals completely, it is necessary to use two moments.
The first is the classical covariance function, and the second
is the relation function defined by (2). There are only very
few results known on this function and on its use in signal
processing problems. Our first result is to show that this
function is not arbitrary. As soon as the covariance function
is given, the Fourier transform of the relation function must
satisfy some conditions that are given both for stationary and
nonstationary signals. In order to show that these conditions
are sufficient, we have solved the modeling problem of second-
order stationary signals. It consists of showing that any such
signal can be considered to be the output of a widely linear
system driven by a circular white noise. Incidentally, this
approach shows that, in general, a stationary complex second-
order signal cannot be modeled as the output of a linear system
driven by a white noise, as in the real case. Finally, these
results are applied in prediction problems with autoregressive
signals. We have shown that if the driving noise is circular
or doubly white, the results known for real signals can be
applied without making any difference. On the other hand,
if these conditions are not fulfilled, a prediction procedure
using a widely linear predictor can yield better results than the
classical linear procedure. The advantage of the first method
is analyzed in the very simple case of prediction of an AR(1)
signal.

APPENDIX A

Let and be two zero-mean jointly SOS complex
random signals. The spectral matrix of the random vector

is

(68)

where and are the power spectra of and
, respectively, and is the Fourier transform of the

intercorrelation function It is
known that the matrix is Hermitian and nonnegative
definite (see [1, p. 235]).

We shall investigate the case where the rank of is
one for any value of This means that the two columns
are proportional or that there exists a complex function
such that

(69a)

(69b)
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We deduce from (69a) and from the Hermitian property of
that Using this relation in (69b)

yields Therefore, if the rank of
is one, can expressed as

(70)

Let be the signal obtained by filtering in the filter
with frequency response Using (69) and the classical
expressions of linear filtering, we obtain

(71)

By Fourier transformation, we deduce that
, which means that with probability

one. Therefore, if the rank of is one, the component
of the vector is deduced from by a

linear filtering.
Conversely, if this property is satisfied, the spectral matrix

takes the form (70), and therefore, its rank is one.

APPENDIX B

The assumptions on are characterized by

(72)

Let us write (40) in the form , where
and are deduced from and by linear filtering
with frequency response and , respectively. Then,
it results from (72) that

(73)

(74)

Using the definitions of and in (40), we obtain, by
Fourier transformation,

(75)

(76)

APPENDIX C

The error obtained in linear prediction is given by
Noting that ,

we obtain

(77)

By replacing in (60) the value of deduced from (57), we
deduce

(78)

The content of the last brackets of this equation appears in
(59) and is equal to Subtracting (78) from (77), we
obtain (61).

APPENDIX D

Using the recursion and noting
that and are uncorrelated, we obtain

(79)

which gives (62). It results from the same reasoning that
Now, the coefficient is given by

(80)

Developing (80) yields

(81)

where

(82)

The difference equation defining the AR(1) model introduces
a causal linear filter with an impulse response equal to
We thus have

(83)

and using this relation in (82) yields (64). Similarly, we have

(84)

from which (66) can be obtained.
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