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Abstract— Exact expressions for the level crossing rate and
average fade duration of M -branch equal-gain and maximal-
ratio combining systems in a Weibull fading environment are
presented. The expressions apply to unbalanced, non-identical,
independent diversity channels. In addition, new closed-form
solutions for some special cases are obtained.

Index Terms— Average fade duration, equal-gain combining,
level crossing rate, maximal-ratio combining, and Weibull fading
channels.

I. INTRODUCTION

LEVEL crossing rate (LCR) and average fade duration
(AFD) are important second-order statistical quantities,

which have been extensively explored in the literature. Closed-
form expressions of these statistics for a single-channel for
the well-known fading environments, such as Rayleigh, Rice,
Hoyt, Nakagami-m and Weibull can be found in [1], [2], [3],
[4], [5].

This paper derives exact LCR and AFD expressions for
the Weibull channel in diversity systems using equal-gain
combining (EGC) and maximal-ratio combining (MRC). The
formulas apply to M unbalanced, non-identical, independent
branches and have been validated by specializing the general
results to some particular cases whose solutions are known
and, more generally, by means of simulation. In addition,
new closed-form solutions for some special cases are also
presented.

II. PRELIMINARIES

A. The Weibull Physical Model

The Weibull distribution is an empirical distribution, which
was first proposed aiming at applications in reliability engi-
neering. It has also found use in wireless communications to
model the fading envelope. Due to the lack of a theoretical
basis [6], the application of the Weibull distribution in wireless
communications has been limited to the first order statistics
of the fading signal. In [7], a very simple physical model
for the Weibull distribution was proposed. In essence, in the
proposed model the Weibull envelope Ri at the ith branch,
i = 1, . . . ,M , is obtained as a non-linear function of the
modulus of multipath components, the non-linearity expressed
in terms of a parameter αi > 0, i.e.,

Ri =
(
X2

i + Y 2
i

)1/αi (1)

Manuscript received October 5, 2004. The associate editor coordinating the
review of this letter and approving it for publication was Dr. James A. Ritcey.

The authors are with the Department of Communications, State University
of Campinas, Brazil (e-mail: {michel, gf, candido}@decom.fee.unicamp.br).

Digital Object Identifier 10.1109/LCOMM.2005.06001.

where Xi and Yi are independent zero-mean Gaussian variates
with identical variances σ2. The probability density function
(PDF) pRi

(·) of Ri is given by

pRi
(ri) =

αir
αi−1
i

Ωi
exp

(
−rαi

i

Ωi

)
(2)

where Ωi = E[Rαi
i ]. For isotropic scattering, the time deriva-

tives Ẋi and Ẏi of Xi and Yi, respectively, are known to be
zero-mean Gaussian variates with variances

(√
2πfm

)2
σ2 [1].

Correspondingly, the conditional PDF (CPDF) pṘi|Ri
(·| ·) of

Ṙi (the time derivative of Ri) given Ri is easily found from
(1) as

pṘi|Ri
(ṙi|ri) =

1√
2πσṘi

exp

⎛
⎝−1

2

(
ṙi

σṘi

)2
⎞
⎠ (3)

where σ2
Ṙi

=
(

2πfm

αi

)2

Ωir
2−αi
i and fm is the maximum

Doppler shift.

B. LCR and AFD

The LCR nR(r) and AFD TR(r) of a signal R at level r
are respectively given by

nR(r) =
∫ ∞

0

ṙpR,Ṙ(r, ṙ)dṙ and TR(r) =
PR(r)
nR(r)

(4)

where pR,Ṙ(·, ·) is the joint PDF (JPDF) of R and its time
derivative Ṙ, and PR(·) is the cumulative distribution function
(CDF) of R. In the following, R shall be taken as the combiner
output and (4) shall be used to derive the LCR and AFD for
M -branch EGC and MRC in a Weibull fading environment.

III. EQUAL-GAIN COMBINING

In EGC, the received signals are cophased and added so
that R and Ṙ, already taking into account the resultant output
noise power, are written as

R =
1√
M

M∑
i=1

Ri and Ṙ =
1√
M

M∑
i=1

Ṙi (5)

The CDF of R can be calculated by integrating the JPDF of
Ri, i = 1, . . . , M , over the M -dimensional volume bounded
by the hyperplane

√
Mr =

∑M
i=1 ri and the coordinate

hyperplanes. Using a procedure found in [4]

PR(r) =
∫ √

Mr

0

∫ √
Mr−rM

0

· · ·
∫ √

Mr−∑ M
i=3 ri

0

∫ √
Mr−∑ M

i=2 ri

0

×
M∏
i=1

pRi
(ri)dr1dr2 · · · drM−1drM (6)
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pR,Ṙ(r, ṙ) =
√

M

M−1︷ ︸︸ ︷∫ √
Mr

0

∫ √
Mr−rM

0

· · ·
∫ √

Mr−∑ M
i=3 ri

0

× pR1,R2,...,RM ,Ṙ

((√
Mr −

M∑
i=2

ri

)
, r2, . . . , rM , ṙ

)
dr2 · · · drM−1drM (7)

where pRi
(·) is given by (2). Note from (3) and (5) that

pṘ|R1,...,RM
(·|·, ..., ·), the CPDF of Ṙ given Ri, i = 1, . . . , M ,

is zero-mean Gaussian distributed with variance σ2
Ṙ

=∑M
i=1 σ2

Ṙi
/M . Derivating (6) with respect to r to obtain pR(r)

as in [4] and then using the Bayes’ rule, pR,Ṙ(·, ·) can be
found as (7), where pR1,...,RM ,Ṙ (·, . . . , ·, ·) is the JPDF of
Ri, i = 1, . . . ,M , and Ṙ. Of course,

pR1,...,RM ,Ṙ(r1, ..., rM , ṙ) = pṘ|R1,...,RM
(ṙ|r1, ..., rM )

× pR1,...,RM
(r1, ..., rM ) (8)

where pṘ|R1,...,RM
(·|·, ..., ·) is as already mentioned and

pR1,...,RM
(r1, ..., rM ) =

∏M
i=1 pRi

(ri), since the branches
are independent. Using (8) into (7) and (4) appropriately, the
output LCR of an M -branch EGC system in a Weibull fading
environment can be finally written as (9), where pRi

(·) is given
by (2). From (4), (6), and (9), the output AFD of EGC in
multi-branch Weibull fading is then obtained.

IV. MAXIMAL-RATIO COMBINING

In MRC, the received signals are cophased, each signal
is amplified appropriately for optimal combining, and the
resultant signals are added. The combiner output envelope R
and its time derivative Ṙ are written as

R2 =
M∑
i=1

R2
i and Ṙ =

M∑
i=1

Ri

R
Ṙi (10)

The MRC analysis follows exactly the same steps detailed
for EGC in the previous section. The hyperplane used to
compute PR(·), however, is r2 =

∑M
i=1 r2

i . In addition σ2
Ṙ

=∑M
i=1 R2

i σ
2
Ṙi

/R2. The resulting PR(·), pR,Ṙ(·, ·), and nR(·)
are given by (11), (12), and (13), respectively.

PR (r) =
∫ r

0

∫ √
r2−r2

M

0

. . .

∫ √
r2−∑ M

i=3 r2
i

0

∫ √
r2−∑ M

i=2 r2
i

0

×
M∏
i=1

pRi
(ri) dr1dr2 . . . drM−1drM (11)

From (4), (11), and (13), the output AFD of MRC in a multi-
branch Weibull fading is then obtained.

V. SPECIAL CASES

The formulation developed here can be specialized to yield
closed-form expressions. In addition they can also be particu-
larized in order to match those already found in the literature.

A. New Closed-Form Expressions

The closed-form expressions shown in this subsection have
been obtained for balanced branches, i.e. Ωi = Ω, and same
fading parameter, i.e. αi = α, i = 1, . . . , M . Define ρ =
r/ α

√
Ω.

• For EGC and α = 1

nR (r) =
√

2πfmM
2M−1

4 ρM− 1
2

Γ(M) exp
(√

Mρ
) (14)

TR(r) =
Γ(M,

√
Mρ) exp

(√
Mρ

)
√

2πfm M
2 M−1

4 ρM− 1
2

(15)

where Γ(a, z) =
∫ z

0
ta−1e−tdt is the incomplete gamma

function.
• For MRC, dual branch (M = 2) and α = 4

nR(r) = e−ρ4√
π

(
ρ2 +

√
π

2
(
ρ4 − 1

)
e

ρ4

2 erf

(
ρ2

√
2

))

(16)

TR(r) =

√
2

(
eρ4 − 1

)
− √

πρ2e
ρ4

2 erf
(

ρ2
√

2

)
√

2πρ2 + π (ρ4 − 1) e
ρ4
2 erf

(
ρ2√
2

) (17)

where erf (·) is the error function. The expressions for the
unbalanced diversity channels have also been obtained,
but they are too long to be presented here.

B. Results from the Literature

For M = 1, the results coincide with those of [5, Eqs. 12
and 13]. For balanced diversity channels and αi = 2, i =
1, ...,M , the formulations reduce to the M -branch EGC and
MRC of the identically, independently distributed Rayleigh
case, given by [4, Eqs. 23 and 24] for m = 1 and [4, Eqs. 38
and 39], respectively.

VI. SOME PLOTS

For the more general cases, including identical and non-
identical fading branches, exhaustive simulations have been
carried out and compared with the analytical expressions
obtained here. All the cases investigated revealed an excellent
agreement between analytical and simulation results. Figs.
1 and 2 show the LCR and the AFD of EGC and MRC,
respectively, for M = 1, 2, 4 and αi = 2, 3, 4, considering
identical Weibull-fading channels. For the sake of clarity, the
simulation data have been omitted in the figures. In fact, they
are practically coincident with the theoretical curves.
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nR(r) =
√

2πfm

M−1︷ ︸︸ ︷∫ √
Mr

0
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Mr−rM

0

· · ·
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i=3 ri

0

√√√√√
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Ω1

α2
1

+
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i=2

r2−αi
i Ωi

α2
i

× pR1

(√
Mr −
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i=2

ri

)
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i=2

pRi
(ri)dr2 · · · drM−1drM (9)

pR,Ṙ (r, ṙ) =

M−1︷ ︸︸ ︷∫ r

0
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r2−r2

M

0

. . .
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2
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+
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i Ωi

α2
i

× pR1

⎛
⎝

√√√√r2 −
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i=2

r2
i

⎞
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i=2

pRi
(ri)dr2 · · · drM−1drM (13)

VII. CONCLUSIONS

Exact formulas for level crossing rate and average fade
duration for M -branch EGC, MRC techniques in a Weibull
environment have been obtained. The formulas have been
validated by reducing the general case to some special cases
for which the solutions are known and, more generally,
by means of simulation. Closed-form expressions for some
particular cases have also been presented.
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Fig. 1. LCR and AFD of EGC for identical Weibull-fading channels (M =
1, 2, 4 and αi = 2, 3, 4)

Fig. 2. LCR and AFD of MRC for identical Weibull-fading channels (M =
1, 2, 4 and αi = 2, 3, 4)


