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Abstract The paper first discusses the autoregressive latent trajectory (ALT) model
and presents in detail its improved version, the continuous-time autoregressive latent
trajectory (CALT) model. Next, serious problems related to the linear components in
the ALT and CALT models are dealt with. As an alternative for the linear component,
the first-order derivative in a second-order stochastic differential equation model is
proposed. This is applied to Marital Satisfaction data, collected in four consecutive
years (2002–2005). It is pointed out that the first-order derivative as explanatory vari-
able has none of the problems associated with the linear component.

Keywords Continuous-time autoregressive latent trajectory model · Second-order
stochastic differential equation model · Structural equation modeling · Exact discrete
model · Random slopes · Asymptotic stability · Time-specific · Time-varying

1 Introduction

Curran and Bollen (2001) and Bollen and Curran (2004, 2006) introduced the au-
toregressive latent trajectory (ALT) model. This model combines two very popular
models in behavioral science, the autoregressive (AR) cross-lagged model and la-
tent trajectory (LT) model. The latter is also called latent growth curve model, latent
curve model, or growth curve model. AR models and LT models have typically been
viewed as adversarial in the analysis of longitudinal data. Bollen and Curran, how-
ever, argued that, theoretically, there are many instances when both the processes
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described by the AR model and the processes described by the LT model are plau-
sible. This made them work toward a synthesis of both approaches, resulting in the
autoregressive latent trajectory (ALT) model, which captures key features of both.

The discrete-time approach in the ALT model has been criticized by Delsing and
Oud (2008). They proposed a continuous-time version of the ALT model, using sto-
chastic differential equations, called by them the continuous-time autoregressive la-
tent trajectory (CALT) model.

In the present paper, the linear component appearing in both the ALT and the
CALT models will be criticized on several counts. The linear component competes
with the AR component in the ALT and CALT models but does not give clear ad-
ditional information. Further, it makes these models necessarily unstable as well as
time-unspecific and time-varying. It is shown that the problems associated with the
linear component are solved by a second-order stochastic differential equation model.
This model replaces the problematic linear component by the first-order derivative as
an explanatory variable. A research example in the field of marital satisfaction illus-
trates the application of the alternative model.

2 Continuous-time autoregressive latent trajectory (CALT) model

The arguments for replacing a discrete-time model by a continuous-time model
are manifold. An overview is given by Oud (2007). Most behavioral science
processes evolve in continuous time. Discrete-time methods are often used to de-
scribe continuous-time processes approximately, especially in case no analytic solu-
tions exist. This may work well, as long as the time interval used in the approximation
is small. However, with typical measurement frequencies of only one or two times
a year in behavioral science, discrete-time modeling in terms of the measurement
interval easily becomes an oversimplification and even a distortion of reality. In ad-
dition, estimating causal effects in studies based on different discrete-time intervals
makes it impossible to compare the results found. The strength and order of magni-
tude of the effects vary with the discrete time interval chosen by the researcher; even
the sign may reverse when passing from one interval to the other or from discrete to
continuous time. Because, additionally, the effects found for equal observation inter-
vals cannot be generalized to other intervals either, discrete-time modeling in terms
of large observation intervals, in spite of its popularity in behavioral science, in fact
turns out to be useless.

The CALT model, a continuous time version of the ALT model, takes the follow-
ing form:

dx(t)

dt
= Ax(t) + Bu(t) + κ + (μβ + κβ)t + G

dW(t)

dt
, (1)

yti = Cx(ti) + Du(ti) + vti . (2)

It consists of a stochastic differential equation (1), describing the evolution of the la-
tent variables in x(t) in continuous time, and a measurement equation (2), describing
for all observed variables in yti , how the latent variables in continuous time become
manifest at the discrete observation time points ti .
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The elements of W(t) contain the Wiener process (see, e.g., Arnold 1974; Kuo
2006). In addition to the Wiener process, which by definition is normally distributed,
also the initial state variables in x(t0) are assumed to be normally distributed, x(t0) ∼
N(μxt0

,�xt0
), as well as the measurement errors, vti ∼ N(0,Rti ). Drift matrix A

(auto-effects on the diagonal and cross-effects off-diagonally) is analogous to the
autoregression matrix (autoregressions on the diagonal and cross-lagged effects off-
diagonally) in discrete time. In fact, the autoregression matrix will be derived as a
nonlinear function of the drift matrix and observation interval. Important properties
of the model depend on the drift matrix.

Multiplied by matrix G, the standard multivariate Wiener process W(t), having
covariance matrix I at t = 1, is transformed into a more general Wiener process
with covariance matrix Q = GG′ at t = 1 (Ruymgaart and Soong 1985, pp. 68–75),
called diffusion matrix. Analogously to the relation between discrete-time autore-
gression matrix and drift matrix, the discrete-time error covariance matrix is derived
as a nonlinear function of the diffusion matrix, drift matrix, and observation inter-
val.

Effects Bu(t) �= 0 and Du(ti) �= 0 for fixed exogenous variables in u(t) accom-
modate for nonzero and nonconstant mean trajectories E[x(t)] and E(yti ) that are
frequently observed even in the case of an asymptotically stable model.

By means of vector κ , state equation (2) introduces constant (over time) random
subject effects κ ∼ N(0,�κ ), which are referred to as intercept variables. They en-
able to distinguish intercept variance (unobserved heterogeneity between subjects)
clearly from stability, avoiding the artifact of using instability (high autoregression)
to keep the subject trajectories apart. Note that the covariance matrix �κ,xt0

between
initial state and intercept cannot, in general, be assumed zero, because the intercept
variables κ are modeled to influence x(t) continuously, after but also already be-
fore t0. Analogously, the slope variables μβ + κβ with means μβ and covariance
matrices �κβ ,�κβ ,xt0

, and �κβ ,κ are introduced.
It should be noted that random subject effects can be added to state vector x(t),

so making the continuous-time CALT model and analogously the discrete-time ALT
model and its submodels (AR and LT) accessible for basic state-space model esti-
mation procedures. Intercepts κ and slope effects (μβ + κβ)t would get 0 and μβt0
in E[x(t0)], and both 0 in C (unobserved heterogeneity). However, whereas κ , be-
ing constant over time, gets also 0 in A because of dκ

dt
= 0, the situation with regard

to κ(t) ≡ (μβ + κβ)t in the dynamic state equation is slightly more complicated:
dκ(t)

dt
= 1

t
κ(t) = μβ + κβ . Nevertheless, CALT model (1)–(2) turns out to be a spe-

cial case of the more basic continuous-time state space model (3)–(4):

dx(t)

dt
= Ax(t) + Bu(t) + G

dW(t)

dt
, (3)

yti = Cx(ti) + Du(ti) + vti . (4)

For estimating the CALT model in form (1)–(2) or general state space form (3)–(4)
in the case of a sample of multiple subjects, we apply the EDM/SEM procedure (Oud
and Jansen 2000). The EDM, introduced in 1961–1962 by Bergstrom (1988), links in
an exact way the discrete-time model parameters to the underlying continuous-time
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model parameters by means of nonlinear constraints. The link is made by solving the
stochastic differential equation as given for the CALT model in (1) for the correct
observation intervals �ti = ti − ti−1 and thus relating the discrete-time parameters in
the discrete-time equation

xti = A�ti xti−�ti
+ B�ti uti−�ti

+ H�ti κ + F�ti μβ + F�ti κβ + wti−�ti

with cov(wti−�ti
) = Q�ti (5)

to the underlying ones in (1) by the highly nonlinear restrictions on the discrete-time
parameters, given in (6):

A�ti = eA�ti ,

B�ti = A−1(A�ti − I)B,

H�ti = A−1(A�ti − I),

�κ�ti
= H�ti �κH′

�ti ,

�κ�ti
,xt0

= H�ti �κ,xt0
for κ�ti = H�ti κ,

F�ti = H�ti ti−1 + A−1(H�ti − �tiI), (6)

�κβ,�ti
= F�ti �κβ F′

�ti
,

�κβ,�ti
,κ�ti

= F�ti �κβ ,κH′
�ti

,

�κβ,�ti
,xt0

= H�ti �κβ ,xt0
for κβ,�ti = F�ti κβ,

Q�ti = irow
[
(A ⊗ I + I ⊗ A)−1(A�ti ⊗ A�ti − I ⊗ I)row(GG′)

]
.

Equation (5) as such does not differ from the ALT model equation, given by Curran
and Bollen (2001). It is only by the restrictions in (6) that the autoregression matrix
A�ti is related to and offers an estimate of the drift matrix A. The same is done
by discrete-time exogenous effect matrix B�ti for the continuous-time exogenous
effect matrix B, whereas the discrete-time intercept covariance matrices �κ�ti

and
�κ�ti

,xt0
and slope covariance matrices �κβ,�ti

,�κβ,�ti
,κ�ti

, and �κβ,�ti
,xt0

are related
to their continuous-time analogues by the intercept constraint matrix H�ti and slope
constraint matrix F�ti , respectively. Finally, (6) specifies how the discrete-time error
covariance matrix Q�ti is related to the diffusion coefficient matrix G. Details can be
found in Delsing anf Oud (2008). All expressions in (6) are derived in Oud and Jansen
(2000) and Singer (1990); see especially Appendix in the former publication for the
derivation of the integrals B�ti , H�ti , F�ti , and Q�ti . A detailed explanation how
the constrained parameter matrices in (6) are put into SEM matrices to get structural
equation modeling (SEM) estimates is found in Oud and Jansen (2000) and Oud
(2007). Because the constraints are nonlinear, it is an example of SEM with nonlinear
terms as, for example, considered by Klein and Schermelleh-Engel (2010).
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3 Serious problems of the linear component in the ALT and CALT models

It is just the presence of the linear components or slope effects (μβ + κβ)t , with
the mean (fixed) slope effects μβ and the random slope variables κβ contain-
ing subject-specific effects that distinguish the ALT and CALT models from stan-
dard explanatory models in behavioral science and economics. The random in-
tercept variables κ are found elsewhere too (e.g., Hsiao 1986; Oud et al. 1999;
Hamerle et al. 1991). The problems of the linear components are not caused by
the EDM/SEM procedure, however, which gives correct estimates of the parame-
ters in μβ and in the covariance matrices �κβ , �κβ ,κ , and �κβ ,xt0

. The problems are
in the added value of the linear components. Putting the linear components in the
same equation as the autoregression matrix or drift matrix makes them competitors
of the autoregression and cross-lagged effects (ALT model) or auto- and cross-effects
(CALT model) in explaining change over time. In fact, ALT and CALT models are
hybrids in that the linear component (LT) competes with the AR component but does
not give clear additional information and shows serious disadvantages. Three impor-
tant specific disadvantages of the linear component in comparison to the AR com-
ponent will be discussed first. Next, the second-order stochastic differential equation
model is presented, which replaces the linear component by the first-order derivative
as explanatory variable. The first-order derivative describes the change in the vari-
able it is the derivative of and not more than that and so gives clear new information
in comparison to the original variable, which is handled by the AR component. It is
shown to lack any of the disadvantages of the linear component.

The first disadvantage of the linear component in comparison to the AR compo-
nent is that it makes the model unstable by definition. Depending on the eigenvalues,
the autoregression or the drift matrix leaves two possibilities: an (asymptotically)
stable or unstable model. In general, a stable model is more realistic than an unsta-
ble model, as instability leads to explosive behavior (variables going to +∞ or −∞),
a rare event in practice. So, the AR component makes it possible to check empirically
whether the model is stable and all variables converge to a stable equilibrium value.
Because of the presence of the linear component, overall means and subject-specific
means go to ∞ or −∞ necessarily, however, and also the variance necessarily goes
to ∞. So, the stability check does not make sense, as the state space model (3)–(4)
which incorporates a linear component is unstable by definition. As confirmed by
Bollen and Curran (2006, pp. 108–109), it does not help to replace the linear compo-
nent by a higher-order polynomial component, for example, a quadratic or cubic com-
ponent, or add higher-order components, because all polynomial components make
the model unstable by definition. Bollen and Curran (2006, p. 109) confirm that it may
be wise to avoid using polynomial components in the modeling of behavioral science
processes: “Since most social and psychological processes are bounded, there is an
advantage in using a function that does not increase or decrease without limits.”

Causal mechanisms can be characterized as “time-specific” or, as it is called in the
state-space literature, “nonanticipative.” As can be observed in the basic AR feed-
back process with x influencing y and y influencing x, yt = ayt−1 + bxt−1 and
xt = cxt−1 + dyt−1, all variables have a time-indication, and there is indeed no antic-
ipation in time. The variables influencing at the right-hand side of the equations are
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located at time point t − 1, that is, before the value at time point t of the variables to
be explained. Reformulating slightly, one gets yt − yt−1 = (a − 1)yt−1 + bxt−1 and
xt − xt−1 = (c − 1)xt−1 + dyt−1. The change variables to be explained at the left-
hand side of the equations, yt − yt−1 and xt − xt−1, come close to slope variables in
the LT part of the ALT and CALT models. However, as also observed by Curran and
Bollen (2006, p. 208), the latent slope variables κβ in (1) and (5) differ in one crucial
aspect from the change variables. The slope variables characterizing individuals have
no time indication and are therefore time-unspecific quantities floating above time-
specific reality. It has become customary in the LT literature to compute covariances
between the slope variables in κβ , intercept variables in κ , and between the intercept
variables in κ , on the one hand, and the slope variables in κβ , on the other hand. Often
one is specifically interested in the covariances between the intercepts, hypothesized
to be causes, and the slopes, hypothesized to be effects. However, the disadvantage of
the latent intercept-slope covariances is their time-unspecific character, which makes
a causal interpretation impossible and “support” for causal connections unwarranted.
In fact, the meaning of the covariances between LT components in the LT as well as
ALT and CALT models is unclear.

A third major disadvantage of the linear component is that its sheer presence in
the ALT and CALT models makes the models time-varying. Time-invariance in the
state-space modeling literature means that the model results are invariant under time-
scale shifts. This can be clarified again by the basic time-invariant AR equation yt =
ayt−1 + bxt−1 or yt − yt−1 = (a − 1)yt−1 + bxt−1. Suppose that intelligence xt−1
adds to school achievement, so that the increase in achievement yt − yt−1 is equal
to the intelligence effect bxt−1 plus the auto-effect (a − 1)yt−1. In a stable model
this auto-effect is negative, so that the increase yt − yt−1 is positive only if bxt−1 is
sufficiently positive to exceed the negative (a − 1)yt−1. Because the model is time-
invariant, we get exactly the same result for difference choices of the zero time point.
Suppose that the results for the original time scale t = . . .0,1,2,3 . . . are . . . y0 = 4,
y1 = 6, y2 = 6, y3 = 8, . . . (on the basis of the parameter values a = 1, b = 2, and
exogenous variable values . . . x0 = 1, x1 = 0, x2 = 1, . . .). If we now shift the time
scale by adding 100 to t but keep the model and the intelligence values on the shifted
time scale exactly equal, we get exactly equal values . . . y100 = 4, y101 = 6, y102 = 6,
y103 = 8, . . . on the shifted time scale. Time invariance is generally considered to be a
prerequisite for analyzing true causality. If true causality is operating, on the basis of
the same intelligence values, the same results should be obtained at different positions
on the time scale. But this presupposes that at least the model is time-invariant.

Adding a linear component αt to the basic AR model yt = ayt−1 + bxt−1, then
becoming yt = ayt−1 +bxt−1 +αt , immediately makes the model time-varying, how-
ever. If the original results are . . . y0 = 4, y1 = 9, y2 = 15, y3 = 26, . . . for α = 3 (the
rest of the model specified as above), those on the shifted time scale become now
. . . y100 = 4, y101 = 309, y102 = 615, y103 = 926, . . . , and so are totally different,
merely as a result of shifting the time scale. In fact, the time-varying character of the
model caused by the linear component implies little empirical for the intercept-slope
covariances, computed as part of an LT, ALT, or CALT analysis. These are dependent
on the choice of the zero time point in the time scale. By shifting the time scale almost
any covariance and correlation value can be reached. For the intercept and slope in the
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same variable, Mehta and West (2000, pp. 25–26) prove for an LT analysis that shift-
ing the time scale so that the original zero time point gets value cov(κ,κβ)/var(κβ),
where κ is the intercept, and κβ is the slope, makes the new intercept/slope covari-
ance zero. Choosing lower values makes the new intercept/slope covariance positive,
and choosing higher value makes it negative. In essence, the proof for intercept and
slope in the same variable is given again by Biesanz et al. (2004, p. 50) and by Bollen
and Curran (2006, pp. 115–118). As proven in Appendix, however, similar results can
be obtained for the intercept in one variable (e.g., intelligence) and slope in a different
variable (e.g., achievement). To get a zero intercept/slope covariance or correlation,
one replaces the original zero time point by cov(κ1,κ2β)/ cov(κ1β,κ2β), where κ1 is
the intercept of one of the variables, and κ1β and κ2β are the slopes. Choosing lower
values makes the new intercept/slope covariance positive again, and choosing higher
value makes it negative again, but only if cov(κ1β,κ2β) is positive. If cov(κ1β,κ2β)

is negative, covariances take on the opposite signs. We conclude that the height of the
covariances is largely an artifact of the choice of the zero time point.

4 Second-order stochastic differential equation model: replacing the slope
variable by the first-order derivative as explanatory variable

Equations (7)–(8) display the second-order stochastic differential equation model.
It is shown how this second-order model, like the CALT model, can be formulated
as a special case of the basic continuous-time state space model (3)–(4) and can
therefore be estimated by means of the EDM/SEM procedure. Although (7) is spec-
ified for two state variables z1(t) and z2(t), it is easily extended for more than two
variables or reduced for only one variable. Because in the state vector x(t) on the
right-hand side of (7), in addition to z1(t) and z2(t), the first-order derivatives dz1(t)

dt

and dz2(t)
dt

are specified as explanatory variables, in its derivative dx(t)
dt

on the left-

hand side, the second-order derivatives d2z1(t)

dt2 and d2z2(t)

dt2 show up. The 1’s in the
matrix A specify that the first-order derivatives on the right-hand side and left-hand
side are equal. Because the first-order derivatives are not directly observed, the third
and fourth columns in the matrix C are zero columns.

⎡

⎢⎢⎢
⎢⎢
⎣

dz1(t)
dt

dz2(t)
dt

d2z1(t)

dt2

d2z2(t)

dt2

⎤

⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

a11 a12 a13 a14
a21 a22 a23 a24

⎤

⎥⎥
⎦

⎡

⎢⎢
⎢
⎣

z1(t)

z2(t)

dz1(t)
dt

dz2(t)
dt

⎤

⎥⎥
⎥
⎦

+ Bu(t) + G
dW(t)

dt
, (7)

dx(t)

dt
= A x(t) + Bu(t) + G

dW(t)

dt
,

yti = Cx(ti) + Du(ti) + vti . (8)
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5 Marital Satisfaction in 235 couples

The second-order model will be applied to a data set of 235 Dutch couples of hus-
bands and wives, who filled out a questionnaire in four consecutive years (2002, 2003,
2004, 2005). The questionnaire was based on Rusbult (1983) and had Marital Satis-
faction as one of the topics. Only the data for Marital Satisfaction (four items that
were added into the Marital Satisfaction scale score) of subjects with complete data
were analyzed. The matrix A in the second-order model (7)–(8) is displayed in (9).
The model relates the second-order Satisfaction derivative in each partner to her/his
own Satisfaction (a), to the Satisfaction of her/his partner (αa or βa), to her/his own
first-order Satisfaction derivative (b), and to the first-order Satisfaction derivative of
her/his partner (αb or βb). In both partners the effect of the original variable is as-
sumed to be a and of the first-order derivative b. As the effect of the partner may be
assumed less than one’s own effect, a and b are multiplied by a partner effect (α for
the effect of husband on wife, and β for the effect of wife on husband).

⎡

⎢⎢⎢⎢⎢
⎣

dz1(t)
dt

dz2(t)
dt

d2z1(t)
dt

d2z2(t)
dt

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1
a αa b αb

βa a βb b

⎤

⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

z1(t)

z2(t)

dz1(t)
dt

dz2(t)
dt

⎤

⎥⎥⎥⎥
⎦

a = effect of original variable,
b = effect of first-order deriv-

ative (change variable),
α = effect of husband on wife,
β = effect of wife on husband,

(9)

dx(t)

dt
= A x(t),

The χ2-difference between the χ2’s of the first-order model and the second-order
model is 53.4, which for df = 4, is highly significant. This means that the second-
order model fits significantly better. Quite interesting are the effects between partners
α and β . It turns out that α, the effect of husband on wife, is virtually zero, whereas β ,
the effect of wife on husband, is −0.384 and significant. Although the latter value is
negative, it has to be interpreted in the positive direction, because it multiplies with
the negative values a and b into the positive effects βa = 0.299 and βb = 2.391.

Solving the differential equation gives the cross-lagged effects between the origi-
nal satisfaction variables over increasing intervals but, in a second-order model, also
the lagged effect of the first-order derivatives over increasing intervals. Figure 1 dis-
plays the lagged effects over increasing intervals of the first-order derivatives (change
in Satisfaction in husband and wife) on Satisfaction in wife and husband. Expectedly,
the lagged effect of the change in the husband on wife is everywhere negligible.
However, there is a lagged effect of Satisfaction change in the wife on husband’s Sat-
isfaction, which reaches its maximum after 0.95 year and then, because the model is
stable, dies out but quite slowly.

In Fig. 2 the model is used to display in continuous time the mean development
in Satisfaction for husbands and wives (original variables) and in Satisfaction change
(first-order derivatives). It is shown that during the data collection period (2002–
2005), the mean Satisfaction in wives first rather sharply goes down but then hardly
changes any more. The hardly observable decrease is continued in the prediction
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Fig. 1 Lagged change variable effects of husband on wife and wife on husband over increasing intervals;
maxima are reached after 0.95 and 0.80 year

period. In husbands, after a very short increase at the start of 2002, a moderate de-
crease starts which is continued during the prediction period, resulting after several
years in a rather big difference in Satisfaction between husbands and wives. Observe
that the development in mean Satisfaction for husbands and wives is very precisely
reflected in the means of the Satisfaction change variables (first-order derivatives).
These are negative over the whole period except at the very start for husbands, in-
dicating that there is almost everywhere decrease in Satisfaction. The very negative
first-order derivative in the first months of 2002 for wives corresponds to the sharp
decrease in Satisfaction seen there. Very important is that both first-order derivatives
converge to 0, indicating that, in the end, both Satisfaction in wives and in husbands
converge to (stable) equilibrium values.

Figure 2 clearly demonstrates that the original variables (top panel in Fig. 2) and
the first-order derivatives (bottom panel in Fig. 2) give two different kinds of informa-
tion about the Satisfaction development, which complement each other. The original
variables give information about the level of Satisfaction at each point in time and,
multiplied by the coefficients in (9) involving a (a, αa, and βa), about the level ef-
fects. The first-order derivatives give exact information about the Satisfaction change
at each point in time and, multiplied by the coefficients in (9) involving b (b, αb,
and βb), about the change effects. The latter can be different at each point in time,
increasing, decreasing, or zero. In contrast, the linear component in CALT model (1)
forces the Satisfaction change into the constantly increasing or constantly decreasing
linear form, dictated by the constantly increasing time variable t .

Whereas the CALT model, because of the linear component in (1), is unstable by
definition, the second-order model may be stable or unstable, depending on the data.
Because the eigenvalues of the drift matrix in (9) for the Marital Satisfaction data
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Fig. 2 Model-based estimated, interpolated, and predicted mean development in Satisfaction and Satis-
faction change for husbands and wives

have all negative real parts, the model is (asymptotically) stable, and all trajectories
converge to stable equilibrium values (e.g., see all curves in Figs. 1 and 2).

Figure 2 clearly demonstrates the time-specific character of the derivatives dz1(t)
dt

and dz2(t)
dt

in (9) with different values at different time points (and for different sub-
jects), which is in stark contrast to the time-unspecific (constant) character of the
random slope variables κβ in (1) of the CALT model, which can be different for
different subjects but are constant across time.

Finally, because all the coefficients in (9) are constants, none of them a function
of time, the second-order model is time-invariant. This means that shifts of the time
scale do not affect the model results. Specifically, if for generating Figs. 1 and 2, the
model would have used the shifted time scale 02, . . . ,12 instead of 2002, . . . ,2012,
exactly the same figures would have resulted (with time axis 2002, . . . ,2012 replaced
by 02, . . . ,12).
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6 Discussion

After introducing the CALT model, which is a continuous-time version of the ALT
model, this paper sharply criticized the linear component in the ALT and CALT mod-
els. The models are hybrids, with the linear component competing with the autore-
gressive component and not giving clear additional information. Further, the linear
component (1) makes the model unstable by definition, (2) by its time-unspecific
character, it is unsuitable for assessing causal relationships, (3) it makes the model
time-varying and relationships dependent on the choice of the zero time point. The
introduction of the second-order stochastic differential equation model as an alterna-
tive for the ALT and CALT models was followed by an example, using the first-order
derivative as an explanatory variable instead of the linear component. The first-order
derivative (1) leaves the possibility of a stable or unstable model open, (2) is time-
specific as it takes on different values across time, and (3) its effects are not affected
by the choice of different zero time points.

Finally, it should be noted that the criticisms (1), (2), and (3) do not apply only
to the linear components in the ALT and CALT models but more generally to the
linear and higher-order polynomial components in the latent trajectory model (LT) as
well. However, the emphasis on the CALT model is motivated by the alternative of
the AR component offered by this model in the same equation and by the possibility
to transform it into the second-order model by replacing the linear component by the
first-order derivative. The CALT model might also first be fitted to the data, before
trying to improve the fit by the second-order model.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: How to shift the zero time point in the LT model to get a zero
intercept/slope covariance in the same variable (intercept and slope of x1)
or between different variables (intercept of x1 and slope of x2)

The procedure will be explained for a model in five time points with equal intervals
(t = 0,1,2,3,4) to be shifted toward t ′ = 0 + a,1 + a,2 + a,3 + a,4 + a. However,
the restriction to less than or extension to more than five time points and handling
of unequal intervals (e.g., t = 0,2,3,6,10) are straightforward. A linear LT model
consists of three matrices, loading matrix �, latent covariance matrix � , and mea-
surement error covariance matrix �, that combine into the model-implied moment
matrix

� = ���′ + �.

Only the matrices

� =

⎡

⎢⎢⎢
⎢
⎣

1 0 1 0
1 1 1 1
1 2 1 2
1 3 1 3
1 4 1 4

⎤

⎥⎥⎥
⎥
⎦
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and

� =

⎡

⎢⎢
⎣

var(κ1)

cov(κ1, κ1β) var(κ1β)

cov(κ1, κ2) cov(κ2, κ1β) var(κ2)

cov(κ1, κ2β) cov(κ1β, κ2β) cov(κ2, κ2β) var(κ2β)

⎤

⎥⎥
⎦

are involved in the procedure, however. Transformation from � to �∗ = �T,

�∗ =

⎡

⎢⎢⎢⎢
⎣

1 0 + a 1 0 + a

1 1 + a 1 1 + a

1 2 + a 1 2 + a

1 3 + a 1 3 + a

1 4 + a 1 4 + a

⎤

⎥⎥⎥⎥
⎦

,

is done by transformation matrix T,

T =

⎡

⎢⎢
⎣

1 a 0 0
0 1 0 0
0 0 1 a

0 0 0 1

⎤

⎥⎥
⎦ → T−1 =

⎡

⎢⎢
⎣

1 −a 0 0
0 1 0 0
0 0 1 −a

0 0 0 1

⎤

⎥⎥
⎦ .

To keep the same �,

� = ���′ + � = �∗�∗�∗′ + �,

� needs to be transformed too:

�∗ = T−1�T−1 ′.

Therefore,

cov∗(κ1, κ1β) = cov(κ1, κ1β) − avar(κ1β) = 0 → a = cov(κ1, κ1β)

var(κ1β)
,

cov∗(κ1, κ2β) = cov(κ1, κ2β) − a cov(κ1β, κ2β) = 0 → a = cov(κ1, κ2β)

cov(κ1β, κ2β)
.

This proves that shifting t = 0,1,2,3,4 to t ′ = 0 + a,1 + a,2 + a,3 + a,4 + a with

choice a = cov(κ1,κ1β)

var(κ1β)
makes the covariance/correlation between intercept κ and slope

κβ in the same variable zero, while the choice a = cov(κ1,κ2β)

cov(κ1β ,κ2β )
makes the covariance

between intercept κ in one variable and slope κβ in the other variable zero.
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