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1 Introduction

The Modern Portfolio Theory of Markowitz (1952) evaluates investments in term of their
mean and variance: The portfolio choice problem is very intuitive and consists in minimizing
the variance (risk) over the set of feasible portfolios’ payoffs, given that the mean (reward)
is greater than a target value (see for an overview De Giorgi 2002). In the mean-variance
model, if investors agree on the assets’ distributions and the risk free asset exists, the Secu-
rity Market Line Theorem is satisfied at any financial market equilibrium, i.e. assets’ excess
expected returns are proportional to the market excess expected return. This is the main
conclusion of the Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) and
Mossin (1966). It suggests to evaluate assets’ returns looking at the proportional factors in
the Security Market Line equation, the so called β-factors. As stated by Jagannathan and
Wang (1996) the CAPM “is widely viewed as one of the two or three major contributions of
academic research to financial managers during the post-war era”.
Nevertheless, from a theoretical point of view, the variance as measure of risk has been
hardly criticized. First, it is a symmetric measure on the space of random variables and
treats positive and negative deviations from the mean in the same way, while the formers
are obviously welcome. Second, it is inappropriate to describe the risk of low probability
events, that are typical when dealing with credit portfolio losses. Moreover, the empirical
validity of the mean-variance CAPM has been debated in several papers, as discussed by
Jagannathan and McGrattan (1995).
Many authors address the issue of finding measure of risk that are able to better de-
scribe the characteristics of assets’ distributions with respect to the investors’ perception
of risk. Several alternative risk measures as been proposed in the literature: semivari-
ance (Markowitz 1959, Ogryczak and Ruszczynski 1997), general lower partial moments
(Jean 1975, Bawa 1975, Unser 2000), value-at-risk (Jorion 1997), expected shortfall (Acerbi
and Tasche 2002, Rockafellar and Uryasev 2002), among others. Consequently, replacing the
variance with more sophisticated measures of risk, the corresponding equilibrium capital-
market models has been considered, e.g. by Hogan and Warren (1974), Bawa and Linden-
berg (1977), Harlow and Rao (1989), De Giorgi (2002) and Post and Van Vilet (2004). Still,
the choice of one particular measure is under debate and strongly depends on investors’
perception of risk.
Artzner, Delbaen, Eber, and Heath (1997, 1999), being concerned with banking regulation,
address their attention to understanding how measure of risk should behave, instead of ar-
guing in favour of one particular measure. They proposed an axiomatic definition of risk
measures throughout four properties (positive sub-additivity, monotonicity, translation in-
variance and homogeneity) and introduced the concept of coherent measure of risk, that
strongly influenced the way of thinking at risk measurement and risk management. The
same approach of characterizing measures of risk by a set of principles or axioms has been
extended to measures of reward in De Giorgi (2004), where we define measures of reward
and measures of risk for portfolio selection, imposing for both the isotonicity with respect to
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the second order stochastic dominance, besides other properties, in order to avoid paradox-
ical preferences when compared to the Expected Utility paradigm. We also give a unique
characterization of reward measures (the mean) and we suggest a class of risk measures for
portfolio selection, that are related to the Choquet Expected Utility Theory. In this setup,
a risk measure arises from a convex distortion of the physical survival distribution function.
Moreover, the portfolio decision problem based on the Choquet expectation can be formu-
lated as linear quintile regression, as showed by Bassett, Koenker, and Kordas (2004). A
large class of risk measures proposed in the literature can be represented in this way, as
discussed in De Giorgi (2004).
In this paper we consider the reward-risk model for portfolio selection introduced in De Giorgi
(2004) and we study the financial market equilibria, in order to obtain a possible extension
of the CAPM resulting from the mean-variance analysis, to a similar equilibrium model in
the reward-risk setup. We show that if markets are complete, then investors’ optimal allo-
cations are comonotonic, analogously to the Tobin separation in the classical mean-variance
approach. Moreover, at any financial market equilibrium, the Capital Asset Pricing Model
holds, where the pricing kernel is not the market portfolio as in the mean-variance CAPM,
but a strictly decreasing function of it, that corresponds to the increments of the investors’
distortion function at the optimal allocations. The comonotonicity of investors’ optimal
allocations implies that at equilibrium the market is also comonotonic to every investor’s
consumption. Moreover, it follows that financial market equilibria exist only if all investors
possess the same distortion function, i.e. the same reward-risk setup.
Finally, we test the market efficiency with respect to the reward-risk setup and the reward-
risk CAPM, for a large class of strictly convex distortion functions characterized by a unique
parameter. We select the distortion that minimizes the statistics associated to the J-test for
over-identifying restrictions. It follows that the parameter of the distortion which minimize
the test statistics can interpreted as the investor’s degree of pessimism, as introduced in
Bassett, Koenker, and Kordas (2004). The empirical analysis based on market data from
1932 to 2002 shows that investors are lightly pessimistic. Moreover, the estimated param-
eter and the associated risk measure provide a pricing kernel near to that obtained for the
mean-semivariance CAPM.
Recently, Post and Van Vilet (2004) also provide empirical evidence in favor of the mean-
semivariance CAPM. However, the analysis of Post and Van Vilet (2004) is restricted to the
mean-semivariance CAPM versus the mean-variance CAPM, imposing the corresponding
model for the pricing kernel and without any equilibrium consideration. In this paper, we
start with a general model for investors’ reward-risk preferences and obtain the reward-risk
CAPM from the study of financial market equilibria.
The remainder of the paper is organized as follows: in Section 2 we present the reward-risk
portfolio selection problem and we derive the reward-risk Capital Asset Pricing Model. In
Section 3, we test empirically the market efficiency based on the reward-risk CAPM. Section
4 concludes.
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2 The model

We consider a two-periods exchange economy. The model setup follows Duffie (1988). Let
Ω = {1, . . . , S} denote the state of nature at the final period T . F = 2Ω is the power alge-
bra on Ω, i.e. the set of all possible events arising from Ω. Uncertainty is modeled by the
probability space (Ω,F , P), where the probability measure P on Ω satisfies ps = P

[

{s}
]

> 0
for all s = 1, . . . , S, i.e. every state of the world have strictly positive probability to occur.
The space G of real-valued measurable functions is endowed with the scalar product X ·Y =
∑S

s=1 X(s) Y (s) ps = EP

[

X Y
]

.
There are K +1 assets with payoffs Ak. The asset 0 is the risk-free asset with payoff A0 = 1.
The supply of risky assets is exogenously given and denoted by θk > 0 (k = 1, . . . , K), while
the risk-free asset is in elastic supply with exogenously given price 1

1+r
, where r > 0 is the

risk-free rate of return. The marketed subspace X is the span of (Ak)k=0,1,...,K . Without loss
of generality, we assume that no-redundant assets exist, i.e. dim(X ) = K+1, where obviously
K +1 ≤ S. The market portfolio is the sum of all available risky assets, i.e. ω̃ =

∑K

k=1 Ak θk.

There are i = 1, . . . , I investors, initially endowed with wealth wi > 0. The numbers θi
k

denote the amount of security k held by agent i, qk denotes the k-th security price. Thus,
when trading these securities, the agent can attain the consumption plan X =

∑K

k=0 Ak θi
k ∈

X where θi satisfies the budget restriction (i.e. q(X) =
∑K

k=0 qk θi
k ≤ wi). We denote by

Bi the subset of X , such that X ∈ Bi is budget-feasible for investor i, i.e. Bi = {X ∈ X |
q(X) ≤ wi}. Note that Bi is a convex set.

Agents evaluate consumption plans according to a risk-reward pair (µ, ρi), where µ(X) =
E

[

X
]

and ρi : G → R is a risk measure as defined in De Giorgi (2004, Theorem 4.2). The
measure ρi satisfies the following four properties: convexity, the risk of the zero payoff is
zero, invariance with respect to adding risk-free positions and, finally, the isotonicity with
respect to the second order stochastic dominance. The measure ρi arises from an axiomatic
definition of risk measures based on the four properties listed above. Note that we do not
impose the same measure of risk for all investors. In fact, investors’ perception of risk can
differ and thus also the way of measuring it (Weber and Milliman 1997), as long as the four
properties above are satisfied.
The consumption plan X =

∑K

k=0 Ak θi
k ∈ X for investor i is said to be (µ, ρi)-efficient iff

(i) q(X) ≤ wi (budget feasible), and

(ii) 6 ∃Y ∈ X such that q(Y ) ≤ wi and one of the following two statements is satisfied

(a) ρi(X) > ρi(Y ) and µ(X) = µ(Y ) or,

(b) ρi(X) = ρi(Y ) and µ(X) < µ(Y ).

From De Giorgi (2004, Theorem 2.1), X ∈ X is (µ, ρi)-efficient iff X is budget feasible and
uniquely minimizes the function Ri = ξi ρi − µi over Bi, for some ξi > 0. Moreover, there
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exists a convex, non-decreasing function gi on [0, 1], with gi(0) = 0 and gi(1) = 1 such that

Ri(X) = −

∫ 0

−∞

(

gi(FX(x)) − 1
)

dx −

∫ ∞

0

gi
(

FX(x)
)

dx (1)

and FX is the cumulative distribution function of X under P. The convex function gi is called
distortion and uniquely characterizes investors’ risk preferences. Moreover, the function Ri

corresponds to a Choquet integral and is related to the Non-Expected Utility Theory of
Schmeidler (1989). Therefore, the investor’s portfolio choice problem is:

min
X ∈Bi

Ri(X), (2)

or equivalently
max
X ∈Bi

−Ri(X). (3)

We introduce the following definition:

Definition 2.1 (Financial market equilibrium). Given a risk-free rate r, a financial
market equilibrium consists of a price vector q̂ ∈ R

K+1 with q̂0 = 1
1+r

and allocations X̂ i ∈ X
for i = 1, ..., I, such that

(i) X̂ i maximizes −Ri over Bi (investors’ portfolio choice), and

(ii) ∃α0 ∈ R such that α0 1 +
∑I

i=1 X̂ i = ω̃ (makerts clear).

The property (ii) in Definition 2.1, says that the sum of investors’ optimal allocations is
the market portfolio plus the exogenously supplied number of risk-free assets. In fact, the
market portfolio has been defined as just the sum of supplied risky assets.
Instead of using Definition 2.1 directly, we first impose some restrictions on the equilibrium
prices q̂. Note that here the goal function Ri is strictly monotone and therefore a necessary
condition for the portfolio decision problem given above to have a solution (and thus, in order
property (i) of the previous definition to be satisfied) is that consumers cannot exploit an
arbitrage opportunity. Therefore, a necessary condition for the existence of market equilibria
is that the following equation holds:

G+ ∩ {X ∈ X |q(X) ≤ 0} = {0} , (4)

where G+ is the subset of elements in G with non-negative outcomes in all states of nature.
Equation (4) means that non-negative payoffs must have strictly positive price, if not the
zero payoff. In fact, if equation (4) fails to be true for some price vector q, then investors
can freely obtain a positive payoff in all state of nature, that is strictly positive in at least
one state of nature. Therefore, they could infinitely increase their objective function and
no optimal solution to their investment problem would exist. A price vector q ∈ R

K+1 such
that equation (4) is satisfied, is said to be arbitrage free for the marketed subspace X . The
following Lemma holds.
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Lemma 2.1 (Existence of the pricing portfolio). Let q ∈ RK+1 be an arbitrage free
price vector for the marketed subspace X . Then it exists ℓ ∈ X , EP

[

ℓ
]

= 1 such that

q(X) =
1

1 + r
ℓ · X (5)

for all X ∈ X and q(X) ≥ 0.

Proof. The arbitrage free equation (4) implies that

{X ∈ X |q(X) ≤ 0} ∩

{

Y ∈ G |Y ≥ 0,
∑

s∈Ω

Y (s) = 1

}

= ∅.

Let define the convex subspace of G by K = {X ∈ X |q(X) ≤ 0}, i.e. the set of marketed
allocation with negative price. Moreover, let P =

{

Y ∈ G |Y ≥ 0,
∑

s∈Ω Y (s) = 1
}

. Since
K ∩ P = ∅, then by the Farka’s Lemma we find a linear functional Ψ on G with Ψ(X) = 0
for X ∈ K and Ψ(Y ) > 0 for Y ∈ P. Moreover, by the Riesz Representation Theorem (see
Duffie 1988, Chapter I.6) we find ψ ∈ G with Ψ(Z) = ψ · Z for all Z ∈ G. Let s ∈ Ω and
define Ys by Ys(s

′) = 1 if s′ = s and Ys(s
′) = 0 else. Ys is the Arrow security for state s.

Obviously Ys ∈ P and 0 < Ψ(Ys) = ψ(s) ps for all s ∈ Ω. Since ps > 0 then ψ(s) > 0. We
define ℓ = ψ

µ(ψ)
and a probability measure π on (Ω,F) by π(s) = ℓ(s)ps. We have

µ(ψ)−1Ψ(Z) =
∑

s∈Ω

Z(s) π(s) = Eπ

[

Z
]

.

Consider the following investment: Borrow θ0 = −1 units of the risk-free asset, to finance θi =
q0

qi
units of asset k ∈ {1, . . . , K} (moreover, θi = 0 for i 6= 0, k). Then, X =

∑K

k=0 θk Ak ∈ K

since q(X) = 0, by construction. Therefore, µ(ψ)−1Ψ(X) = Eπ

[

X
]

= 0. It follows:

qk =
q0

Eπ

[

A0

]Eπ

[

Ak

]

=
1

1 + r
Eπ

[

Ak

]

.

From the computation above, we see that for an arbitrage free price vector q ∈ R
K+1, we

find ℓ ∈ G such that

qk =
1

1 + r
ℓ · Ak

for k = 1, . . . , K and thus for X =
∑K

k=0 θk Ak ∈ X ,

q(X) =
K

∑

k=0

θk qk =
1

1 + r

K
∑

k=0

θk (ℓ · Ak) =
1

1 + r
ℓ ·

(

K
∑

k=0

θk Ak

)

=
1

1 + r
ℓ · X.
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By construction ℓ > 0 and EP

[

ℓ
]

= 1. Note that ℓ may not be an element of X , but since
we restrict the pricing rule just described to X , we can assume without loss of generality1

that ℓ ∈ X . In fact, if ℓ /∈ X , we can decompose ℓ into one part ℓ‖ in X and one part ℓ⊥
orthogonal to X . Since for all X ∈ X , ℓ⊥ ·X = 0, the pricing rule can be rewritten as ℓ‖ ·X.
Moreover, since 1 ∈ X , 0 = ℓ⊥ · 1 = EP

[

ℓ⊥
]

. Thus, we assume ℓ ∈ X and EP

[

ℓ
]

= 1.

ℓ is called the pricing portfolio (Duffie 1988) or ideal security (Magill and Quinzii 1996).
Using the pricing portfolio ℓ we can rewrite the budget set as Bi = {X ∈ X |ℓ·X ≤ (1+r) wi}
and the no-arbitrage decision problem of investor i is given by

max
X∈X

−Ri(X), ℓ · X ≤ (1 + r) wi. (6)

An equivalent definition of financial market equilibria is now the following:

Definition 2.2. Given a risk-free rate r, a financial market equilibrium consists of a price
vector ℓ̂ ∈ X and allocations X̂ i ∈ X for i = 1, ..., I, such that

(i) X̂ i maximizes −Ri subject to ℓ̂ · X ≤ (1 + r) wi for i = 1, ..., I, and

(ii) ∃α0 ∈ R such that α0 1 +
∑I

i=1 X̂ i = ω̃.

We now come back to the individual portfolio choice of equations (2) and (3). We
rewrite the function Ri using its integral representation (1). Let consider X ∈ G and take a
permutation ζ of Ω = {1, . . . , S} such that X(ζ(1)) ≤ X(ζ(2)) ≤ · · · ≤ X(ζ(S)). Then

Ri(X) = −X(ζ(1)) −
S−1
∑

s=1

gi

(

1 −
s

∑

l=1

pζ(l)

)

[X(ζ(s + 1)) − X(ζ(s))] .

Let

qi
ζ(1) = 1 − gi(1 − pζ(1)),

qi
ζ(s) = gi

(

1 −
s−1
∑

l=1

pζ(l)

)

− gi

(

1 −
s

∑

l=1

pζ(l)

)

, for s = 2, . . . , S.

Note that qi
ζ(s) ≥ 0 since g is non-decreasing,

∑S

s=1 qi
ζ(s) = 1, and qi

ζ(1) ≥ qi
ζ(2) ≥ · · · ≥ qi

ζ(S)

since gi is convex. Moreover,

Ri(X) = −
S

∑

s=1

qi
ζ(s) X(ζ(s)) = −

S
∑

s=1

qi
ζ(s)

∑

l: X(ζ(l))=X(ζ(s)) pζ(l)

pζ(s) X(ζ(s)).

1This assumption just refers to the pricing rule ℓ · X and not to the way ℓ is obtained. It might occur
that the new ℓ cannot be written as Radon-Nikodym Derivative with respect to some equivalent probability
measure.
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Note that
∑

l: X(ζ(l))=X(ζ(s)) qi
ζ(l)

∑

l: X(ζ(l))=X(ζ(s)) pζ(l)

=
gi

(

P
[

X ≥ X(ζ(s))
])

− gi
(

P
[

X > X(ζ(s))
])

P
[

X = X(ζ(s))
] = f i

X(X(ζ(s)))

where

f i
X(x) =

gi
(

P
[

X ≥ x
])

− gi
(

P
[

X > x
])

P
[

X = x
]

is a positive, non-increasing function of x, since gi is non-decreasing and convex. Moreover,
by definition, f i

X(X) ∈ G with

EP

[

f i
X(X)

]

= 1, f i
X(X) ≥ 0 and, Ri(X) = −EP

[

f i
X(X) X

]

= −f i
X(X) · X.

Thus, the vector f i
X(X) ∈ G is a probability measure on (Ω,F) and the functional Ri is the

negative expectation with respect to f i
X(X) ∈ G. Similar results are given by Carlier and

Dana (2003) for non atomic spaces. The optimization problem (6) can be rewritten as

max
X∈X , λi

f i
X(X) · X − λi (ℓ · X − (1 + r) wi) = max

X∈X , λi

(

f i
X(X) − λi ℓ

)

· X + λi (1 + r) wi. (7)

where λi is the Lagrange multiplier. Let Li(X,λi) = (f i
X(X) − λi ℓ) · X + λi (1 + r) wi be

the Lagrange function. The following relationship between any efficient allocation X̂ i and
the pricing portfolio is satisfied.

Theorem 2.1. Let X̂ i ∈ arg maxX∈X −Ri(X), s.t. ℓ · X ≤ (1 + r) wi, then

f i

X̂i(X̂
i)‖ = ℓ

and ℓ · X̂ i = (1 + r) wi for all i = 1, . . . , I, where for Y ∈ G, Y = Y⊥ + Y‖ is the unique
orthogonal decomposition of Y with respect to X , i.e. Y⊥ ⊥ X and Y‖ ∈ X .

Proof. (i) We prove: ℓ · X̂ i = (1 + r) wi.
Let X̂ i ∈ arg maxX∈X −Ri(X), s.t. ℓ · X ≤ (1 + r) wi. Since the function −Ri(X) is
strictly monotone and the risk-less asset exists, X̂ i must satisfy the budget restriction
with equality, i.e. ℓ · X̂ i = (1 + r) wi.

(ii) We prove: f i

X̂i
(X̂ i)‖ = ℓ.

Let Z ∈ X such that ℓ · Z = 0 (i.e. Z ∈ span(ℓ)⊥ ∩ X ) and Y i = X̂ i + ǫ Z for ǫ > 0.
Then Yi ∈ X ∩ Bi and

Li(Y i, λi) =
(

f i
Y i(Y i) − λi ℓ

)

· Y i + λi (1 + r) wi

= f i
Y i(Y i) · Y i − λi ℓ · X̂ i + λi (1 + r) wi

=
(

f i
Y i(Y i) − f i

X̂i(X̂
i)
)

· Y i + ǫ f i

X̂i(X̂
i) · Z + Li(X̂ i, λi).
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Let ζ be a permutation of Ω such that X̂ i(ζ(1)) ≤ X̂ i(ζ(2)) ≤ · · · ≤ X̂ i(ζ(S)). With-
out loss of generality, for ǫ > 0 small enough, Y i(ζ(1)) ≤ Y i(ζ(2)) ≤ · · · ≤ Y i(ζ(S)).
In fact, if for some s ∈ {1, . . . S − 1}, X̂ i(ζ(s)) = X̂ i(ζ(s + 1)) and Ŷ i(ζ(s)) >
Ŷ i(ζ(s + 1)), then we take the permutation ζ̃ of Ω such that ζ̃(l) = ζ(l) for all
l 6= s, s + 1 and ζ̃(s) = ζ(s + 1), ζ̃(s + 1) = ζ(s). Then (f i

Y i(Y i) − f i

X̂i
(X̂ i)) · Yi =

−
∑S

s=1

(

qζ(s) − qζ(s)

)

Yi(ζ(s)) = 0 and thus

Li(Y i, λi) = ǫ f i

X̂i(X̂
i) · Z + Li(X̂ i, λi).

Therefore f i

X̂i
(X̂ i) · Z = 0, else either Yi = X̂ i + ǫ Z or Yi = X̂ i − ǫ Z contradicts the

optimality of X̂ i.

Let now decompose f i

X̂i
(X i) as f i

X̂i
(X i) = f i

X̂i
(X i)‖ + f i

X̂i
(X i)⊥, where f i

X̂i
(X i)‖ ∈ X

and f i

X̂i
(X i)⊥ ⊥ X . Let Z ∈ span(ℓ)⊥. Then 0 = ℓ ·Z = ℓ ·(Z⊥+Z‖) = ℓ ·Z‖, therefore

Z‖ ∈ span(ℓ)⊥ ∩ X . From the previous result it follows

0 = f i

X̂i(X
i) · Z‖ = f i

X̂i(X
i)‖ · Z‖ = f i

X̂i(X
i)‖ · Z.

Since this is true for all Z ∈ span(ℓ)⊥, it follows that f i

X̂i
(X i)‖ ∈ span(ℓ) and therefore

it exists α̂i ∈ R such that f i

X̂i
(X̂ i)‖ = α̂i ℓ. Since 1 ∈ X , 0 = f i

X̂i
(X̂ i)⊥ · 1 =

EP

[

f i

X̂i
(X̂ i)⊥

]

and thus

1 = EP

[

f i

X̂i(X̂
i)
]

= EP

[

f i

X̂i(X̂
i)⊥

]

+ EP

[

f i

X̂i(X̂
i)‖

]

= EP

[

f i

X̂i(X̂
i)‖

]

= α̂i
EP

[

ℓ
]

= α̂i.

This completes the proof.

Now suppose that markets are complete, i.e. X = G. Then f i

X̂i
(X̂ i) ∈ X and thus

f i

X̂i
(X̂ i)⊥ = 0 for all i. Therefore, f i

X̂i
(X̂ i) = f i

X̂i
(X̂ i)‖. From the previous Theorem, we

immediately obtain the following result on the optimal allocations X̂ i, i = 1, . . . , I.

Corollary 2.1. Let X̂ i ∈ arg maxX∈X −Ri(X), s.t. ℓ · X ≤ (1 + r) wi for i = 1, . . . , I.
Suppose that the corresponding distortions gi are strictly convex for all i = 1, . . . , I. Then if
K + 1 = S, i.e. markets are complete, the optimal payoffs X̂1, . . . , X̂I are comonotonic, i.e.
for all s, s′ ∈ Ω and i, j ∈ {1, . . . , I} we have (X̂ i(s) − X̂ i(s′)) (X̂j(s) − X̂j(s′)) ≥ 0 and the
inequality is strict if X̂ i(s) 6= X̂ i(s′) for some i.

Proof. From Theorem 2.1, f i

X̂i
(X̂ i) = ℓ for i = 1, . . . , I. The functions f i

X̂i
are strictly

decreasing, since the gi’s are strictly convex. Suppose now that for s, s′ ∈ Ω, X̂ i(s) ≥ X̂ i(s′).
Then f i

X̂i
(X̂ i(s)) ≤ f i

X̂i
(X̂ i(s′)), i.e. ℓ(s) ≤ ℓ(s′). Thus, f j

X̂j
(X̂j(s)) ≤ f j

X̂j
(X̂j(s′)) and

therefore also X̂j(s) ≥ X̂j(s′) for any j ∈ {1, . . . , I}. Moreover, the inequality is strict for
X̂j if it is for X̂ i.
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This last Corollary states that investors’ optimal allocations are comonotonic, i.e. cannot
be used as hedge of each other. This is a well-known result from the classical mean-variance
model, that is directly implied by the Tobin Separation. The comonotonicity of investors’
optimal payoffs immediately implies the following property of the pricing portfolio ℓ̂ at any
financial market equilibrium.

Corollary 2.2. Let (l̂, X̂1, . . . , X̂ i) be a financial market equilibrium. Suppose that the cor-
responding distortions gi are strictly convex for all i = 1, . . . , I. Then if K + 1 = S, i.e.
markets are complete, there exists a strictly decreasing function f such that f(ω̃) = ℓ and
f(ω̃) = f i

ω̃(ω̃) for all i = 1, . . . , I.

Proof. From the previous Corollary, we have that all optimal payoffs X̂ i (i = 1, . . . , I) are
comonotonic and therefore also the sums

∑I

i=1 X̂ i and
∑I

i=1 X̂ i + α 1 for all α ∈ R.

By definition of financial market equilibrium, we find α0 ∈ R such that ω̃ =
∑I

i=1 X̂ i + α0 1.

Therefore, ω̃ is also comonotonic to X̂1, . . . , X̂I and thus f i
ω̃(ω̃) = f i

X̂i
(X̂ i) = ℓ. Take f = f i

ω̃

for some i = 1, . . . , I.

The last Corollary also implies a necessary condition for the existence of financial market
equilibria. In fact, since f i

X̂i
(X̂ i) = f j

X̂j
(X̂j) for all i, j ∈ {1, . . . , I}, it follows that investors’

distortions gi must correspond at the survival probabilities F X̂i(X̂ i(s)) = F X̂j(X̂j(s)). Ob-
viously, this last equation is true because of the strict comonotonicity stated in Corollary 2.1.
We are now able to prove the Security Market Line Theorem.

Theorem 2.2. Let (l̂, X̂1, . . . , X̂ i) be a financial market equilibrium and q(ω̃) > 0. Suppose
that the corresponding distortions gi are strictly convex for all i = 1, . . . , I. Then if K +1 =
S, i.e. markets are complete, for all X ∈ X :

EP

[

f(Rω̃) (RX − r)
]

= 0, (8)

where RX = X−q(X)
q(X)

and Rω̃ = ω̃−q(ω̃)
q(ω̃)

. Therefore For X ∈ X

EP

[

RX

]

− r =
covP[f(Rω̃), RX ]

covP[f(Rω̃), Rω̃]
(EP

[

Rω̃

]

− r). (9)

Proof. (i) ω̃ and Rω̃ are comonotonic.
Since q(ω̃) > 0, then if for s, s′ ∈ Ω, ω̃(s) ≥ ω̃(s) then Rω̃(s) ≥ Rω̃(s′). Thus, ω̃ and
Rω̃ are comonotonic.

(ii) Since ω̃ and Rω̃ are comonotonic, then f(ω̃) = f(Rω̃), where f is defined as in the
proof of the previous Corollary. Moreover, for X ∈ X

EP

[

f(Rω̃) RX

]

= f(ω̃) ·

(

X − q(X)

q(X)

)

=
1

q(X)
f(ω̃) · X − 1 = (1 + r) − 1 = r.

10



Therefore, for X ∈ X
(

r − EP

[

Rω̃

])

(EP

[

RX

]

− r) =
(

r − EP

[

RX

])

(EP

[

Rω̃

]

− r)

⇒
(

EP

[

f(Rω̃) Rω̃

]

− EP

[

Rω̃

])

(EP

[

RX

]

− r) =
(

EP

[

f(Rω̃) RX

]

− EP

[

RX

])

(EP

[

Rω̃

]

− r)

⇒ covP[f(Rω̃), Rω̃] (EP

[

RX

]

− r) = covP[f(Rω̃), RX ] (EP

[

Rω̃

]

− r)

⇒ EP

[

RX

]

− r =
covP[f(Rω̃), RX ]

covP[f(Rω̃), Rω̃]
(EP

[

Rω̃

]

− r).

We call the factor covP[f(Rω̃),RX ]
covP[f(Rω̃),Rω̃ ]

, the f − β−factor.

3 Empirical analysis

Let Rk = Ak−qk

qk
be the k-th asset return for k = 1, . . . , K and rt = (r1,t, . . . , rK,t)

′ be the

observation of the risky assets’ returns (R1, . . . , RK)′ at time t = 1, . . . , τ . The function F :
R

K → [0, 1]K is the empirical multivariate cumulative distribution function of (R1, . . . , RK)′

for the observations (rt)t=1,...,τ , i.e. for r ∈ R
K

F (r) =
1

τ

τ
∑

t=1

1rt≤r,

where 1rt≤r is the vector (1r1,t≤r1
, . . . , 1rK,t≤rK

)′. We suppose that assets’ returns are inde-
pendent and identically distributed with multivariate cumulative distribution F . Let rω̃,t be

the observation at time t = 1, . . . , τ of the market portfolio return Rω̃ = ω̃−q(ω̃)
q(ω̃)

and G be its
empirical distribution function, i.e. for κ ∈ R

G(κ) =
1

τ

τ
∑

t=1

1rω̃,t≤κ.

We consider several increasing, strictly convex distortions g on [0, 1] with g(0) = 0 and
g(1) = 1, parameterized by a one-dimensional parameter γ, which can be interpreted as the
degree of risk aversion or pessimism (Bassett, Koenker, and Kordas 2004). We compute
the corresponding increments with respect to the empirical distribution function G, i.e. for
κ ∈ {rω̃,1, . . . , rω̃,τ}:

fRω̃
(κ) =

g
(

1
T

∑T

t=1 1rω̃,t≥κ

)

− g
(

1
T

∑T

t=1 1rω̃,t>κ

)

1
T

∑T

t=1 1rω̃,t=κ

. (10)

We numerically compute the parameter γ in order to solve:

τ
∑

t=1

fRω̃
(rω̃,t) (rω̃,t − r) = 0
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Distortion function Parameter estimate JT

g(x) = xγ γ̂ = 1.157241 12.99802 (0.16)

g(x) = Φ(Φ−1(x) + γ) γ̂ = 0.1266901 10.08102 (0.34)

g(x) = 1−exp(γ x)
1−exp(γ)

γ̂ = 0.4738711 9.18521 (0.42)

g(x) = − 1
γ

log (−(1 − exp(−γ)) x + 1) γ̂ = 0.4704917 9.02273 (0.43)

g(x) = 1 − (1 − x)γ γ̂ = 0.8779927 8.640267 (0.47)

Table 1: Parameter estimates.

where r is as before the risk-free rate of return. The Table 3 reports the estimated parameters
for the several choices of the distortion g. According to the Theorem 2.2 and equation (8),
the null hypothesis to be tested is that E

[

ǫ̂k

]

= 0 for k = 1, . . . , K, where

ǫ̂k =
1

τ

τ
∑

t=1

ǫ̂k,t

and ǫ̂k,t = fRω̃
(rω̃,t) (rk,t − r). As in Post and Van Vilet (2004) we use the Hansen’s (1982)

J-test for over-identifying restrictions based on the Generalized Method of Moments (for an
overview see also Davidson and Mackinnon 1993, Chapter 17.6). The test statistic is given
by

JT = τ ǫ̂′ W−1
τ ǫ̂,

where

Wτ =
1

τ

τ
∑

t=1

ǫ̂t ǫ̂
′
t.

Under the null hypothesis the test statistic is χ2(K − 1) asymptotically distributed. The
value of the test statistic JT for the several choices of the one-parametric distortion g are
reported in Table 3 together with the corresponding significance levels.
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