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Second-Order Synchrosqueezing Transform

or Invertible Reassignment? Towards Ideal

Time-Frequency Representations
Thomas Oberlin, Sylvain Meignen, and Valérie Perrier

Abstract—This paper considers the analysis of multicomponent
signals, deÞned as superpositions of real or complex modu-
lated waves. It introduces two new post-transformations for the
short-time Fourier transform that achieve a compact time-fre-
quency representation while allowing for the separation and the
reconstruction of the modes. These two new transformations thus
beneÞt from both the synchrosqueezing transform (which allows
for reconstruction) and the reassignment method (which achieves
a compact time-frequency representation). Numerical experi-
ments on real and synthetic signals demonstrate the efÞciency of
these new transformations, and illustrate their differences.

Index Terms—Time-frequency, reassignment, synchrosqueez
-ing, AM/FM, multicomponent signals.

I. INTRODUCTION

M OST real signals can be accurately modeled as su-

perpositions of locally bandlimited, amplitude and

frequency-modulated (AM-FM) waves. Containing several
modes they are often called multicomponent signals (MCS). 
Many approaches have been built to decompose these signals
into their constituent modes either in time-frequency (TF)
domain, like the synchrosqueezing transform [1], or in time

domain, as for instance the empirical mode decomposition

(EMD) [2], [3]. Yet, very few results on the accuracy of the
mode retrieval are available. In this regard, a new approxima-

tion result on the retrieval of weakly modulated modes of an
MCS has been shown using the synchrosqueezing transform
(SST) [4]. This major result inspired new developments of syn-
chrosqueezing or reassignment methods, and more generally of
local TF analysis and synthesis techniques [5]–[7]. To obtain
such a result, very strong assumptions were made on the modes

making up the signal among which the most limiting one is the
weak modulation hypothesis on the modes.
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Indeed, most MCS contain strongly frequency modulated

modes, as for instance chirps involved in radar [8], speech

processing [9], or gravitational waves [10]. Although many

TF transforms such as quadratic distributions [11], [12] or the

reassignment method (RM) [13]–[16] manage to accurately

represent these kinds of signals, they do not allow for mode

separation and reconstruction. Recently, some work has been

done on how to deal with high FM with SST. For instance,

in [16], a two-steps algorithm is used, which Þrst computes

SST, estimates the FM, and Þnally recomputes SST on the

demodulated mode. In the same spirit, an iterative procedure is

proposed in [17], where at each iteration a SST is computed at

a Þner resolution. A different and earlier attempt [18] consisted

in building an invertible extension of RM. Unfortunately, the

proposed reconstruction was only an approximation, valid for

Gaussian windows with a small temporal width. We will see

that contrary to [16], [17], our approach is one-step: it only

consists in computing a reassignment map and then rearranging

the coefÞcients of the STFT according to that map following

this idea of the original synchrosqueezing or reassignment

methods. Thus, it can be seen as an extension of [18], with ad-

ditional theoretical results for representation and reconstruction

of linear chirps.

The aim of this paper is indeed to extend SST to MCS con-

taining strongly frequency modulated modes by generalizing

SST in two different ways. The Þrst attempt is inspired by RM,

which is known to optimally sharpen the TF representation of a

linear chirp. However, in the original RM the sharpened repre-

sentation obtained from the spectrogram did not allow for mode

retrieval. We will see that by fully exploiting the information

contained in the so-called shape reassignment vector, one can

derive a new generation of SST that provides a sharpened TF

representation as good as the one given by RM, while enabling

exact retrieval of linear chirps. Our second approach relies on

a second-order local estimate of the instantaneous frequency,

which is used to improve modes localization and reconstruction

using SST.

The outline of the paper is as follows: in Section II, we recall

important notations that are subsequently used in the paper and

we introduce the concept of weakly modulated modes. We then

deÞne SST and RM in Section III, putting the emphasis on the

differences in terms of reconstruction and representation. Then,

Section IV is devoted to the presentation of the new extensions

of SST. Section V Þnally delivers numerical results on both syn-

thetic and real data, comparing the proposed methods with stan-

dard SST and RM.



II. TIME-FREQUENCY ANALYSIS OF

MULTICOMPONENT SIGNALS

A. Short-Time Fourier Transform

DeÞnition II.1: The Fourier transform of a function

is deÞned by

For a given represents the part of that oscillates at fre-

quency on the whole time domain. The need for time-localized

frequency descriptors leads to the following deÞnition:

DeÞnition II.2: Let a real-valued and even func-

tion, with unit norm. The short-time Fourier transform (STFT)

of , with respect to the window , is deÞned by

(1)

The representation of the positive quantity in the TF

plane is called the spectrogram of .Without ambiguity, will

be denoted by .

Remark: The usual deÞnition of STFT differs from (1) by

a factor and considers the conjugate of . Also, as we

assume to be real-valued, we do not need the conjugate in

(1).

It is well known from the properties of the Fourier transform

that a well-localized TF representation requires a window well

localized both in time and frequency. We shall then mention

that STFT is invertible on using either of the following

formulae:

(2)

(3)

Note that (3) is valid only if is non-zero and continuous at 0. If

the signal is analytic (i.e., then the integral

domain for is restricted to .

B. MCS and Ridges

DeÞnition II.3: An AM-FM mode is an oscillating function

, with and positive and slow-varying.

is called the instantaneous amplitude of at time

being its instantaneous frequency. Note that the slow-varying

condition is not quantiÞed being model-dependent as explained

later. Thanks to that condition, a Þrst order expansion of the

phase combined with a zeroth order expansion of the amplitude

lead to the approximation, for close to a Þxed time :

The STFT of mode is then approximated by [4], [19]:

(4)

This shows that the STFT of an AM-FM mode is non-zero on

a TF strip, centered on the ridge corresponding to its instan-

taneous frequency and deÞned by . The width of this

strip depends on that of the support of . Let us now deÞneMCS

which are superpositions of AM-FM modes.

DeÞnition II.4: A MCS reads

(5)

where the modes satisfy .

In order to retrieve eachmode from the STFT of , we assume

that the modes occupy non-overlapping regions in the TF plane.

Considering (4) and assuming is compactly supported, this

requires that the distance between two ridges is always larger

than the width of the frequency support of window [4], [19].

This will be detailed in Section III.C. Note that this separation

condition is of a linear type for STFT and can be adapted to

non-compactly supported, but rapidly decreasing windows in

the Fourier domain (e.g., Gaussian windows).

III. SYNCHROSQUEEZING AND REASSIGNMENT IN A NUTSHELL

The so-called reassignment method (RM) [13], [14] is a gen-

eral way to sharpen a TF representation towards its ideal TF

representation which corresponds for MCS given by deÞnition

II.4 to:

(6)

being equal to 1 or 2 depending on whether a linear or a

quadratic representation is used (e.g., for the spectrogram

and for STFT). Note that keeps the phase informa-

tion, which enables the reconstruction of the mode in the case of

linear representations . Quadratic representations often

remove the phase, and use the amplitude of instead of .

A. Reassignment of the Spectrogram

RM presented here in the spectrogram context consists of the

computation of so-called reassignment operators:

(7)

where can be viewed as an approximation of the instan-

taneous frequency and as the group delay. Then, the reas-

signment step aims to retrieve the ideal TF representation by

moving the coefÞcients of the spectrogram according to the map

, which reads:

B. STFT-Based SST

The aim of SST based on STFT (FSST), introduced in [1] in

the CWT context, is to retrieve the ideal TF representation, i.e.,

with , from its STFT. Following [1], the authors in



[20], [19] proposed to neglect operator , and to reassign only

the complex coefÞcients according to the map

, which reads:

(8)

Knowing , the th mode can then be retrieved by considering:

(9)

as explained in more details in Section III.C. In a nutshell, FSST

reassigns the information in the TF plane and then makes use of

this sharpened representation to recover the modes. The ratio-

nale behind (8) and (9) is the reconstruction formula (3), where

the integration is restricted to a mode-related domain instead of

. This enables to retrieve the modes which was not possible

with RM based on the spectrogram, but the TF representation is

unfortunately less sharp as soon as the frequency modulation is

not negligible. This difference between FSST and RM is further

illustrated in Section III.D.

C. Perfect Localization and Reconstruction

We now recall the main properties of FSST and RM in terms

of TF localization and mode reconstruction for FSST. We Þrst

highlight for what type of signals they actually lead to the ideal

TF representation and then consider a more general case.

1) Synchrosqueezing for Perturbations of Pure Waves: One

can show that actually matches the instantaneous frequency

only for a pure tone . In this case, FSST provides

the ideal TF representation given by (6). More interesting is

the study of the behavior of FSST on perturbations of pure

waves, i.e., containing “small” amplitude and frequency mod-

ulations. This analysis was pioneered in [4] for the SST based

on wavelets, and was adapted for FSST in [19]. It starts by

deÞning precisely a MCS, originally referred to as ‘intrinsic

mode type function” [4].

DeÞnition III.1: Let and . A MCS of type

(5) is in if:

• for all satisÞes:

and for all

and .

• the s are separated with resolution i.e., for all

and for all ,

One can then deÞne the synchrosqueezing operator, using a

function , the space of compactly supported smooth

functions, such that , a threshold and an accuracy

parameter :

and Þnally state the main result.

Theorem III.1: Let and . Consider a

window , the space of smooth functions with fast

decaying derivatives, such that . Then, if is

small enough,

• only if there exists such

that .

• For all and all pair such that

, one has

• For all there exists a constant such that

for all ,

(10)

The proof of this result is available in [19]. Equation (10)

shows that the synchrosqueezing operator has to be summed up

around the ridge, the width of the interval being . As in prac-

tice is not known, one chooses a parameter instead. There-

fore we end up with reconstruction formula (9) for mode .

Note that a similar approximation result was stated before in

[20], but with stronger (global) assumptions on the mode sepa-

ration , instead of the local one in DeÞnition III.1.

To summarize, the FSST of a MCS offers both good localiza-

tion and reconstruction if two restrictive conditions are satisÞed:

• the frequency separation , which is

however necessary to uniquely deÞne the decomposition,

• and the low-modulation assumption , that we

want to relax in the sequel.

2) Reassignment of Perturbations of Linear Chirps: It was

shown in [14] that the reassignment operators perfectly localize

linear chirps, i.e., modes with a linear instantaneous frequency

and constant amplitude. More precisely, one has the following

result [14].

Theorem III.2: Consider a pure linear chirp

, where is a polynomial of degree 2 and .

Then, whenever the reassignment operators are deÞned one has

.

Proof: In spite this result is available in [14], we recall its

main lines for the sake of introducing some notation that will be

useful in the sequel.

Let us consider a linear chirp with

. For such signal, one has for each and :

(11)

The STFT then writes

with . We can now derive the expression of the reas-

signment operator :

If we deÞne the function as



we Þnally get

(12)

Note that the nature of function is unknown, although in the

case of a Gaussian window , one can show that it is linear

[7], [21]. But one can remark that it is still a smooth function

provided is smooth and has fast decay.

Regarding the local time delay deÞned in RM, in the case

of a linear chirp , we can write

(13)

which again uses auxiliary function . Remembering that

, we get from (12) and (13) that:

(14)

which means is an exact estimate of the instantaneous

frequency , but at a shifted time location given by .

As the operators are local, this suggests that whenever the

instantaneous frequency is quasi-linear and the amplitude slow-

varying, the reassignment provides an accurate approximation

of the ideal TF representation.

D. Illustrations

To illustrate the differences between FSST and RM, we use

two synthetic test signals throughout this paper. One (signal

1) is made of low-order polynomial chirps, that behave locally

as linear chirps, and the other one (signal 2) contains strongly

nonlinear sinusoidal frequency modulations and singularities

(points where ). Fig. 1 displays FSST and RM for these

signals. Note that wherever the slope of the ridge is strong,

RM gives a more concentrated representation than FSST.

To illustrate the speciÞcity of FSST regarding invertibility,

we display on Fig. 2 the reconstruction process of each test

signals from FSST. To compute an estimation of the ridges

, knowing the number of modes, we use the algo-

rithm introduced in [22] and used in [23] or [7], which computes

a local minimum of the functional

(15)

where is an estimator of the ridge , and and

are two positive parameters tuning the level of regularization.

Other ridge detectors such as the one developed in [24] may of

course be used instead but this is beyond the scope of the present

paper.

Looking at the results of Fig. 2, it is worth noting that the

quality of the reconstruction of amode is highly dependent on its

modulation. For instance mode 2 and 3 of signal 1 are properly

Fig. 1. Illustration of FSST and RM for test signal 1 (left) and 2 (right). From

top to bottom: the spectrogram, FSST and RM.

retrieved but so is not mode 3 since it contains stronger modu-

lations. Our goal is thus, in what follows, to improve mode re-

construction based on FSST when the modes are strongly mod-

ulated.

IV. TOWARDS A SECOND-ORDER FSST

Recalling that FSST was designed to process superpositions

of perturbed pure waves, by second order FSST we mean that

we want to adapt FSST to superpositions of perturbed linear

chirps. This should enable us to obtain an invertible sharpened

TF representation of the same quality as the one provided by

RM. We are going to consider an approximation of the second

derivative of the phase of the modes which we will subsequently

use to build our extensions of FSST.

A. Local Instantaneous Modulation

This approximation requires the computation of second-order

derivatives of the phase of the STFT, that have been already used

to improve the reassignment method [6]. This is denoted by

and deÞned as follows:

DeÞnition IV.1: Let be in . Its modulation

operator is deÞned wherever and

by:

(16)

Operator can be seen as some variation measure of the

reassignment vector. Note that there are many other possible

choices for this local estimate of the frequency modulation.

In particular, we could also use , which amounts



Fig. 2. Illustration of mode retrieval based on FSST on test-signals 1 (left) and

2 (right). From top to bottom: the three modes making up the test-signals, their

SST with the estimated ridges superimposed, and the reconstruction error. SNR

after reconstruction for modes 1, 2 and 3 equals 14, 51 and 70 dB for test-signal

1, and 5, 7 and 70 dB for test-signal 2, respectively. We use in the

reconstruction (see (9)), and for the ridge extraction (see

(15)).

to adding a real (resp. imaginary) part in the numerator (resp.

denominator) of (16). We keep deÞnition (16) since it appears

to be more stable numerically. The following result shows that

the local operator perfectly estimates the frequency

modulation for a linear chirp.

Proposition IV.1: If is a Gaussian-mod-

ulated linear chirp (i.e., both real-valued functions and

are quadratic), then wherever is deÞned one has

Proof: Function is obviously differentiable, and its

derivative reads

If satisÞes the following simple differential equa-

tion:

(17)

where is an afÞne complex-valued function, since functions

and are quadratic. Thus, there exists complex numbers

and such that . Let us now differentiate the

STFT with respect to :

Dividing by and differentiating with respect to gives

Recalling that (17), we Þnally get the result.

Let us Þnally give a convenient formula to compute

through simple element-wise operations on different STFT’s.

Proposition IV.2: Operator can be computed according to:

(18)

where and are the STFT of with windows and

.

Proof: To enlighten the notation we will write instead

of . Operator writes:

(19)

For any signal , we have

We also have

Combining these expressions Þnally gives (18).

B. Vertical Second-Order Synchrosqueezing

Equation (12) clearly shows that does not

hold as soon as . We propose a Þrst way to deal with the

non-negligible modulation . Let

be a linear chirp with constant FM . Equations (12) and (13)

show that for any time ,

which means that the Þrst order Taylor expansion of can be

written in terms of the Þrst reassignment and frequency mod-

ulation operators. Using locally the chirp approximation for a



given signal , one can now improve the estimation of the in-

stantaneous frequency as follows:

DeÞnition IV.2: Let , we deÞne the second-order

instantaneous frequency estimator of by:

The vertical second-order synchrosqueezing (VSST) then

consists in replacing by in standard SST:

Since the coefÞcients are only moved vertically, the reconstruc-

tion is still achievable by summing up the FSST coefÞcients in

the vicinity of the ridge replacing in (9) by . Moreover,

as all the operators are local, VSST should remain efÞcient for

small perturbations of linear chirps. This will be further studied

numerically in the next section.

C. Slanted Synchrosqueezing

An alternative way to modify FSST to take into account FM

consists in moving the coefÞcients according to the reassign-

ment vector Þeld while keeping the phase information so as to

allow signal reconstruction. A Þrst attempt in this direction de-

Þned the following complex reassigned transformation [18]:

Unfortunately, this deÞnition allowed for an approximative re-

construction only for Gaussian windows, and resulted in non-

negligible errors as demonstrated by numerical results.

Let us now propose an alternative reassignment technique

computing the phase-shift in a different way from [18] and that

we will call oblique (slanted) synchrosqueezing (OSST). The

starting point is to remark that the STFT of a linear chirp is in-

variant by translations along the direction of the ridge

modulo a phase shift. Indeed, one can write, using (11) and

,

Instead of reassigning the real value as in RM, we

propose to move the complex quantity

Contrary to VSST where one builds a Þrst order Taylor expan-

sion of the derivative of the phase, OSST directly involves the

Fig. 3. Illustration of oblique synchrosqueezing (OSST).

phase-shift. For a linear chirp and when , one has

so that one can then write:

This phase-modiÞed coefÞcients belong to the vertical line

. Finally, summing up all the phase-shifted co-

efÞcients along the frequency axis will provide an approxima-

tion of at time .

The principle of OSST is illustrated on Fig. 3 the coefÞcients

making up the dashed curve are phase-shifted while moved to

point . To obtain an approximation of the signal , the

phase of the coefÞcients are modiÞed in order to be equal to

their projection on the dashed dotted line.

Let us now give a more formal deÞnition of OSST.

DeÞnition IV.3: Let , its oblique syn-

chrosqueezing (OSST) is the function

An approximation of mode is then given by its OSST on

the ridge, i.e.,

As for FSST and VSST, we would like OSST to remain ef-

Þcient for perturbations of linear chirps, when the amplitude

(resp. phase) is not exactly constant (resp. quadratic). Recall that

for FSST and VSST, the strategy to handle such perturbations

was to integrate the coefÞcients around the ridge using (9), so

as to compensate for the error made by estimating the instan-

taneous frequency by . However, in the case of OSST the

coefÞcients are moved both in time and frequency, making this

regularization impossible. We will see in the next section how

this impacts the performance of the proposed technique.

V. NUMERICAL RESULTS

To achieve a quantitative comparison between the different

methods, we will reuse the test signals deÞned in Section III.D.

Recall that test signal 1 is made of quasi-linear chirps that should

be well dealt with by VSST or OSST, while test signal 2 con-

tains stronger nonlinear frequency modulations as well as sin-

gularities where vanishes, which makes the study of such

signals more difÞcult. For the sake of simplicity, we focus on

the representations based on STFT, but similar results could be

obtained within the wavelet framework (see for instance [19]

for a comparison). Note that in our simulations, we use 1024



Fig. 4. Test signals number 1 (left) and 2 (right). From top to bottom, magni-

tude of FSST, OSST and VSST.

time samples and a Gaussian window with parameter ,

deÞned by .

On Fig. 4, FSST, VSST and OSST for both signals 1 and 2 are

depicted. Comparing with Fig. 1, one notices that both VSST

and OSST provide a nice TF representation, as sharp as RM.

In the next subsections, we will compare more quantitatively

the three methods in terms of the sharpness of the represen-

tation (i.e., how many coefÞcients are signiÞcant at each time

instant) and accuracy of mode reconstruction. We also numer-

ically investigate the robustness to noise, and Þnally compare

the methods on some real data.

A. Quality of Representation

The main purpose of RM was to make TF representations

more readable. Since this is somewhat subjective, we propose

here to measure at each time step the amount of information

contained in the coefÞcients with the largest amplitude. In this

regard, one way to compare the different transformations is to

compute the normalized energy associated with the Þrst co-

efÞcients with the largest amplitude: the faster the growth of

this energy towards 1, the sharper the representation. Fig. 5 dis-

plays this normalized energy (i.e., the cumulative sum of the Þrst

squared sorted coefÞcients over the sum of all the squared

coefÞcients) for both test-signals and the Þve representations,

namely STFT, RM, FSST, VSST and OSST. The Þrst remark

is that both OSST and VSST behave similarly as RM for both

test-signals. Indeed, the representation of test-signal 1 with each

of these three methods is almost perfect, since one needs only 3

coefÞcients per time instant to recover the signal energy, which

is consistent with the three modes making up the test-signal.

Comparatively, the energy of FSST grows rapidly to reach a

Fig. 5. Normalized energy as a function of the number of coefÞcients for test-

signal 1 (top) and 2 (bottom). Abscissa gives the number of coefÞcients over

the size of the signal, i.e., the mean number of coefÞcients for each column

of the TF plane.

Fig. 6. Normalized energy as a function of the number of coefÞcients for the

noisy (0 dB) test-signal 1 (top) and 2 (bottom).

value around 80% and then stagnates which means the signal

energy cannot be retrieved with a reasonable number of coef-

Þcients. The results are similar but less sharp for the second

test-signal, since it contains stronger nonlinear frequency mod-

ulations.

In order to visualize the inßuence of noise, we carry out the

same experiments when the test-signals are contaminated by

white Gaussian noise (noise level 0 dB). The results displayed

on Fig. 6 exhibit a slower increase of the energy since the coef-

Þcients corresponding to noise are spread out in the whole TF

plane. However, OSST, RM and VSST still behave better than

FSST, even though VSST is slightly less competitive.



TABLE I

DIRECT RECONSTRUCTION FOR EACH METHOD, AND BOTH TEST-SIGNALS.

THE ACCURACY OF MODE RETRIEVAL IS EXPRESSED IN SNR

Fig. 7. Reconstruction of the modes as a function of , which is proportional

to the size of the interval of integration. The results are in SNR, for test signal

1 (top) and 2 (bottom).

B. Reconstruction of the Modes

The main advantage of FSST over RM is its invertibility. Let

us recall that there are two possible reconstructions of the mode

from FSST. The easiest one assumes is almost ideal, so that

the whole information is concentrated on the ridge. The mode

at time is then estimated following

(20)

FSST allows to achieve a more accurate reconstruction by

using an integration around the ridge as a regularization step,

according to formula (9). Provided is of the same order

of magnitude as the perturbation deÞned in Theorem III.1,

this formula ensures an asymptotically perfect reconstruction.

It is important to recall here that this regularization process

naturally applies to VSST but not to OSST.

We investigate here the accuracy of the reconstruction for

each method starting with the reconstruction technique deÞned

in (20). The results measuring the accuracy of mode reconstruc-

tion in terms of SNR are displayed in Table I.We check that both

OSST and VSST enable a good reconstruction of polynomial

chirps (test-signal 1), whereas the quality of direct reconstruc-

tion from FSST is very poor. Looking at the results for each

mode, one observes that each method achieves a good recon-

struction for mode 3 since it is not modulated, but that FSST

is not adapted for modes 1 and 2 which contain stronger mod-

ulations. The results are less convincing for test-signal 2: even

if OSST and VSST improve the reconstruction compared with

FSST, the accuracy is far from satisfactory. Indeed, as this signal

contains strongly nonlinear frequency modulations, both OSST

Fig. 8. From top to bottom: the ridges estimated from FSST, those estimated

from VSST, and the quality of reconstruction measured as a function of . We

use again test signal 1 (left) and 2 (right).

and VSST fail to represent the modes as a perfect sharp curve

in the TF plane, some information being spread out around the

ridges. This result is in line with the simulation of Fig. 6 right,

where on average 4 coefÞcients per time instant are needed to

recover the most part of the energy.

By integrating FSST and VSST around the ridge, following

(9), one can deÞnitely improve the reconstruction results. The

results for such a reconstruction are displayed on Fig. 7. For

each test-signal, the SNR of the reconstruction is computed with

respect to parameter . This time we display the SNR associated

with the reconstruction of the whole signal but considering the

modes individually would lead to the same results. Fig. 7 shows

that VSST allows for a quasi-perfect reconstruction from very

few coefÞcients ( dB for ). Conversely, with

FSST, even if one uses a large , i.e., many coefÞcients, one

cannot retrieve the modes with a high accuracy. It is important

to recall that such a computation cannot be carried out on OSST

therefore this technique is not mentioned in the results of Fig. 7.

We already saw that, in the noise-free case, the reconstruc-

tion is all the better that parameter is large. This is obviously

not true when the signal is contaminated by noise: must be

large enough to take into account the signal coefÞcients, while

remaining small enough so as not to include too much noise in

the reconstruction. We illustrate this quantitatively by making

the same experiments as for Fig. 7 but in the noisy case. Note

that in this case, the estimation of the ridges using formula (15)

is worsened due to the presence of noise. The results of the ridge

estimation are depicted on Fig. 8, together with the reconstruc-

tion accuracy, for both FSST and VSST and with a moderate

noise level ( dB). While the ridge estimation can



Fig. 9. TF representations of a bat echolocation call. The representations are

(from top to bottom) STFT, FSST, OSST and VSST. A zoom on strong modu-

lations is displayed in the second column.

be successfully carried out on FSST and VSST for test-signal 1,

only VSST gives a correct estimation for test-signal 2 since the

latter contains stronger FMs. As a result, the reconstruction of

test-signal 2 from FSST is not satisfactory. This study tells us

that to take into account second order terms in the deÞnition of

VSST not only improves the quality of mode reconstruction but

also of ridge detection.

C. Illustration on Real Signals

We now illustrate the qualitative improvement of the two new

transformations on real data. We start with considering a bat

echolocation call, available at http://dsp.rice.edu/sites/dsp.rice.

edu/Þles/software/batsignal.zip. Fig. 9 displays both VSST and

OSST of this signal, and compare them with the spectrogram

and FSST (parameter being set to 0.04 , with the duration

of the signal). By zooming around a portion of one ridge, the

improvement brought about these new methods in terms of the

sharpness of the representation is undeniable. Note that the re-

sult provided by FSST remains satisfactory since the frequency

modulation is quite weak.

To better illustrate that improvement, we then considered a

portion of a speech signal recorded at 44.1 kHz, with parameter

set to 0.025 . Fig. 10 shows the corresponding TF repre-

sentations associated with the four different methods, as well

as a zoom on a modulated portion. For both VSST and OSST,

the energy of the representation is almost perfectly concentrated

along the ridges which is not the case with FSST. Note also that

the representation given by OSST seems slightly better but if

we were interested in reconstructing the modes, VSST would

still behave better due to local frequency integration embodied

by (9).

Fig. 10. TF representations of a speech signal. The representations are (from

top to bottom) STFT, FSST, OSST and VSST. A zoom on a strongly modulated

part is displayed on the second column.

VI. CONCLUSION

This paper introduced the vertical and oblique second-order

synchrosqueezing transformations to circumvent the limitations

of standard FSST and reassignment. We emphasized that OSST

can be viewed as a complex version of the reassignment method,

while VSST keeps the Þxed-time structure of the standard syn-

chrosqueezing transform, allowing for a better reconstruction

through a regularization step. We showed that both methods

provide the ideal invertible representation in the case of a linear

chirp, while remaining efÞcient on general multicomponent sig-

nals containing strong frequency modulations. All the experi-

ments suggest that OSST is slightly more competitive for the

representation purpose, whereas VSST allows for a better re-

construction.

Finally, note that both OSST and VSST can be extended

readily to the wavelet setting. Further work should be devoted

to the theoretical analysis of both methods for perturbations of

linear chirps, as well as a deeper understanding of the inßu-

ence of noise on the reassignment operators and on the ridge

estimation.
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