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Abstract—In this paper, a second-order frequency selective sur-
face (FSS)made ofminiaturized elements is proposed and designed
for terahertz applications. The FSS is composed of two layers of
metallic arrays separated from each other by a polymer dielectric
spacer. The unit cells on the front and back layers are smaller than

, where is the free space wavelength. The operation prin-
ciple of the proposed FSS is described through a circuit model, and
a synthesis procedure is presented for designing a desired filtering
response. A prototype of the FSS is synthesized to operate at a
center frequency of 0.42 THz with 45% fractional bandwidth. The
designed FSS is fabricated by using microfabrication process. The
performance is evaluated by using terahertz time-domain spec-
troscopy. Measurement results show a low sensitivity of the FSS
response to oblique angles of incidence for both of the TE and TM
polarizations.
Index Terms—Bandpass filter, frequency selective surface (FSS),

periodic structures, spatial filters, terahertz (THz), THz filter.

I. INTRODUCTION

R APID development of terahertz applications in recent
years has been underpinned by numerous designs of

passive and active devices and circuits operating over mil-
limeter-wave and terahertz frequencies [1]–[5]. Potential
applications of the terahertz radiation include remote sensing
[6], imaging [7], chemical and biological sensing [8], [9], etc.
Terahertz frequency selective surfaces (THz-FSSs) are key
components in many of these applications [10], [11]. A range of
FSSs have been reported for remote sensing [12], absorbers or
polarization convertors in terahertz systems [13]–[15], sensing
and imaging applications [16].

Several FSS structures have been proposed for bandpass fil-
tering at terahertz and millimeter-wave frequencies [17]–[21]. A
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common specification among these conventional FSS structures
is that their unit cell dimensions are comparable to half of the
operational wavelength. As a result, their frequency response is
sensitive to the angle of incidence [22]. In order to circumvent
this problem, a new class of FSS structures called miniaturized-
element FSSs (MEFSSs) has been introduced in [23]. These
structures are composed of multilayer arrays of non-resonant
metallic elements with dimensions much smaller than the oper-
ation wavelength. The sub-wavelength unit cells provide a more
consistent response of the whole structure with respect to non-
planar phase fronts. Since then, a large number of MEFSS struc-
tures for higher-order spatial filtering have been designed and
proposed at microwave frequencies [24]–[33]. However, they
have not been demonstrated for sub-millimeter-wave and tera-
hertz applications yet. Recently, a MEFSS has been proposed
by Moallem and Sarabandi for suppressing an image compo-
nent provided by a harmonic mixer in MMW radars [34]. The
structure in [34] is composed of metallic patches and I-shaped
wires that provide a first-order bandpass response with an ad-
jacent transmission zero. Higher-order filters with wide out-of-
band rejection are required in certain applications to enhance
the spectral selectivity [17]–[21]. Particularly, FSSs with these
specifications can reduce the radar cross section (RCS) of an-
tennas, and reduce undesirable strong background noise in spec-
troscopy [35]. Based on this requirement, this article introduces
a MEFSS with a second-order filter response for sub-millimeter-
wave and terahertz applications with a wide rejection band and
large angular tolerance. The proposed structure is composed of
two layers of metallic arrays each having a first-order filter re-
sponse. Since the structure is made of miniaturized unit cells,
it's electromagnetic response can be modelled through a lumped
element equivalent circuit [36]–[38]. Therefore, an analytical
procedure can be developed for the proposed FSS structure by
using the standard filter theory leading to a straightforward de-
sign. This article is organized as follows. The design procedure
and the operation principle of the proposed FSS is presented in
Section II. Section III explains the fabrication process of the de-
signed FSS. Experimental results for the fabricated sample are
presented and discussed in Section IV and finally, Section V pro-
vides the conclusion.

II. FSS TOPOLOGY AND DESIGN PROCEDURE

A. FSS Structure and Equivalent Circuit Model

A three-dimensional view of the proposed terahertz FSS is
shown in Fig. 1(a). The structure is composed of two periodic
metallic arrays that are separated from each other by a dielectric
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Fig. 1. Topology of the proposed second-order terahertz FSS. (a) 3-D view of
the FSS with the gray regions showing the metallization and the light brown
regions showing the dielectric spacer. (b) Unit cells on the front and back layers
along with their geometric parameters.

spacer having a subwavelength thickness of . Fig. 1(b) shows
the unit cells for the front and back layers. The dimensions of
each unit cell are and ( ) along the and

directions, respectively. The front layer unit cell is made of a
wire loop surrounding a non-resonant capacitive square patch.
The back layer unit cell is very similar to the front layer ex-
cepting a complementary cross-shaped resonator (CCSR) that is
embedded into the capacitive patch. Both of the front and back
2-D metallic arrays are covered by a very thin protective layer
( ) made of the same dielectric material as the
spacer.

As mentioned before, since the structure is composed of
miniaturized unit cells, it can be modeled by a lumped-element
equivalent circuit. The equivalent circuit model of this FSS is
depicted in Fig. 2(a), which is valid for a normally incident
plane wave. In this model, and account for the inductive
behavior of the front and back layers wire grids. The capacitors

and model the capacitive effect between the square
patch and the inductive wire grid in the front and back layers,
respectively. The CCSR in the back layer is modelled by a

resonator. The dielectric spacer that separates the two
layers is modelled through a section of transmission line with
a characteristic impedance of and length of . It should be
mentioned that , where is the free
space impedance and is the relative permittivity of the spacer.
And finally, the Ohmic loss associated with the front and back
wire grids and CCSR are modeled by resistors , and
respectively. These losses are related to the surface resistivity
of the metallization and the current distribution therein [34].
The combination of the complementary cross-shaped resonator
( ) and adds a transmission zero to the filter response
and improves it's out of band behavior. In fact, this transmission
zero appears at the frequency when the combination of
and is short-circuited. Thus, this frequency is given by

(1)

Fig. 2. Equivalent circuit model of the proposed FSS for the normaly incident
EM wave. (a) A full circuit model for normal incidence. (b) A simplified model
with the transmission line section replaced with equivalent lump elements and
the loss neglected. (c) Standard circuit model of a second-order bandpass
coupled resonator filter. This circuit is equivalent to the circuit in Fig. 2(b) with

and .

This transmission zero can be tuned by varying the dimensions
of the complementary cross-shaped resonator ( , ), which in
turn translates to the variation of and values.

Since the values of and are designed to be much
smaller than and , the parallel combination of
has a very small impedance around the passband frequencies
of the FSS. So, can be considered as a short circuit at
these frequencies. In addition, the transmission line section can
be replaced with it's equivalent lumped-element circuit model
by using the telegrapher's equation [39]. Fig. 2(b) illustrates
the FSS equivalent circuit around the passband by considering

as a short circuit and replacing the transmission line with
its circuit model ( and ). The losses are not considered
in Fig. 2(b) for simplicity. The values of inductor and
capacitors can be obtained by using the following relations [22]

(2)

(3)

where and are the permeability of the free space and the
relative permeability of the spacer, respectively. Likewise,
and are the permittivity of the free space and the relative per-
mittivity of the spacer, respectively. The circuit of Fig. 2(b) can
be converted into the one in Fig. 2(c) that shows a standard basic
circuit model of a second-order bandpass filter [40]. In this form,

and , and the circuit can be
considered as coupled input and output resonators of and

, respectively.

B. Synthesis Procedure of the Proposed FSS

As discussed above, the frequency response of the considered
FSS around its passband can be described by the circuit model
in Fig. 2(c). By using this circuit model, a desired second-order
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filtering response can be synthesized and then, the equivalent
circuit parameters can be converted into the corresponding geo-
metrical parameters of the proposed FSS. The lumped-element
values of the equivalent circuit in Fig. 2(c) can be determined by
applying the concept of coupled-resonator filter with inductive
coupling [36], [40]. Supposing that is the center frequency
of the filter and is the fractional bandwidth, the
values of the circuit elements in Fig. 2(c) can be obtained based
on the following steps:

1) The values of the and capacitors can be determined
from the following relation:

(4)

In (4), , and are the normalized quality
factors of the input and output resonators, and and are
the normalized source and load impedances of the filter in
Fig. 2(c) [40].

2) The values of and inductors can be obtained by

(5)

where is the normalized coupling coefficient between
the input and output resonators.

3) The coupling inductance can be calculated from

(6)

The normalized quality factors and coupling coefficient for
some different filter types are extracted from [40] and presented
in Table I.

After calculating the values of the circuit elements in
Fig. 2(c), the thickness of the dielectric spacer that separates
the front and back metallic arrays can be obtained from (2).
Then the spacer capacitance can be derived from (3), and
the values of and capacitors can be found from (7).

(7)

In order to convert the calculated lumped element values into
the geometrical parameters, the method presented in [36]–[38]
can be used. The effective inductance of an infinite wire grid
shown in Fig. 3(a) with a period of and a wire width of is
given by [22]

(8)

where is the permeability of the free space and is the ef-
fective permeability of the substrate. Equation (8) can be used
for calculating the wires width in the front and back layer met-
allization of the proposed FSS. The period of the wire grid is
considered to be equal to the unit cell size in Fig. 1 ( ) and
the unit cell size can be chosen arbitrarily. However, choosing
very small unit cell size leads to a very thin wire that might
not be practical due to fabrication limits. It is worth mentioning
that (8) is valid when the wire grid is away from any metallic
objects such as capacitive patches in Fig. 2 or scatterers [36],
[38]. So, the value of calculated from (8) can only be used as
an approximation. A more accurate value of can be obtained

TABLE I
NORMALIZED QUALITY FACTOR AND COUPLING COEFFICIENTS FOR DIFFERENT

FILTER TYPES EXTRACTED FROM [40]

Fig. 3. (a) Infinite metallic wire grid. (b) Infinite metallic square patch array.
The wire grid shows an inductive behavior whereas the patch array shows a ca-
pacitive effect with respect to the incident electromagnetic wave. Metallization
is indicated with gray colored regions.

by fitting the full-wave simulation result to the analytical circuit
calculation.

The effective capacitance of an infinite array of sub-wave-
length capacitive square patches shown in Fig. 3(b) can be ob-
tained by using [22]

(9)

In (9), is the permittivity of free space and is the effec-
tive permittivity of the dielectric spacer, is the period of the
array and is the gap spacing between the adjacent patches.
Although for the proposed structure, the capacitive patches are
surrounded by the wire grid, (9) can still be used as an approxi-
mation if the capacitive effect between the edges of the metallic
square patches and the wire grid is approximated by a corre-
sponding patch array in Fig. 3(b). To this end, the gap spacing
between the adjacent metallic patches in Fig. 3(b) is assumed to
be equal to the space between a capacitive patch and the wire
grid in Fig. 1(b) ( ). By this assumption, the period of the
corresponding patch array of Fig. 3(b) will be

(10)

where, is the unit cell size in Fig. 2(b) and
is the width of the wire grid surrounding each capacitive

patch. Based on (9) and (10), the spacing between the patches in
Fig. 3(b), that corresponds to the spacing between the patches
and the wire grid in Fig. 2 can be determined.

C. Design of Terahertz FSS

Based on the synthesis procedure in Section II-B, this section
demonstrates a design of a second-order bandpass FSS at tera-
hertz frequencies. The design starts by considering a center fre-
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Fig. 4. Simulation results of the proposed FSS for the normal incident angle.
The parameters used in simulations are: fF,

pH, , m, m, m,
m and m.

quency of THz and a 3 dB fractional bandwidth of
for the circuit model in Fig. 2(c). This frequency band

is chosen to match the capabilities of most terahertz time-do-
main spectroscopy (THz-TDS) systems. Polydimethylsiloxane
(PDMS) is considered for the dielectric spacer since it has a
low dielectric constant of causing a low impedance
mismatch with free space [34]. The front and back metallic
layers are made of 200 nm thick gold (Au) with the DC con-
ductivity of 4.1 10 S m and the sheet resistance of around

at the passband of the FSS. In order to
improve the mechanical strength of the filter, two encapsulating
PDMS layers with a thickness of 10 m are applied to the front
and back metal layers. The relative permeability of the PDMS is

. By assuming a Butterworth filter response, the values
of the circuit elements in Fig. 2(a) are calculated using the syn-
thesis method described in Section II-B. The calculated values
are fF, pH and

pH. The unit cell size is considered as
m, which is slightly smaller than the , where is

the free space wavelength at 0.42 THz. By using the procedure
described in Section II-B, the circuit parameters can be mapped
into the geometrical dimensions of the FSS: m,

m and m. Now, and can be opti-
mized in simulation for obtaining more accurate values. Equa-
tion (9) is reasonably accurate since the capacitance between
the patches in Fig. 3(b) corresponds directly to the capacitance
between the patches and grid in Fig. 1. On the other hand, the
presence of those square metallic patches in the vicinity of the
wire grid affects the magnetic field and hence reduces the in-
ductance. So, the final optimized value of is expected to be
smaller than the value obtained from (8). For optimization, we
first consider the calculated value of from (8) based on the
synthesized value of and . Now, by having and , the
value of will be determined from (9) to satisfy the synthesized
value of and . The unit cell is then simulated to obtain
the and values. If the inductance of the wire grid obtained
from the simulation is smaller than the synthesized value, the
previous steps are then repeated with a smaller value for , until

Fig. 5. Simulation results of the proposed FSS for the normal incident angle by
considering the effect of the complementary cross-shaped resonator. The com-
plementary cross shaped resonator dimensions are: m, m
and pH, fF, and are considered
in circuit model simulations. The rest of parameters are the same as the Fig. 4.

desired consistency between the simulation results and the syn-
thesized values is achieved. The optimized equivalent circuit
and geometrical parameters of the designed FSS are listed in
the caption of Fig. 4. As seen, the optimized value for is very
close to the value obtained from (9) but, the optimized value of

is smaller than the value predicted by (8).
After mapping the synthesized values of the and param-

eters to the geometrical parameters of the FSS, the values of the
resistances in Fig. 2 can be determined by curve fitting of the EM
and circuit simulation results. Fig. 4 shows a comparison be-
tween the results obtained from the circuit simulation with ADS
and from the full-wave electromagnetic simulation with CST
Microwave Studio. Both of the transmission and reflection co-
efficients are shown. As can be observed in Fig. 4, there is a good
agreement between the circuit model and the full-wave electro-
magnetic simulation of the FSS. The good agreement confirms
that the circuit based synthesis procedure offers an efficient an-
alytical method for designing the proposed FSS configuration.

The results in Fig. 4 are obtained without considering the ef-
fect of the CCSR. As explained in Section II-A, the combination
of CCSR ( , ) and adds a transmission zero that can be
used to improve the out of band response of the FSS. The fre-
quency of this zero can be calculated from (1) and can be tuned
by varying and . Fig. 5 shows the transmission response
of the FSS by considering m and m. As
seen, the out of band response in Fig. 5 is improved with respect
to Fig. 4 since the transmission coefficient stays below dB
up to 1.45 THz.

The values of and elements that represent the effect
of the CCSR can be determined by a semi-analytical proce-
dure described as follows: the zero frequency provided by ,

and can be calculated from (1). The value of as
listed in caption of Fig. 5 is already designed by the synthesis
procedure. On the other hand, the zero frequency is obtained
from EM simulation in CST Microwave Studio ( in Fig. 5).
By putting arbitrary capacitors of between the capacitive
square patches and the wire grid in the back layer of the FSS in
CST Microwave Studio, the capacitance between the wire grid
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and square patches will be increased to . This will
shift down the zero frequency to

(11)

So, by solving (1) and (11), the unknown values of and
are determined. The calculated and for the designed FSS
are given in Fig. 5. It should be noted that the circuit model in
Fig. 2(a) and the results in Fig. 5 are only valid for normal inci-
dence. For oblique incidence, both of the free-space equivalent
impedance and the dielectric spacer impedance need to
be changed to

(12)

(13)

(14)

(15)

where is the free-space characteristic impedance.
In addition, the front and back layers equivalent impedance need
to be modified for the oblique incidence [41]. A model de-
scribing the effect of oblique incidence on the impedance of the
layers and the couplings in higher order Floquet modes is avail-
able for the square patch array [41], [42]. This model gives an
insightful understanding of the FSS response under oblique in-
cidence and in higher order Floquet modes.

III. FABRICATION PROCESS

The FSS structure is fabricated to experimentally validate
the simulation results by utilizing standard microfabrication
techniques. The FSS is composed of alternating three layers
of PDMS and two layers of patterned metal. In the first step,
as a supporting substrate, a 3 inch silicon wafer is coated
with 20 nm aluminium (Al), which enables final release of
the multi-layer structure from silicon in a freestanding form.
A 10 m PDMS layer acting as encapsulation is spin-coated
on the Al-coated silicon wafer. First metallization step is per-
formed with 200 nm gold (Au) with a 20 nm adhesion layer
of chromium (Cr) deposited by electron beam evaporation
(PVD75, Kurt J. Lesker) at a rate of 0.1 nm/s. Metal layers are
pattered by photolithography followed by wet chemical etching
[2], [3]. Photoresist is then stripped off with acetone, rinsed
with isopropanol and dried with high purity nitrogen.

Then, a second PDMS layer of 100 m thickness, acting as
dielectric spacer, is spun-on and cured on a leveled surface at
room temperature to ensure thickness uniformity. Subsequently,
the second layer of metallization followed by photolithography
with alignment and etching is performed. To encapsulate the
second level of metallization, a third PDMS layer of 10 m is
spun-on to complete the fabrication. The resulting structure is
then peeled off from the supporting silicon and transferred onto
a 3 inch clamp for testing. Fig. 6 shows micrographs of the front
and back metal layers and the fabricated structure supported in
a clamp for testing.

Fig. 6. Fabricated second-order terahertz FSS. Optical micrographs of the (a)
front and (b) back layers. (c) Frame-supported MEFSS after release.

Fig. 7. Free-space measurement setup. A rotatable base is considered for mea-
suring the FSS performance at oblique angles of incidence.

IV. RESULTS AND DISCUSSION

This section presents the simulation and experimental mea-
surement results to evaluate the performance of the designed
FSS under different conditions. The free-space measurement
is performed using the Menlo Systems GmbH Tera K15. The
measurement setup is shown in Fig. 7. The setup is composed
of Tera 15-SL25-FC and Tera 15-DP25-FC antenna modules
acting as emitter and detector respectively that provide 2-port
S-parameter measurement. The four identical lenses are made
of polymer with a diameter of 50 mm, an effective focal length
of 54 mm, and a working distance of 46 mm. A rotatable base is
used for the FSS to evaluate its response for different oblique an-
gles of incidence. The emitter and detector can be rotated around
the propagation axis to obtain TE and TM polarizations. Two
polarizers are placed between the lenses to have better polar-
ization purity in TE and TM mode measurements. A broadband
terahertz pulse is radiated from the emitter through the FSS to
the detector. The four lenses collimate and focus the beam onto
the FSS. The transmission response is then normalized with a
response obtained from free-space measurement.

In Fig. 8, the measured transmission response of the fab-
ricated FSS is plotted together with the electromagnetic and
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Fig. 8. Comparison between the simulation and measurement results of the
FSS transmission coefficient under normal angle of incidence. The 3 dB band-
width is shaded with gray.

Fig. 9. Transmission responses of the proposed FSS for oblique angles of in-
cidence with TE polarization. (a) Simulated transmission responses in CST Mi-
crowave Studio. (b) Measured transmission responses.

equivalent circuit simulation results at normal angle of inci-
dence. As seen in this figure, a good agreement between the
simulation and measurement results is achieved within the mea-
surement bandwidth. The center frequency is 0.42 THz and the

3 dB bandwidth of the passband is around 45%. This is wider
than the designed 35% bandwidth because the dissipation losses
decrease the quality factor ( ) of the front and back layers and
hence increase the bandwidth. A wide out-of-band rejection is
obtained up to 1.5 THz below 25 dB. The maximum loss in the
passband is less than 5 dB. This loss is mainly attributed to the
dielectric loss in the PDMS layers. Additional simulations (not

Fig. 10. Transmission responses of the proposed FSS for oblique angles of
incidence with TM polarization. (a) Simulated transmission responses in CST
Microwave Studio. (b) Measured transmission responses.

shown) reveal that by replacing PDMS layers with a lower loss
material such as cyclo-olefin copolymer (COC), the insertion
loss in passband is reduced to 1 dB. The discrepancies between
the measured and EM simulation results in the out-of-band re-
sponse is attributed to the limited dynamic range of the mea-
surement system.

The performance of the proposed FSS for the oblique an-
gles of incidence is also investigated through simulation and
measurement. The simulated and measured transmission coef-
ficients of the FSS for the TE polarization are shown in Fig. 9.
In addition, Fig. 10 presents the simulated and measured trans-
mission coefficients for the TM polarization. In both cases, the
results are presented for 0 –60 incidence angles. As observed,
the FSS can reasonably sustain its original response at very large
incidence angles. However, the fractional bandwidth (FBW) is
decreased for the TE polarization response as the angle of in-
cidence increases. On the contrary, for the TM polarization,
the FBW is increased as the incidence angle increases. This
is mainly due to a change in the wave impedance for the two
modes as described through (12)–(15) [43]. So, as the angle of
incidence increases, will be increased resulting in a larger
loaded quality factor in the input/output resonators that causes
a smaller fractional bandwidth. On the other hand, in the TM
mode, will be decreased by increasing , and thus leads
to a smaller loaded quality factor in the input/output resonators
and a larger fractional bandwidth. A small discrepancy between
the measured TE and TM transmission responses under normal
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incidence is possibly caused by a small difference in the system
alignment and by a small anisotropy in the sample.

V. CONCLUSION

A second-order bandpass FSS based on miniaturized el-
ements has been proposed and implemented for terahertz
applications. An equivalent circuit is considered for modelling
the FSS response. A simple synthesis procedure has been
developed based on the equivalent circuit and the standard
filter theory for designing the proposed FSS. The presented
synthesis procedure has been verified through both simulation
and experimental results. The results show a wide out-of-band
rejection below 25 dB up to 1.5 THz. In addition, the spectral
responses of the FSS are consistent over a wide range of
incidence angles for both the TE and TM polarizations. The
transmission level of the FSS in the passband can be improved
significantly by a low loss polymer such as COC for dielectric
layers.
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