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Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along

boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at

hinges of a three-dimensional crystal. A second-order topological phase can be induced by the presence of a bulk

crystalline symmetry. Building on Shiozaki and Sato’s complete classification of bulk crystalline phases with an

order-two crystalline symmetry [Phys. Rev. B 90, 165114 (2014)], such as mirror reflection, twofold rotation, or

inversion symmetry, we classify all corresponding second-order topological insulators and superconductors. The

classification also includes antiunitary symmetries and antisymmetries.

DOI: 10.1103/PhysRevB.97.205135

I. INTRODUCTION

In comparison to conventional “first-order” topological

insulators and superconductors, which combine a gapped bulk

with topologically protected gapless boundary states [1–3],

the protected gapless states in a second-order topological

insulator or superconductor exist in one dimension lower

[4]: a two-dimensional second-order topological insulator

or superconductor has zero-energy states at corners of the

crystal [5–9] and a three-dimensional topological insulator

or superconductor has gapless modes along crystal edges

or “hinges” [4,9–14]. Second-order topological insulator and

superconductor phases have been proposed to exist in a (first-

order) topological insulator in three dimensions to which a

suitable time-reversal-breaking perturbation is applied [10,11],

in the superfluid 3He-B phase [12], or in crystals with rotation

or mirror symmetries [4–9,13,14].

A complete classification of first-order topological insu-

lators and superconductors has been developed, accounting

for the presence or absence of nonspatial symmetries [15–17].

The three fundamental nonspatial symmetry operations, time-

reversal T , particle-hole P , and C = PT , known as “chiral

symmetry,” define the ten Altland-Zirnbauer symmetry classes

[18], see Table I. For each Altland-Zirnbauer class, the number

and type of protected boundary states is uniquely rooted in the

topology of the bulk band structure, so that topological classi-

fications of gapped bulk band structure and gapless boundary

states are essentially identical, a feature known as “bulk-

boundary correspondence.” Complete classifications for all

Altland-Zirnbauer classes with additional spatial symmetries

exist only for the order-two crystalline symmetries [19], such as

mirror symmetry [20–22], order-two rotation symmetry, inver-

sion symmetry [23], and nonsymmorphic order-two crystalline

symmetries [24]. In parallel, a wealth of symmetry-based

indicators has been identified for topological phases with other

crystalline symmetries [25–36]. With crystalline symmetries,

*Corresponding author: maxgeier@zedat.fu-berlin.de

the bulk-boundary correspondence—i.e., the one-to-one cor-

respondence between bulk topology and the number and type

of gapless boundary states—only applies to boundaries that are

invariant with respect to the crystalline symmetry operation;

nonsymmetric boundaries are generically gapped.

In this paper, we consider the classification problem for

second-order topological insulators. We identify the type and

number of zero-energy states at corners or gapless modes

at hinges and relate this classification of corner states and

hinge modes to the topology of the bulk band structure. This

program is carried out for all ten Altland-Zirnbauer classes

with one additional order-two spatial symmetry, for which the

classification of the bulk band structure is known [19].

In contrast to first-order topological insulators, for which

the number and type of protected boundary states depends on

the topology of the bulk band structure only, the occurrence

of zero-energy corner states or gapless hinge modes may

also depend on properties of the boundary, i.e., on the lat-

tice termination. Correspondingly, the classification of corner

states and hinge modes of second-order topological insulators

and superconductors has to distinguish between termination-

dependent and termination-independent properties of corner

states and hinge modes. This naturally leads to an “intrinsic”

topological classification, in which crystals that differ by a

lattice termination only are considered topologically equiv-

alent, and an “extrinsic” classification, which accounts for

termination effects and defines topological equivalence with

respect to continuous transformations that preserve both bulk

and boundary gaps.

An example of an “extrinsic” second-order topological

insulator is a three-dimensional topological insulator (without

further crystalline symmetries) placed in a magnetic field in

a generic direction, such that there is a finite magnetic flux

through all surfaces [10,11], see Fig. 1. Such a crystal has chiral

modes along hinges that connect faces with an inward and

outward-pointing magnetic fluxes. The chiral modes are stable

with respect to continuous transformation of the Hamiltonian

that preserve bulk and surface gaps. They may be removed,

however, upon exchange coupling the crystal faces with an
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TABLE I. The ten Altland-Zirnbauer classes are defined accord-

ing to the presence or absence of time-reversal symmetry (T ), particle-

hole antisymmetry (P), and chiral antisymmetry (C). The superscript

± indicates the square of the time-reversal or particle-hole conjugation

operation. The presence of chiral antisymmetry C = PT is automatic

for Altland-Zirnbauer classes with both time-reversal symmetry and

particle-hole antisymmetry. The third and fourth column give the

classification of stable zero-energy states at generic corners of two-

dimensional crystals (d = 2) or hinges of three-dimensional crystals

(d = 3). This is an “extrinsic” classification, in the sense that the

number of corner states or hinge modes at a generic corner or hinge

is not a bulk property and can be changed by a change of the lattice

termination. Its topological protection is with respect to all continuous

transformations that preserve both bulk and boundary gaps.

Cartan (anti)symmetries d = 2 d = 3

A - 0 Z

AIII C Z 0

AI T + 0 0

BDI T +, P+
Z 0

D P+
Z2 Z

DIII T −, P+
Z2 Z2

AII T − 0 Z2

CII T −, P− 2Z 0

C P− 0 2Z

CI T +, P− 0 0

inward magnetic flux to ferromagnetic insulating films, with

a magnetization direction chosen such that the exchange field

reverses the effect of the applied magnetic field.

An “intrinsic” second-order topological insulator or su-

perconductor, for which the presence of corner or hinge

states does not depend on the lattice termination, requires the

presence of additional crystalline symmetries. Examples that

have been identified in the literature include mirror-reflection

symmetry [4,9], rotation symmetries [4,13,14], or more gen-

eral point group symmetries [6,7,36]. In these cases, corner

states continue to exist under continuous transformations of

the Hamiltonian that close the boundary gap, provided the bulk

(a) (b)

FIG. 1. Schematic picture of an “extrinsic” second-order topolog-

ical insulator consisting of a three-dimensional topological insulator

placed in a magnetic field in a generic direction, as proposed by Sitte

et al. [10] (a). Each surface has a finite flux and there are chiral modes

along hinges that touch two faces with opposite sign of the magnetic

flux. The gapless hinge modes may be removed by exchange-

coupling some of the crystal faces to a two-dimensional ferromagnetic

insulator (b).

(a) (b)

=

FIG. 2. (a) Schematic picture of a generic corner of a two-

dimensional crystal. A generic corner may host a protected zero-

energy state if and only if the corresponding Altland-Zirnbauer class

in d − 1 dimensions is nontrivial. (b) Zero-energy corner states in

a generic corner can always be moved to a different corner by a

suitable change of the lattice termination. For the example shown

here, a one-dimensional topological insulator or superconductor with

two end states is “glued” to one of the crystal faces adjacent to the

top corner, such that its end state and the original zero-energy corner

state mutually gap out. As a result, the corner state has moved to the

corner on the left.

gap is not closed and the lattice termination remains compatible

with the crystalline symmetry.
In the presence of a crystalline symmetry, a classification of

corner states and hinge modes must also distinguish between
corners and hinges that are themselves invariant with respect
to the crystalline symmetry, and generic nonsymmetric cor-
ners or hinges. The classification of zero-energy states and
gapless modes at a generic, nonsymmetric corner or hinge
[schematically shown in Fig. 2(a)] equals that of a generic
codimension-one defect, which is the same as the regular
classification of topological phases but with the dimension
shifted by one [37], see Table I. This simple result also follows
from the observation that the absence of gapless boundary
states implies that the bulk is essentially topologically trivial,
so that a corner or hinge may be seen as a junction between two
“stand-alone” topological edges or surfaces [9]. Note that this
classification of corner states or hinge modes at a generic corner
or hinge is an extrinsic classification: any corner state or hinge
mode at a generic corner or hinge can be moved away from that
corner or hinge by a suitable change of the crystal boundary,
without affecting the bulk, see Fig. 2(b) [4,36]. Hence the
intrinsic classification of corner states or hinge modes at a
generic corner or hinge is always trivial.

A classification of zero-energy states and gapless modes at
mirror-symmetric corners and hinges is given in Sec. IV. In ad-
dition to providing the intrinsic (termination-independent) and
extrinsic (termination-dependent) classifications, we consider
the effect of perturbations that locally break mirror symmetry at
corners and hinges, to account for the experimental reality that
corners and hinges are more prone to defects and disorder than
crystal faces. The intrinsic classification of zero-energy states
and gapless modes at mirror-symmetric corners and hinges
coincides with the classification of bulk topological crystalline
phases in two and three dimensions [19–22], respectively, after
removal of the first-order topological phases. This “corner-
to-bulk correspondence” (or “hinge-to-bulk correspondence,
for three-dimensional topological crystalline insulators and
superconductors) not only confirms that every topological
class of the bulk band structure is associated with a unique
configuration of zero-energy corner states or gapless hinge
modes, but also that for every possible configuration of mirror-
symmetric zero-energy corner states or hinge modes, there is
a topological crystalline phase that produces it.
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With rotation or inversion symmetry there are no symmetry-

invariant corners or hinges for two- and three-dimensional

crystals, respectively. Hence each corner or hinge in a crystal

with rotation symmetry or inversion symmetry is a “generic”

corner or hinge, described by the extrinsic classification of

Table I. Zero-energy corner states or gapless hinge modes at

a given corner or hinge can always be removed by changing

the lattice termination. Nevertheless, as we show in Sec. V,

the role of the bulk crystalline symmetry, combined with the

requirement that lattice termination is symmetry-compatible,

is to impose a Z2 sum rule to the total number of corner or

hinge states, which is an odd multiple of two for the nontrivial

phases and an even multiple of two otherwise. (For Altland-

Zirnbauer classes with a time-reversal or particle-hole symme-

try squaring to −1 one should count pairs of corner states/hinge

modes.)

In Refs. [4,9], the construction of a nontrivial intrinsic

second-order phase out of a nontrivial bulk mirror-reflection-

symmetric phase made use of the bulk-boundary correspon-

dence, according to which a nontrivial topological crystalline

bulk phase implies a gapless boundary mode at a boundary

that is left invariant under mirror reflection. The existence of

protected corner states or hinge modes was then concluded

upon noting that mass terms that are generated upon tilt-

ing the boundary away from the mirror-invariant direction

have a different sign at mirror-related boundaries, such that

a corner separating mirror-related boundaries represents a

domain wall and, hence, hosts a zero-energy state or a gap-

less hinge mode. The same procedure can be applied to a

three-dimensional crystal with a twofold rotation symmetry,

because these, too, allow for symmetry-invariant faces. It fails,

however, for a two-dimensional crystal with twofold rota-

tion symmetry or a three-dimensional crystal with inversion

symmetry, because these have no symmetry-invariant surface.

To derive the existence of a second-order topological phase

with zero-energy corner states in a two-dimensional crystal

with twofold rotation symmetry or of gapless hinge modes

in a three-dimensional crystal with inversion symmetry, we

employ a dimensional reduction scheme, making use of the

existence of symmetry-invariant faces for crystals with the

same order-two crystalline symmetry in one dimension higher.

Our results are consistent with nontrivial second-order topo-

logical phases predicted recently by Fang and Fu [14] and by

Khalaf et al. [36] for three-dimensional inversion-symmetric

crystals.

This article is organized as follows. In Sec. II, we introduce

the relevant symmetry classes for an order-two crystalline

symmetry coexisting with time-reversal symmetry, particle-

hole symmetry, or chiral symmetry and we review Shiozaki

and Sato’s classification of the crystalline bulk phases. The

dimensional reduction map is outlined in Sec. III. A clas-

sification of mirror-symmetric corners and hinges follows

in Sec. IV; Sec. V discusses twofold rotation and inversion

symmetry. A few representative examples of tight-binding

models realizing second-order topological phases are dis-

cussed in Sec. VI. We conclude in Sec. VII. The appendices

contain a detailed discussion of the dimensional reduction

scheme as well as a brief discussion of all relevant crys-

talline symmetry classes that are not considered in the main

text.

II. SHIOZAKI-SATO SYMMETRY CLASSES

We consider a Hamiltonian Hd (k) in d dimensions, with

k = (k1,k2, . . . ,kd ). In addition to the crystalline order-two

symmetry, to be discussed in detail below, the Hamiltonian

Hd possibly satisfies a combination of time-reversal (T )

symmetry, particle-hole (P) antisymmetry, and/or chiral (C)

antisymmetries.1 These take the form [38]

Hd (k) = U
†
T Hd (−k)∗UT ,

Hd (k) = −U
†
PHd (−k)∗UP , (1)

Hd (k) = −U
†
CHd (k)UC,

where UT , UP , and UC are k-independent unitary matrices. If

time-reversal symmetry and particle-hole symmetry are both

present, UC = UPU ∗
T . Further, the unitary matrices UT , UP ,

and UC satisfy UT U ∗
T = T 2 and UPU ∗

P = P2 and we require

that U 2
C = C2 = 1 and UPU ∗

T = T 2P2UT U ∗
P . Throughout we

use the symbols T ± and P± to refer to a time-reversal

symmetry or particle-hole antisymmetry squaring to one (+)

or minus one (−). The ten Altland-Zirnbauer classes defined

by the presence or absence of three nonspatial symmetry

operations T ,P , and C are separated in two “complex” classes,

which do not have antiunitary symmetries or antisymmetries,

and eight “real” classes, which have at least one antiunitary

symmetry or antisymmetry. Following common practice in the

field, we use Cartan labels to refer to the ten Altland-Zirnbauer

symmetry classes, see Table I.

In addition to the nonspatial (anti)symmetries T , P , and

C, the Hamiltonian Hd (k) satisfies an order-two crystalline

symmetry or antisymmetry. The “spatial type” of the symmetry

operation is determined by number d‖ of spatial degrees of

freedom that are inverted: Mirror reflections have d‖ = 1,

twofold rotations have d‖ = 2, and inversion has d‖ = 3. (In

two dimensions, the spatial operations of inversion and twofold

rotation are formally identical. We will refer to this operation

as a twofold rotation.) We will use the symbol S to denote

a general unitary order-two crystalline symmetry, replacing

S by M, R, or I for considerations that apply specifically

to mirror reflection, twofold rotation, or inversion symmetry,

respectively. For a general antiunitary symmetry, antiunitary

antisymmetry, and unitary antisymmetry we use the composite

symbols T ±S , P±S and CS, respectively, again replacing S
by M, R, I when appropriate. Without loss of generality,

we may require that the symmetry operation S squares to

one.2 Following Refs. [19–21], to further characterize the

(anti)symmetry operation, we specify the signs ηT ,P,C indi-

cating whether it commutes (η = +) or anticommutes (η = −)

with time-reversal T , particle-hole conjugationP , or the chiral

operation C.

1Although P and and C are commonly referred to as “particle-

hole symmetry” and “chiral symmetry,” we will refer to these as

antisymmetries, because they connect H to −H , see Eq. (1).
2For spin-1/2 electrons, often spatial symmetries squaring to −1 are

used. Multiplication by i then gives a symmetry operation squaring

to 1. Note, however, that multiplication with i turns a symmetry that

commutes with T or P into a symmetry that anticommutes with T

or P and vice versa.
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TABLE II. Shiozaki-Sato equivalence classes of unitary symme-

try and antisymmetry operations for the Altland-Zirnbauer classes A

and AIII. The symbol σ UηC is used to denote unitary symmetry (σ =
+) and antisymmetry (σ = −) operations that commute (ηC = +) or

anticommute (ηC = −) with the chiral symmetry, if applicable. The

last column lists a unitary crystalline symmetry SηC or the product

of a unitary symmetry operation S and the chiral operation C as a

crystalline symmetry operation representative of the Shiozaki-Sato

class (s,t).

AZ class s t symmetry operations representative

A 0 0 +U S

AIII 1 0 αU+ S+

A 0 1 −U CS

AIII 1 1 αU− S−

Unitary symmetry and antisymmetry operations S and CS
are represented by unitary matrices US and UCS (with S being

replaced by M, R, or I as needed), respectively, such that

Hd (k1, . . . ,kd‖ ,kd‖+1, . . . ,kd )

= USHd (−k1, . . . ,−kd‖ ,kd‖+1, . . . ,kd )U−1
S , (2)

if Hd satisfies a unitary symmetry, and

Hd (k1, . . . ,kd‖ ,kd‖+1, . . . ,kd )

= −UCSHd (−k1, . . . ,−kd‖ ,kd‖+1, . . . ,kd )U−1
CS , (3)

if Hd satisfies a unitary antisymmetry. The matrices US and

UCS satisfy U 2
S,CS = 1, US,CSUT = ηT UT U ∗

S,CS , US,CSUP =
ηPUPU ∗

S,CS , and US,CSUC = ηCUCUS,CS . Similarly, antiuni-

tary symmetry and antisymmetry operations T ±S and P±S
are represented by unitary matrices UT S and UPS , with

Hd (k1, . . . ,kd‖ ,kd‖+1, . . . ,kd )

= UT SHd (k1, . . . ,kd‖ ,−kd‖+1, . . . ,−kd )∗U−1
T S , (4)

if Hd satisfies an antiunitary symmetry, and

Hd (k1, . . . ,kd‖ ,kd‖+1, . . . ,kd )

= −UPSHd (k1, . . . ,kd‖ ,−kd‖+1, . . . ,−kd )∗U−1
PS , (5)

if Hd satisfies an antiunitary antisymmetry. The matrices

UT S and UPS satisfy the conditions UT S,PSU ∗
T S,PS = ±1,

UT S,PSU ∗
T = ηT UT U ∗

T S,PS , UT S,PSU ∗
P = ηPUPU ∗

T S,PS , and

UT S,PSU ∗
C = ηCUCUT S,PS .

As pointed out in Ref. [19], the characterization of unitary

and antiunitary symmetry and antisymmetry operations by

means of the signs ηT ,P,C and the square (in case of antiunitary

symmetries) is partially redundant, because symmetry opera-

tions that are characterized differently may be mapped onto

each other using nonspatial symmetries of the Hamiltonian Hd .

For example, if a time-reversal symmetric Hamiltonian Hd sat-

isfies a crystalline unitary symmetry S , then it also satisfies the

antiunitary symmetry T S . Using such equivalences, Shiozaki

and Sato group the (anti)symmetries into 44 “equivalence

classes,” which, together with the Altland-Zirnbauer class of

Table I, are labeled by one integer s or by two integers s and t .

These equivalence classes are defined in Tables II–IV for the

complex Altland-Zirnbauer classes with unitary symmetries

TABLE III. Shiozaki-Sato equivalence classes of antiunitary sym-

metry and antisymmetry operations for the Altland-Zirnbauer classes

A and AIII. The symbol σ A±
ηC

is used to denote antiunitary symmetry

(σ = +) and antisymmetry (σ = −) operations that commute (ηC =
+) or anticommute (ηC = −) with the chiral symmetry, if applicable,

and square to ±1. The last column lists the product of a unitary

crystalline symmetry S (SηC for class AIII) and time-reversal T ±

or particle-hole conjugation P± as a crystalline symmetry operation

representative of the Shiozaki-Sato class (s,t).

AZ class s symmetry operations representative

A 0 +A+ T +S

AIII 1 αA
+
+ T +S+

A 2 −A+ P+S

AIII 3 αA
−α
− T −S−

A 4 +A− T −S

AIII 5 αA
−
+ T −S+

A 6 −A− P−S

AIII 7 αA
α
− T +S−

and antisymmetries, the complex Altland-Zirnbauer classes

with antiunitary symmetries and antisymmetries, and the real

Altland-Zirnbauer classes. For each of these Shiozaki-Sato

classes, the tables also list a representative (anti)symmetry

operation, consisting of a unitary symmetry S squaring to

one or a product of a unitary symmetry and one of the

fundamental nonspatial symmetry operations T , P , or C, with

indices ηT ,P,C specifying the fundamental commutation or

anticommutation relations with the nonspatial symmetries T ,

P , and C, if present. We implicitly assume that (anti)symmetry

operations T , P , and C used for the construction of the

representative (anti)symmetry operation commute with the

crystalline symmetry operation S . With these assumptions, the

indicated square of T andP (in Table III) and the commutation

relations of S with C (in Tables II and III) or with T or P
(in Table IV) fix the algebraic properties of the representative

(anti)symmetry operations T S , PS , and CS .

Following this scheme, Shiozaki and Sato have classified

all insulators and superconductors with a single crystalline

order-two unitary or antiunitary symmetry or antisymmetry

[19]. Central to the classification of Ref. [19] is a set of

isomorphisms between the groups KC(s,t |d‖,d), KC(s|d‖,d),

and KR(s,t |d‖,d) classifying d-dimensional Hamiltonians in

the Shiozaki-Sato symmetry class (s,t) or s and withd‖ inverted

spatial dimensions. For the complex Altland-Zirnbauer classes

with unitary (anti)symmetry these isomorphisms are (with

d‖ < d)

KC(s,t |d‖,d) = KC(s,t + 1|d‖ + 1,d)

= KC(s − 1,t |d‖,d − 1), (6)

with the integers s and t taken mod 2. For the complex

Altland-Zirnbauer classes with antiunitary (anti)symmetry, the

isomorphisms read

KC(s|d‖,d) = KC(s − 2|d‖ + 1,d)

= KC(s − 1|d‖,d − 1), (7)
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TABLE IV. Shiozaki-Sato equivalence classes of symmetry and

antisymmetry operations for the eight real Altland-Zirnbauer classes.

The symbols σ U±
ηT ,ηP

and σ A±
ηT ,ηP

are used to denote unitary

symmetry (U, σ = +), unitary antisymmetry (U, σ = −), antiunitary

symmetry (A, σ = +), and antiunitary antisymmetry (A, σ = −)

operations that square to ±1 and commute (ηT ,P = +) or anticom-

mute (ηT ,P = −) with time-reversal and particle-hole conjugation,

if applicable. The last column lists a unitary crystalline symmetry

SηT ,ηP or the product of a unitary crystalline symmetry and the chiral

operation C as a representative of the equivalence class.

AZ class s t symmetry operation representative

AI 0 0 +Uα
α , +A+

α S+

BDI 1 0 αU
β

β,β , αA
+
β,β S++

D 2 0 +Uα
α , −A+

α S+

DIII 3 0 αU
αβ

β,β , αA
−α
β,β S++

AII 4 0 +Uα
α , +A−

α S+

CII 5 0 αU
β

β,β , αA
−
β,β S++

C 6 0 +Uα
α , −A−

α S+

CI 7 0 αU
αβ

β,β , αA
α
β,β S++

AI 0 1 −Uα
−α , −A−

α CS−

BDI 1 1 αU
αβ

β,−β , αA
α
β,−β S+−

D 2 1 −Uα
α , +A+

α CS+

DIII 3 1 αU
β

−β,β , αA
+
β,−β S−+

AII 4 1 −Uα
−α , −A+

α CS−

CII 5 1 αU
αβ

β,−β , αA
−α
β,−β S+−

C 6 1 −Uα
α , +A−

α CS+

CI 7 1 αU
β

−β,β , αA
−
β,−β S−+

AI 0 2 +Uα
−α , +A−

α S−

BDI 1 2 αU
−β

β,β , αA
−
β,β S−−

D 2 2 +Uα
−α , −A−

α S−

DIII 3 2 αU
−αβ

β,β , αA
α
β,β S−−

AII 4 2 +Uα
−α , +A+

α S−

CII 5 2 αU
−β

β,β , αA
+
β,β S−−

C 6 2 +Uα
−α , −A+

α S−

CI 7 2 αU
−αβ

β,β , αA
−α
β,β S−−

AI 0 3 −Uα
α , −A+

α CS+

BDI 1 3 αU
αβ

−β,β , αA
−α
−β,β S−+

D 2 3 −Uα
−α , +A−

α CS−

DIII 3 3 αU
β

β,−β , αA
−
β,−β S+−

AII 4 3 −Uα
α , −A−

α CS+

CII 5 3 αU
αβ

−β,β , αA
α
−β,β S−+

C 6 3 −Uα
−α , +A+

α CS−

CI 7 3 αU
β

β,−β , αA
+
β,−β S+−

where the label s is taken mod 8. Finally, the isomorphisms for

the real Altland-Zirnbauer classes are

KR(s,t |d‖,d) = KR(s,t + 1|d‖ + 1,d)

= KR(s − 1,t |d‖,d − 1), (8)

where the integers s and t are taken mod 8 and mod 4,

respectively. When applied repeatedly, these isomorphisms can

be used to relate the classification problem of d-dimensional

TABLE V. Classification of topological crystalline phases with

an order-two crystalline symmetry or antisymmetry for the complex

Altland-Zirnbauer classes, based on Ref. [19]. The symbols M, R,

and I refer to mirror reflection (d‖ = 1), twofold rotation (d‖ = 2),

and inversion (d‖ = d = 3), respectively. The entries in brackets give

the purely crystalline component K ′C(s,t |d‖,d) if different from the

full group KC(s,t |d‖,d).

d = 2 d = 2 d = 3 d = 3 d = 3

class s t M R M R I

AS 0 0 0 Z
2 (Z) Z 0 Z

AIIIS+ 1 0 Z 0 0 Z
2 (Z) 0

ACS 0 1 Z
2 (Z) 0 0 Z 0

AIIIS− 1 1 0 Z Z
2 (Z) 0 Z

2 (Z)

Hamiltonians with an order-two crystalline symmetry to a

zero-dimensional classification problem, which can be solved

with elementary methods. The Shiozaki-Sato classification for

two and three dimensional crystals with a mirror reflection M,

twofold rotation R, or inversion symmetry I is summarized

in Tables V–VII. The corresponding classifying groups for

complex and real Altland-Zirnbauer classes without crystalline

symmetries are denoted KC(s,d) and KR(s,d), respectively.

Since they are well known [15–17,39–42] we do not list them

here explicitly; if needed, they can be inferred from Table I,

which lists K(s,d − 1) for d = 2 and 3.

Some of the topological crystalline phases remain topo-

logically nontrivial if the crystalline symmetry is broken.

These are strong topological insulators or superconductors,

which have gapless states at all boundaries, not only at

boundaries that are invariant under the symmetry opera-

tion. The remaining “purely crystalline” topological phases,

which become trivial if the crystalline symmetry is bro-

ken, are classified by a subgroup of the classifying groups

KC(s,t |d‖,d), KC(s|d‖,d), and KR(s,t |d‖,d), which we de-

note K ′C(s,t |d‖,d), K ′C(s|d‖,d), and K ′R(s,t |d‖,d), respec-

tively. The quotient groups K(s,t |d‖,d)/K ′(s,t |d‖,d), which

TABLE VI. Classification of topological crystalline phases with

an order-two antiunitary crystalline symmetry or antisymmetry for the

complex Altland-Zirnbauer classes, based on Ref. [19]. The symbols

M,R, andI refer to mirror reflection (d‖ = 1), twofold rotation (d‖ =
2), and inversion (d‖ = d = 3), respectively. The entries in brackets

give the purely crystalline component K ′C(s|d‖,d) if different from

the full group KC(s|d‖,d).

d = 2 d = 2 d = 3 d = 3 d = 3

class s M R M R I

AT +S 0 Z (0) Z2 0 Z2 0

AIIIT
+S+ 1 Z2 0 Z (0) Z2 2Z (0)

AP+S 2 Z2 2Z (0) Z2 0 0

AIIIT
−S− 3 0 0 Z2 2Z (0) 0

AT −S 4 2Z (0) 0 0 0 0

AIIIT
−S+ 5 0 0 2Z (0) 0 Z (0)

AP−S 6 0 Z (0) 0 0 Z2

AIIIT
+S− 7 0 Z2 0 Z (0) Z2
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TABLE VII. Classification of topological crystalline phases with

an order-two crystalline symmetry or antisymmetry for the real

Altland-Zirnbauer classes, based on Ref. [19]. The symbols M, R,

and I refer to mirror reflection (d‖ = 1), twofold rotation (d‖ = 2),

and inversion (d‖ = d = 3), respectively. The entries in brackets give

the purely crystalline component K ′R(s,t |d‖,d) if different from the

full group KR(s,t |d‖,d).

d = 2 d = 2 d = 3 d = 3 d = 3

class s t M R M R I

AIS+ 0 0 0 2Z 0 0 2Z

BDIS++ 1 0 Z 0 0 2Z 0

DS+ 2 0 Z2 Z (0) Z 0 0

DIIIS++ 3 0 Z2 0 Z2 Z (0) 0

AIIS+ 4 0 0 2Z (4Z) Z2 0 Z (2Z)

CIIS++ 5 0 2Z 0 0 2Z (4Z) Z2 (0)

CS+ 6 0 0 Z (0) 2Z 0 Z2

CIS++ 7 0 0 0 0 Z (0) 0

AICS− 0 1 0 0 0 0 0

BDIS+− 1 1 0 Z 0 0 2Z

DCS+ 2 1 Z
2 (Z) Z2 0 Z 0

DIIIS−+ 3 1 Z
2
2 (Z2) Z2 Z

2 (Z) Z2 Z (0)

AIICS− 4 1 Z
2
2 (Z2) 0 Z

2
2 (Z2) Z2 0

CIIS+− 5 1 0 2Z Z
2
2 (Z2) 0 2Z (4Z)

CCS+ 6 1 2Z
2 (2Z) 0 0 2Z 0

CIS−+ 7 1 0 0 2Z
2 (2Z) 0 Z (0)

AIS− 0 2 0 0 2Z 0 0

BDIS−− 1 2 0 0 0 0 0

DS− 2 2 0 Z
2 (Z) 0 0 Z

DIIIS−− 3 2 Z (2Z) Z
2
2 (Z2) 0 Z

2 (Z) Z2

AIIS− 4 2 Z2 (0) Z
2
2 (Z2) Z (2Z) Z

2
2 (Z2) Z2

CIIS−− 5 2 Z2 0 Z2 (0) Z
2
2 (Z2) 0

CS− 6 2 0 2Z
2 (2Z) Z2 0 2Z

CIS−− 7 2 2Z 0 0 2Z
2 (2Z) 0

AICS+ 0 3 2Z 0 0 2Z 0

BDIS−+ 1 3 0 0 2Z 0 0

DCS− 2 3 Z (0) 0 0 0 0

DIIIS+− 3 3 0 Z (2Z) Z (0) 0 Z
2 (Z)

AIICS+ 4 3 2Z (4Z) Z2 (0) 0 Z (2Z) Z
2
2 (Z2)

CIIS−+ 5 3 0 Z2 2Z (4Z) Z2 (0) Z
2
2 (Z2)

CCS− 6 3 Z (0) 0 0 Z2 0

CIS+− 7 3 0 2Z Z (0) 0 2Z
2 (2Z)

are subgroups of the classifying groups K(s,d) without crys-

talline symmetries, classify the strong topological phases that

are compatible with the crystalline symmetry. Tables V–VII

also list the groups K ′C and K ′R between brackets if they are

different from the full classifying groups KC and KR. The

“purely crystalline” subgroups are evaluated in Sec. IV B and

Appendix C.

The Shiozaki-Sato classification of topological crystalline

insulators and superconductors with an order-two crystalline

symmetry [19], as well as the preceding complete classifica-

tions of mirror-symmetric topological insulators and supercon-

ductors [20,21], is a “strong” classification, in the sense that it

addresses topological features that are robust to a resizing of the

unit cell, allowing the addition of perturbations that break the

translation symmetry of the original (smaller) unit cell, while

preserving the crystalline symmetries. Reference [19] argues

that for such a strong classification it is sufficient to classify

Hamiltonians Hd (k) with argument k defined on a sphere,

rather than on a Brillouin zone of a shape determined by the

underlying Bravais lattice. The construction and classification

of second-order topological insulators and superconductors

that we pursue here also follows the paradigm of a strong

classification scheme. Since boundaries play an essential role

when considering second-order topological phases, we will

not deform the Brillouin zone into a sphere, as in Ref. [19], but

instead use the freedom offered by the possibility to resize the

unit cell to restrict ourselves to rectangular Bravais lattice with

mirror plane and rotation axes aligned with the coordinate axes.

This is consistent with the mathematical form of the symmetry

operations given in Eqs. (2)–(5) above.

III. DIMENSIONAL REDUCTION

The dimension-raising and lowering isomorphisms devised

by Shiozaki and Sato apply to Hamiltonians with argument

k defined on a sphere [19], rather than on a torus, which

complicates a direct application to crystals with boundaries

and corners. For that reason, we here make use of an alternative

dimension-lowering map, which maps a Shiozaki-Sato class

with index s in d dimensions to a Shiozaki-Sato class with

index s − 1 in d − 1 dimensions, while preserving the second

Shiozaki-Sato index t and the number of inverted dimensions

d‖. Our dimension-lowering map is a generalization of a

map first proposed by Fulga et al. for the standard Altland-

Zirnbauer classes [43], and recently extended to mirror-

reflection-symmetric models by two of us [22]. Though not as

powerful as the isomorphisms of Ref. [19], which also relate

symmetry classes with different d‖, this map is sufficient for the

purpose of determining the conditions under which a nontrivial

bulk crystalline phase implies the existence of zero-energy

corner states (for a two-dimensional crystal) or gapless hinge

modes (for a three-dimensional crystal).

The dimension-lowering procedure starts from the calcu-

lation of the reflection matrix rd for a d-dimensional Hamil-

tonian Hd embedded in a two-terminal scattering geometry.

Following Ref. [43], the reflection matrix is reinterpreted as a

Hamiltonian Hd−1 in d − 1 dimensions, but with a symmetry

class that is different from that of the original Hamiltonian Hd .

This reinterpretation is different for Hamiltonians Hd with and

without chiral antisymmetry. If Hd has a chiral antisymmetry,

one can choose a basis of scattering states such that rd is a

Hermitian matrix, allowing the definition of a Hamiltonian

Hd−1 without chiral antisymmetry as

Hd−1 = rd . (9)

On the other hand, if Hd has no chiral antisymmetry, Fulga

et al. set

Hd−1 =
(

0 rd

r
†
d 0

)

, (10)

which has a chiral antisymmetry with UC = diag (1,−1). A

more detailed review of the reflection-matrix based dimen-

sional reduction scheme is given in Appendix A. In the

appendix, we also show that if Hd has a crystalline symmetry

or antisymmetry of Shiozaki-Sato class (s,t) with d‖ < d then
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ideal lead crystalline insulator

ain

in=r
d

aaout

ideal lead

FIG. 3. Schematic picture of a lattice model for a crystalline

insulator in a two-terminal scattering geometry. The reflection matrix

rd relates the amplitudes ain and aout of incident and reflected waves as

shown in the figure. The ideal leads are modeled as a grid of parallel

one-dimensional chains, which endows the reflection matrix rd with

a real-space structure.

Hd−1 has a crystalline symmetry of class (s − 1,t) with the

same value of d‖. (This was shown in Ref. [22] for unitary

mirror symmetries and antisymmetries with d‖ = 1.)

Although Refs. [22,43] apply the reflection-matrix-based

reduction scheme to Hamiltonians with periodic boundary

conditions, the mapping of Eqs. (9) and (10) can also be

used in a real-space formulation, where it can be applied to

crystals with boundaries. In particular, the mapping of Eqs. (9)

and (10) maps d ′-dimensional protected boundary modes of

Hd to d ′ − 1-dimensional boundary modes of Hd−1 for all

1 � d ′ < d, thus not only providing a link between regular

first-order topological insulators and superconductors in dif-

ferent dimensions, but also between second-order topological

insulators and superconductors.

To show how this works explicitly, we consider a d-

dimensional crystalline insulator or superconductor, embedded

in a two-terminal scattering geometry and of finite size in

the transverse directions, as shown schematically in Fig. 3

for a two-dimensional lattice model. We then calculate the

reflection matrix rd (r⊥,r′
⊥) for an ideal lead consisting of a

grid of one-dimensional chains at discrete coordinates r⊥ in

the transverse direction, see Fig. 3, and construct a Hermitian

lattice Hamiltonian Hd−1(r⊥,r′
⊥) using the mapping of Eqs. (9)

and (10). Since it is derived from a reflection matrix rd for

a lead with a finite (d − 1)-dimensional cross section and

open boundary conditions in the transverse direction, Hd−1

also describes a (d − 1)-dimensional system of finite size

and open boundary conditions. For a crystalline insulator or

superconductor of finite width, the existence of gapless modes

along the sample boundary implies the existence of perfectly

transmitted modes along sample boundaries (in case of a

first-order topological insulator or superconductor) or hinges

(for a second-order topological insulator or superconductor).

Since the total scattering matrix, describing reflection and

transmission, is unitary, any such perfectly transmitted modes

correspond to a zero singular value of the reflection matrix

rd (r⊥,r′
⊥) and, hence, to a zero-energy eigenstate of Hd−1.

Since these gapless modes derive from transmitted modes

proceeding along the sample boundary, their eigenvectors

have support near the lead’s boundaries (if Hd is a first-order

topological insulator) or the intersection of two of the lead’s

boundaries (if Hd is a second-order topological insulator), so

that they represent true boundary/corner/hinge modes of Hd−1.

outa ain=r
3outa ain

order TI
2d 2nd

3d 2nd order
Chern
insulator

H2

dimensional 

H

H1

2
H

3

2
=r

reduction

ideal lead

2d Chern
insulator

1d TI

ideal lead

FIG. 4. Comparison of the reflection-matrix-based dimensional

reduction scheme applied to a two-dimensional Chern insulator (left)

and a three-dimensional second-order Chern insulator. In each case

a lower-dimensional Hamiltonian can be constructed out of the

reflection matrix rd describing scattering from a half-infinite crystal

coupled to an ideal lead. Upon constructing the lower-dimensional

Hamiltonian Hd−1, the chiral edge states (left) and hinge states (right)

map to protected zero-energy eigenstates localized near ends (left) or

corners (right).

As an example, we consider a Chern insulator in two

dimensions and a second-order Chern insulator in three di-

mensions, shown schematically in Fig. 4. In both cases, the

corresponding Altland-Zirnbauer class is Cartan class A. The

two-dimensional Chern insulator has chiral modes propagating

along the sample’s edges, see Fig. 4 (left). When the Chern

insulator is embedded in a two-terminal scattering geometry,

the presence of the edge modes leads to perfectly transmitted

modes or, equivalently, to zero singular values of the reflection

matrix rd . The left and right eigenvectors corresponding to this

zero mode, which build the corresponding eigenvectors of the

Hamiltonian Hd−1 calculated via Eq. (10), are localized near

the lead edges. Similarly, a three-dimensional second-order

Chern insulator has chiral hinge modes, as shown schemati-

cally in Fig. 4 (right). Again, when embedded in a scattering

geometry, the presence of the hinge modes leads to perfectly

transmitted modes and, hence, zero singular values of the

reflection matrix rd . The support of the corresponding left and

right eigenvectors is near the lead hinges that are connected to

the sample hinges carrying the chiral modes. Correspondingly,

the Hamiltonian Hd−1 obtained from the dimensional reduc-

tion scheme has zero-energy eigenstates at sample corners.

Hence Hd−1 is a second-order topological insulator.

A numerical simulation of this scenario is shown in Fig. 5.

The dimensional reduction scheme has been applied to a two-

dimensional lattice model with Hamiltonian

H = (m + 2 − cos k1 − cos k2)σ1 + sin k1σ2 + sin k2σ3,

(11)

which describes a two-dimensional Chern insulator for −2 <

m < 0, and to a lattice model of a three-dimensional second-

order Chern insulator [4,9], which has Hamiltonian

H3 = (m + 3 − cos k1 − cos k2 − cos k3)τ1σ1

+ τ1σ3 sin k1 + τ2 sin k2 + τ3 sin k3 + bτ1 (12)
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(a)

(c)

(b)

(d)

0

1.0

-1.0

0

1.0

-1.0

FIG. 5. Support of the zero-energy eigenstates (a) and 30 lowest

energies of the spectrum (b) of the mapped Hamiltonian H1 for a two-

dimensional Chern insulator with Hamiltonian H2 given in Eq. (11),

following the reflection-matrix-based dimensional reduction scheme.

(c) and (d) show the same for the mapped Hamiltonian H2 for the

three-dimensional second-order Chern insulator with Hamiltonian H3

of Eq. (12) with b = 0.4.

with −2 < m < 0 and b numerically small. In both models,

the σj and τj are Pauli matrices acting on different spinor

degrees of freedom. Figure 5 shows the spectra of the mapped

Hamiltonians Hd−1 [Figs. 5(b) and 5(d)], calculated using

the KWANT software package [44], as well as the support of

the zero-energy eigenstates [(c) and (d)]. Consistent with the

scenario laid out above, the spectra are gapped up to two zero

eigenvalues, which have support at the ends of the mapped

one-dimensional chain [Fig. 5(a)] and at mirror-reflection-

symmetric corners [Fig. 5(c)].

IV. MIRROR REFLECTION-SYMMETRIC

SECOND-ORDER TOPOLOGICAL INSULATORS

AND SUPERCONDUCTORS

A. Classification of mirror-symmetric corners and hinges

We now proceed with the classification of zero-energy

states at mirror-symmetric corners and gapless hinge modes

at mirror-symmetric hinges of a mirror-symmetric crystalline

insulator or superconductor. As explained in Introduction, such

a classification depends on the possible presence of local

mirror-symmetry-breaking perturbations at corners or hinges,

and on whether it is an “intrinsic” (termination-independent)

classification or an “extrinsic” (termination-dependent) one.

We recall that we term a classification intrinsic if it is invariant

under a change of lattice termination, as long as the mirror

symmetry of the corner or hinge is preserved, and extrinsic if

it depends on termination. The intrinsic classification describes

properties of the bulk lattice, which is why it is closely related

to the classification of bulk topological crystalline phases,

as we discuss below. Although the extrinsic classification

is termination dependent, it is important to point out that

the extrinsic classification remains valid in the presence of

perturbations that do not close the boundary gap, such as weak

disorder. Figure 6 schematically shows the four classification

rules that follow from the options discussed above for the case

(b)

(e) (f)

(c)(a)

(d)

FIG. 6. Schematic picture of a generic corner (a), a mirror-

symmetric corner with locally broken mirror symmetry (b), and a

mirror-symmetric corner in a crystal with a bulk mirror symmetry.

(d)–(f) represent the possibility to add zero-energy corner states by

changing the lattice termination. Effectively, this amounts to the ad-

dition of one-dimensional topological insulators or superconductors

to the boundaries. At a generic corner, it is possible to change the

termination of only one boundary, as shown in (d). In a symmetric

corner, such a change in termination needs to be applied to both

symmetry-related boundaries, shown schematically in (e) and (f) for

a corner with and without a perturbation that locally breaks the mirror

symmetry.

of a two-dimensional mirror-symmetric crystal, and contrasts

these with the classification of a generic corner discussed in

the Introduction.

We denote the classifying groups for corners according to

the four possible classification rules that arise from the above

considerations as Ki(s,t |d‖,d), K̄i(s,t |d‖,d), Ke(s,t |d‖,d),

and K̄e(s,t |d‖,d), where the subscripts i, e refer to in-

trinsic (termination-independent) and extrinsic (termination-

dependent) classification and the bar refers to corners or hinges

with locally broken mirror reflection symmetry. For mirror

reflection d‖ = 1 throughout. (The second argument is omitted

for the complex Altland-Zirnbauer classes with antiunitary

symmetries and antisymmetries.) Tables VIII–X contain the

complete classification results, ordered as Ki, K̄i (Ke, K̄e).

Although we will explain the derivation of each entry in

the table in detail below and in the appendix, we first outline

the general strategy that results in this classification. Our

first observation is that the extrinsic, termination-dependent,

TABLE VIII. Classification of mirror-symmetric corners (d = 2)

or hinges (d = 3) of second-order topological insulators and super-

conductors in the complex Altland-Zirnbauer classes with unitary

symmetries or antisymmetries. The first two entries in the fourth and

fifth column give the intrinsic, termination-independent, classification

without and with perturbations that locally break mirror symmetry at

the corner or hinge. The entries between brackets give the correspond-

ing extrinsic, termination-dependent classification. The ordering is

Ki,K̄i(Ke,K̄e).

AZ class s t d = 2 d = 3

AM 0 0 - Z,Z2 (Z2,Z)

AIIIM+ 1 0 Z,Z2 (Z2,Z) -

ACM 0 1 Z,0 (Z,0) -

AIIIM− 1 1 - Z,0 (Z,0)
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TABLE IX. Classification of mirror-symmetric corners (d = 2)

or hinges (d = 3) of second-order topological insulators and super-

conductors in the complex Altland-Zirnbauer classes with antiunitary

symmetries or antisymmetries. The ordering is Ki,K̄i(Ke,K̄e).

AZ class s d = 2 d = 3

AT +M 0 - -

AIIIT
+M+ 1 Z2,Z2 (Z,Z) -

AP+M 2 Z2,0 (Z2,0) Z2,Z2 (Z,Z)

AIIIT
−M− 3 0,0 (Z2,0) Z2,0 (Z2,0)

AT −M 4 - 0,0 (Z2,0)

AIIIT
−M+ 5 0,0 (2Z,2Z) -

AP−M 6 - 0,0 (2Z,2Z)

AIIIT
+M− 7 - -

classification of mirror symmetric corners/hinges is identical

to the classification of end states of (d − 1)-dimensional

insulators and superconductors with a crystalline symmetry

TABLE X. Classification of mirror-symmetric corners (d = 2)

or hinges (d = 3) of second-order topological insulators and super-

conductors in the real Altland-Zirnbauer classes. The ordering is

Ki,K̄i(Ke,K̄e).

class s t d = 2 d = 3

AIM+ 0 0 - -

BDIM++ 1 0 Z,Z2 (Z2,Z) -

DM+ 2 0 Z2,Z2

(

Z
2
2,Z2

)

Z,Z2 (Z2,Z)

DIIIM++ 3 0 Z2,Z2

(

Z
2
2,Z2

)

Z2,Z2

(

Z
2
2,Z2

)

AIIM+ 4 0 - Z2,Z2 (Z2
2,Z2)

CIIM++ 5 0 2Z,Z2 (2Z
2,2Z) -

CM+ 6 0 - 2Z,Z2 (2Z
2,2Z)

CIM++ 7 0 - -

AICM− 0 1 - -

BDIM+− 1 1 - -

DCM+ 2 1 Z,Z2 (Z,Z2) -

DIIIM−+ 3 1 Z2,Z2 (Z2,Z2) Z,Z2 (Z,Z2)

AIICM− 4 1 Z2,0 (Z2,0) Z2,Z2 (Z2,Z2)

CIIM+− 5 1 - Z2,0 (Z2,0)

CCM+ 6 1 2Z,0 (2Z,0) -

CIM−+ 7 1 - 2Z,0 (2Z,0)

AIM− 0 2 - 2Z,0 (2Z,0)

BDIM−− 1 2 0,0 (2Z,2Z) -

DM− 2 2 - 0,0 (2Z,2Z)

DIIIM−− 3 2 2Z,Z2 (2Z,Z2) -

AIIM− 4 2 - 2Z,Z2 (2Z,Z2)

CIIM−− 5 2 Z2,Z2 (2Z,2Z) -

CM− 6 2 - Z2,Z2 (2Z,2Z)

CIM−− 7 2 2Z,0 (2Z,0) -

AICM+ 0 3 Z,0 (Z,0) -

BDIM−+ 1 3 0,0 (Z2,0) Z,0 (Z,0)

DCM− 2 3 0,0 (Z2,0) 0,0 (Z2,0)

DIIIM+− 3 3 - 0,0 (Z2,0)

AIICM+ 4 3 2Z,0 (2Z,0) -

CIIM−+ 5 3 - 2Z,0 (2Z,0)

CCM− 6 3 - -

CIM+− 7 3 - -

FIG. 7. The extrinsic classification of corner states in a mirror-

symmetric corner of a two-dimensional crystal is the same as that

of end states of a one-dimensional crystal with a transverse mirror

symmetry with d‖ = 0. The vertical dashed line is the mirror axis.

with d‖ − 1 = 0 inverted coordinates, see Fig. 7 for d = 2. By

the bulk-boundary correspondence, this latter classification is

identical to the corresponding bulk crystalline classification,

so that we have

Ke(s,t |d‖ = 1,d) = K(s,t |d‖ = 0,d − 1). (13)

The classifying groups K(s,t |d‖ = 0,d − 1) are given in

Ref. [19]. They can also be obtained from Tables V–VII using

the isomorphisms (6)–(8). Similarly, upon locally breaking the

mirror symmetry, we obtain the equality

K̄e(s,t |1,d) = K(s,t |0,d − 1)/K ′(s,t |0,d − 1), (14)

where K ′(s,t |d‖ = 0,d − 1) is the “purely crystalline” sub-

group of the classifying group K(s,t |d‖ = 0,d − 1), see the

discussion at the end of Sec. II.

The intrinsic, termination-independent, classification of

mirror-symmetric corners or hinges can be obtained via the

homomorphism

K(s,d − 1)
ct→ Ke(s,t |d‖ = 1,d), (15)

which embeds the equivalence class of the Hamiltonian H (k)

into corresponding Shiozaki-Sato class of Hamiltonian

ct [H (k)] =
(

H (k) 0

0 σSUSH (k)U
†
S

)

, (16)

for US a unitary onsite symmetry (σS = 1) or antisymmetry

(σS = −1) and

ct [H (k)] =
(

H (k) 0

0 σSUSH ∗(−k)U
†
S

)

, (17)

for US an antiunitary onsite symmetry or antisymmetry.

For the intrinsic classification, corner states or hinge modes

that differ by termination effects are identified. Such cor-

ner states or hinge modes are precisely those in the image

ct [K(s,d − 1)], so that we have

Ki(s,t |1,d) = Ke(s,t |1,d)/ct [K(s,d − 1)]. (18)

In other words, the elements of the group Ki(s,t |1,d) can

be viewed as topologically nontrivial d − 1-dimensional

crystalline insulators or superconductors with an onsite
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twofold symmetry that cannot be obtained by gluing two

corresponding noncrystalline d − 1-dimensional topological

insulators or superconductors.

In the next section, we demonstrate, by explicit considera-

tion of all symmetry classes, that the intrinsic (termination-

independent) classification group Ki(s,t |1,d) of corner or

hinge states is identical to the “pure crystalline” group

K ′(s,t |1,d) classifying topological crystalline bulk phases that

are not at the same time strong topological phases,

Ki(s,t |1,d) = K ′(s,t |1,d). (19)

Equation (19) says that a mirror-symmetric topological crys-

talline phase is either a strong topological phase, with gapless

modes at all boundaries, or a topological crystalline phase

which can be uniquely characterized using protected modes

at mirror-symmetric corners (for a two-dimensional crystal)

or hinges (for a three-dimensional crystal). For such “pure

crystalline” topological crystalline phases Eq. (19) this extends

the bulk-boundary correspondence to a “corner-to-bulk corre-

spondence” or “hinge-to-bulk correspondence.”

We now discuss the classification table for the complex

Altland-Zirnbauer classes with unitary mirror symmetries

and antisymmetries in detail. The classification of mirror-

symmetric corners of two-dimensional crystals for the complex

Altland-Zirnbauer classes with antiunitary mirror symme-

tries and antisymmetries and of the real classes is given in

Appendix B. The classification of mirror-symmetric hinges for

these classes can be obtained from the dimensional reduction

scheme of Sec. III and is not discussed in detail.

Class AM, (s,t) = (0,0), d = 2. This class does not allow

protected zero-energy states at corners.

Class AIIIM+ , (s,t) = (1,0), d = 2. At a mirror-symmetric

corner zero-energy states can be counted according to their

parity under mirror reflection M and the chiral operation C,

since M and C commute. (Recall that we use the convention

that the mirror operation M squares to one.) We denote the

number of corresponding modes with NσC,M
. Since pairs of

zero modes with opposite σC but equal σM can be gapped out

by a mirror-symmetric mass term acting locally at the corner,

only N++ − N−+ and N+− − N−− are well defined. This gives

the Z
2 extrinsic classification listed in Table VIII.

By changing the termination, e.g., by adding a suitably

chosen chain of atoms on a crystal face, such that the global

mirror symmetry is preserved, one can add a pair of zero modes

with the same σC , but opposite values of σM, see Fig. 8. (Note

that such a procedure involves closing the boundary gap.)

As a result, the difference N = N++ + N−− − N+− − N−+
is the only remaining invariant, and one finds a Z intrinsic

classification, which is the same classification as the one arising

from the bulk classification of Refs. [19–22,38].

With a mirror-symmetry-breaking local perturbation at the

corner, one may only distinguish corner states by their parity

under C. We use NσC
to denote the number of zero modes with

parity σC . Since pairs of zero modes with opposite σC can be

gapped out by a mass term acting locally at the corner, only the

difference N+ − N− is well defined. This gives a Z extrinsic

classification in the presence of a mirror-symmetry-breaking

perturbation. Moreover, changes of the termination allow one

to change N+ or N− by an even number, resulting in a Z2

intrinsic classification in that case.

L R

FIG. 8. Pairs of corner states may be created by “glueing” one-

dimensional topologically nontrivial chain to the crystal edges. Mirror

symmetry requires that the chains added to mirror-related edges are

mirror images of each other.

Class ACM, (s,t) = (0,1), d = 2. This class allows corner

modes only if the mirror antisymmetry is not broken locally at

the crystal corner. In that case, corner modes can be counted

according to their parity σCM under the mirror antisymmetry

CM. (Recall that we use the convention that CM2 = 1.) The

mirror antisymmetry protects zero modes at the same value

of σCM, but allows pairs of zero modes at opposite mirror

parity σCM to gap out. We conclude that the difference N =
N+ − N− is the corresponding topological invariant, giving

the Z classification listed in Table VIII. There is no difference

between an “extrinsic” and an “intrinsic” classification because

the Altland-Zirnbauer class A is trivial for d = 1, so that no

protected zero modes can be added by changing the lattice

termination. This phase is trivial if the mirror antisymmetry is

broken locally at the corner.

Class AIIIM− , (s,t) = (1,1), d = 2. The bulk crystalline

phase in this class is trivial. However, since the Altland-

Zirnbauer class AIII is nontrivial in one dimension, one

should consider the possibility that corner states can arise by

suitable decoration at the crystal edges, see Fig. 8. Hereto,

consider the addition of two one-dimensional chains with

zero-energy end states, labeled |L〉 and |R〉. The chains are

placed symmetrically, so that |L〉 = M|R〉. Since M anti-

commutes with C, the end states |L〉 and |R〉 have opposite

parity under C. Upon coupling the chains to each other, a term

|L〉〈R| + |R〉〈L| that gaps the two zero modes out is allowed

under C antisymmetry and mirror reflection symmetry. Hence

we conclude that no stable corner states can be created by

changing the lattice termination. (Alternatively, one may note

that a mirror reflection operation that anticommutes with C can

be viewed as a valid term in the Hamiltonian, which gaps out

zero-energy states on the left and right of the corner.)

We point out that whereas in this symmetry class a mirror-

symmetric corner does not allow for protected zero-energy

states, a generic corner still does. The reason is that in a generic

corner one may separately choose lattice terminations at both

edges that meet at that corner, whereas in a mirror-symmetric

corner the lattice terminations at the edges meeting in that

corner are symmetry-related.

Class AM, (s,t) = (0,0), d = 3. We use y to denote

the coordinate running along the hinge. Hinge modes can

be characterized by their mirror parity σM and by their
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propagation direction in the y direction. Whereas counter-

propagating modes with the same mirror parity can mutually

gap out, counterpropagating hinge modes constructed with

opposite σM are protected by mirror symmetry. Using NσM± to

denote the number of hinge modes of mirror parity σM prop-

agating in the ±y direction, the differences N++ − N+− and

N−+ − N−− are two well-defined integer extrinsic topological

invariants, consistent with the Z
2 extrinsic classification of

gapless hinge states.

By adding, e.g., integer quantum Hall insulators on the

mirror-related faces adjacent to the hinge, two co-propagating

hinge modes with opposite mirror parity can be created, leaving

N++ − N+− − N−+ + N−− as the only remaining intrinsic

integer topological invariant. If mirror symmetry is broken

locally at the hinge, all counterpropagating modes can in

principle be gapped out, giving rise to Z and Z2 extrinsic and

intrinsic topological invariants, respectively.

Class AIIIM+ , (s,t) = (1,0), d = 3. This class does not

allow for topologically protected hinge modes.

Class ACM, (s,t) = (0,1), d = 3. The mirror antisymmetry

rules out the existence of protected hinge modes for this

class—recall that for a mirror-symmetric hinge the mirror

antisymmetry CM is effectively a local operation. Whereas

a single dispersing hinge mode can not be an eigenmode of

the antisymmetry CM, two modes |L〉 and |R〉 = CM|R〉
can be gapped out by the mirror-antisymmetric perturbation

i(|L〉〈R| − |R〉〈L|). Note that for class ACM a generic hinge

may still carry a protected hinge mode. (Compare with the

discussion of class AIIIM− for d = 2.)

Class AIIIM− , (s,t) = (1,1), d = 3. The hinge modes can

be chosen to have a well-defined mirror parity σM. Since M
anticommutes with C, they occur as doublets with opposite

σM and opposite propagation direction. For each doublet the

“mixed parity” σ , the product of propagation direction and

mirror parity σM, is well-defined. The corresponding integer

invariant N counts the difference of the number of such

doublets with positive and negative σ . Since Altland-Zirnbauer

class AIII is trivial in two dimensions, there is no difference

between an extrinsic and intrinsic classifications for this class.

Breaking the mirror symmetry locally at the hinge removes the

protection of the hinge modes.

B. From bulk crystalline phase to second-order phase

The above classification of Tables VIII–X is based on a

classification of zero-energy states localized at corners and

gapless modes at hinges only. To make a connection with

the bulk topology we use the bulk-boundary correspondence

for mirror-symmetric topological crystalline insulators, which

uniquely connects the bulk crystalline phase with the existence

of gapless boundary modes at boundaries that are invariant

under the mirror reflection operation.

In a two-dimensional crystal, the edge is one dimensional

and we can introduce a coordinate x running along the edge. If

the boundary is tilted slightly away from the invariant direction,

such that a corner connecting to mirror-related edges emerges

at x = 0, as shown schematically in Fig. 9, generically a mass

term is generated, which is odd under the mirror reflection

operation M. Such a mass term gaps out the edge states,

but the fact that it is odd under mirror reflection implies the

x = 0 x = 0x

x

(a) (b)

FIG. 9. A mirror-symmetric edge, with coordinate x running

along the edge (a) can be deformed into a corner joining two mirror-

related edges (b). The situation shown in (a) has mirror symmetry

acting everywhere along the edge; in (b) mirror symmetry exists only

for a mirror reflection axis going through the corner at x = 0.

existence of a domain wall and an associated zero-energy

state at the corner at x = 0. There is a one-to-one relationship

between the number of topologically protected edge modes

and the number of zero modes obtained in this way—with

the caveats that such zero modes may be annihilated by local

mirror-symmetry breaking perturbations at the corner and that

additional zero modes may be generated by a modification

of the lattice termination. In a three-dimensional crystal, in

principle, the same arguments apply, with the only modification

that in this case the invariant boundary is a surface.

Reference [9] has implemented this construction for all

Shiozaki-Sato classes that have unitary mirror symmetries,

and for which the mass term is unique. A unique mass term

guarantees that a single corner or hinge mode cannot be gapped

out by a perturbation that breaks the mirror symmetry locally at

the corner. To complete the discussion of the complex Altland-

Zirnbauer classes with a unitary mirror symmetry, we here

discus how the presence of gapless states at a mirror-symmetric

edge or surface gives rise to zero-energy corner states at mirror-

symmetric corners or gapless hinge modes at mirror-symmetric

hinges. Comparing to the analysis of the previous section, we

thus verify that we precisely recover the zero-energy corner

state found by inspection of the corner alone. Appendix C

carries out the same program for the remaining Shiozaki-Sato

classes.

Class AIIIM+ , (s,t) = (1,0), d = 2. For concreteness, we

use UC = σ3 and UM = σ3τ3 to represent the commuting

operations C and M. The bulk phase has a Z classification

[19–21] with an integer topological invariant N , which counts

the difference of counterpropagating pairs of edge modes with

positive and negative mixed parity σMC at zero energy. (Al-

though the productMC is an antisymmetry of the Hamiltonian,

not a symmetry, edge modes can be chosen to be eigenmodes of

MC at zero energy. Pairs of counterpropagating edge modes

can not mutually gap out if they have the same eigenvalue

σMC .) After a suitable basis transformation and rescaling, the

Hamiltonian of a “minimal” edge, in which all gapless modes

have the same mixed parity σMC , may be written as

Hedge = −ivσ1∂x1N , (20)

where x is the coordinate along the edge, see Fig. 9(a), 1N the

N × N unit matrix, and v a constant with the dimension of

velocity. A corner between two mirror-related edges meeting

at x = 0, as shown in Fig. 9(b), is represented by a mass term
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m(x)σ2 with m(x) = −m(−x) a N × N Hermitian matrix. The

eigenvalues of m(x) have “domain walls” at x = 0, allowing

for N zero modes localized around x = 0. The bulk theory does

not specify the sign of the limiting values of the eigenvalues

of the mass term m(x) at a large distance from the corner. The

two choices for this sign give corner states with different parity

eigenvalues σC and σM, but the same value of σMC = σCσM:

A domain wall with m(x) > 0 for x ≫ 0 gives a solution with

σC = σMCσM = +, whereas a domain wall with m(x) < 0 for

x ≫ 0 gives a solution with σC = σMCσM = −. One verifies

that if mirror symmetry is present locally around x = 0, neither

perturbations coupling such zero-energy states with the same

value of σMC = σCσM nor perturbations coupling zero-energy

states with different values of σM are allowed.

The analysis of corner states of the previous section

counted their numbers NσC ,σM
with parities σC and σM (at

zero energy) and found that the differences N++ − N−+ and

N+− − N−− are the extrinsic topological invariants, whereas

N = N++ + N−− − N+− − N−+ is the intrinsic topological

invariant. The above analysis provides a confirmation of

the differences N++ − N−+ and N+− − N−− as extrinsic,

termination-dependent invariants, and identifies the intrinsic

invariant N describing the corner states with the bulk topolog-

ical invariant N .

Class ACM, (s,t) = (0,1), d = 2. This phase has a Z
2

bulk classification [19,22], with a purely crystalline clas-

sifying group K ′ = Z. The first-order (strong) topological

phase has chiral edge modes. For a second-order topological

phase we restrict ourselves to purely crystalline topological

phases with equal numbers of counterpropagating modes.

The corresponding integer index N counts the difference

of the numbers of pairs of counterpropagating edge modes

with positive and negative parity σCM at zero energy. (One

verifies that a pair of counterpropagating modes can not

mutually gap out if both modes have the same parity un-

der CM, i.e., the same eigenvalue of UCM.) For a min-

imal edge, in which all edge modes have the same par-

ity σCM, we may represent the mirror antisymmetry with

the unit matrix, UCM = 1. After a suitable rescaling and

basis transformation, the edge Hamiltonian may then be

written as

Hedge = −ivσ3∂x1N , (21)

where x is the coordinate along the crystal edge, 1N is the

N × N unit matrix, and σ3 a Pauli matrix acting on pairs

of counterpropagating modes. Although mirror antisymmetry

does not allow a uniform mass term, a mass term m1(x)σ1 +
m2(x)σ2 in which m1(x) and m2(x) are Hermitian N × N

matrix-valued antisymmetric functions of x is allowed if the

edge is deformed into two mirror-related edges meeting in a

corner at x = 0. Such a mass term allows for N zero-energy

states localized near x = 0. No further topology or symmetry

related numbers can be associated with the zero-energy states,

consistent with the integer classification obtained by inspection

of corner states given in the previous section.

Class AM, (s,t) = (0,0), d = 3. We use UM = σ2 to

represent mirror reflection. This class admits surface states

with dispersion −iv(σ1∂x ± σ2∂y), where the sign ± defines

the “mirror chirality” and x and y are coordinates along

the surface, such that the mirror reflection sends x → −x.

The bulk crystalline phase has a Z topological classification

[19–22], with an integer topological invariant N equal to the

difference of surface states with positive and negative mirror

chirality [45]. For a minimal surface, all surface states have the

same mirror chirality. With a suitable choice of basis and after

rescaling the corresponding surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ2∂y)1N , (22)

with 1N the N × N identity matrix and x and y coordinates

at the invariant surface. The unique mass term m(x,y)σ3 with

m(x,y) = −m(−x,y) an N × N Hermitian matrix gaps out the

surface states. The fact that the mass term is odd under mirror

reflection guarantees the existence of gapless hinge modes at

mirror-symmetric hinges.

Considering the surface Hamiltonian (22) with a mass term

m(x)σ3 with m(x) = −m(−x), the propagation direction of the

hinge states and their mirror parity σM are determined by the

signs of the eigenvalues of m(x) for x ≫ 0, such that a positive

eigenvalue corresponds to a hinge state with positive σM, mov-

ing in the positive y direction, whereas a negative eigenvalue

corresponds to a hinge state with negative σM, moving in the

negativey direction. (The mirror parityσM and the propagation

direction are opposite if we would have started from a surface

Hamiltonian describing surface states with negative mirror

chirality.) Counterpropagating hinge modes constructed this

way have opposite σM and are, hence, protected by mirror

symmetry. Since the sign of m depends on the details of the

surface termination, changing the surface termination allows

to simultaneously switch the propagation direction ± and

the mirror parity σM of the hinge states, consistent with the

intrinsic topological invariant N++ − N+− − N−+ + N−−.

Class AIIIM− , (s,t) = (1,1), d = 3. We choose UC = σ3

and UM = σ2 to represent C and M, respectively. This class

supports gapless surface states with dispersion ∝−iv(σ1∂x ±
σ2∂y), which defines the chirality ±. The crystalline bulk has

a Z
2 classification [19–22], with purely crystalline classifying

group K ′ = Z, see Table V. The strong integer index counts

the number of such surface Dirac cones, weighted by chirality.

For a second-order topological phase, we are interested in the

purely crystalline topological phases, in which the surface

carries multiple pairs of Dirac cones of opposite chirality.

Their dispersion is −iv(σ1τ3∂x ± σ2τ0∂y), where the sign ±
defines the mirror chirality and the τj , j = 0,1,2,3, are Pauli

matrices acting on a different spinor degree of freedom than the

matrices σj , j = 0,1,2,3. The corresponding (second, purely

crystalline) integer topological invariant N counts the number

of such pairs of Dirac cones, weighted by mirror chirality. A

minimal surface with N � 0 has surface Hamiltonian

Hsurface = −iv(σ1τ3∂x + σ2τ0∂y)1N , (23)

where 1N is the N × N unit matrix. The mass terms

allowed by chiral symmetry and mirror reflection sym-

metry are m1(x,y)σ1τ1 + m2(x,y)σ1τ2 with m1,2(x,y) =
−m1,2(−x,y) N × N Hermitian matrices. This ensures the

presence of gapless hinge modes at mirror-symmetric hinges.

One verifies that the surface Hamiltonian (23) gives N doublets

for which the mixed parity, the product of mirror parity σM

and the propagation direction, is positive. Similarly, surface

Dirac cones with negative mirror chirality give hinge doublets

of negative mixed parity, thus allowing one to identify the
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(a)

mirror−symmetric cornermirror−related edges

(b)

FIG. 10. (a) A two-dimensional crystal with a pair of mirror-

related edges, but without a mirror-symmetric corner. (b) The crystal

may be smoothly deformed into a crystal with a mirror-symmetric

corner. The parity of the number of zero-energy states between the

two mirror-related edges in (a) is the same as the parity of the number

of zero-energy states at the mirror-symmetric corner in (b).

topological invariants derived from counting gapless hinge

states and the (purely crystalline) topological invariant N

describing the bulk crystalline topology.

C. Mirror-symmetric crystals without

mirror-symmetric corners

In principle, a mirror-symmetric crystal need not have

mirror-symmetric corners. However, as long as the crys-

tal has at least a pair of mirror-related edges (for a two-

dimensional crystal) or a pair of mirror-related faces (for a

three-dimensional crystal), the bulk topology determines the

parity of the number of corner or hinge states between the

two mirror-related edges or surfaces. An example of such a

situation is shown in Fig. 10. Since such a crystal without

mirror-symmetric corners or hinges (but with two mirror-

related edges or surfaces) may be smoothly deformed into

a crystal with a mirror-symmetric corner without closing the

bulk gap, and since corner states and hinge modes can only

be generated or annihilated pairwise in such a deformation,

one immediately finds that the parity of corner states or hinge

modes is the same as the parity of corner states or hinge

modes at a mirror-symmetric corner. The corresponding entry

in Tables VIII–X is the classifying group K̄i.

V. CLASSIFICATION OF SECOND-ORDER

TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS

WITH TWOFOLD ROTATION AND INVERSION

SYMMETRY

A. Twofold rotation symmetry for d = 3

The construction of Sec. IV B, in which the existence of

a protected corner state or hinge mode is derived from a

nontrivial bulk crystalline topology, can be directly extended

to the case of a three-dimensional insulator or superconductor

with a twofold rotation symmetry, provided a (generic) hinge

allows for the existence of a protected hinge mode, see Table I.

In that case, the argument starts from the existence of a

gapless mode on a surface that is invariant under the twofold

rotation operation. We first consider the case that the number

of gapless modes is “minimal,” i.e., we consider a generator of

the topological crystalline phase. Following the construction

of Sec. IV B, one then argues that a unique mass term is

θ

φ

(b)(a)

FIG. 11. (a) A surface perpendicular to the twofold rotation axis

hosts a gapless mode in a nontrivial topological crystalline phase.

The surface Hamiltonian acquires a mass term m(θ,φ) upon tilting

the surface away from the normal direction, which depends on the tilt

angle θ and the azimuthal angle φ. The mass term is odd under the

twofold rotation operation, m(θ,φ) = −m(θ,φ + π ). (b) A generic

rotation symmetric surface. Surfaces related by twofold rotation have

opposite mass terms. As a result, a protected gapless hinge mode

(thick black line) forms at the intersection of surfaces with masses

of different sign. The situation shown in the figure corresponds to

sign(m1) = −sign(m2).

generated upon tilting this surface away from the invariant

direction. The mass term m depends on the tilt angle θ and the

azimuthal angle φ of the tilted surface, see Fig. 11(a), and is odd

under the twofold rotation operation,m(θ,φ) = −m(θ,φ + π ),

since the twofold rotation symmetry forbids a mass term for

the rotation-invariant surface. As a consequence, a protected

gapless hinge mode forms at the intersection of surfaces with

masses of different sign, see Fig. 11(b). Since the number of

sign changes of the mass term for 0 � φ < 2π must be an odd

multiple of two, the number of such hinge modes intersecting

a generic cross section of the crystal is an odd multiple of two.

The above argument guarantees the existence of hinge

modes globally, as long as the lattice termination is consistent

with the twofold rotation symmetry, but it does not address

the existence of a hinge mode at a given hinge. Indeed,

generically, single hinges are not mapped to themselves under

the twofold rotation operation; in this sense, all hinges are

“generic” in a crystal with twofold rotation symmetry. This is a

difference with the mirror-reflection symmetric case, for which

a nontrivial mirror-symmetric topological crystalline phase can

guarantee the existence of hinge modes at mirror-symmetric

hinges.

All hinges being generic, hinges modes at a given hinge

can also be induced by a suitable manipulation of the lattice

termination. However, a change of lattice termination that

is compatible with the twofold rotation symmetry always

changes the total number of hinge modes passing a generic

cross section of the crystal by a multiple of four. Since, as seen

above, nontrivial bulk crystalline topology can also induce a

number of hinge modes that is an odd multiple of two, we

conclude that second-order topological phases protected by

a twofold rotation symmetry have a Z2 invariant, which is

nontrivial if the number of hinge modes is an odd multiple of

two. Generators of the topological crystalline classes have a

nontrivial Z2 index; if the bulk topological crystalline phase
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TABLE XI. Classification of topological crystalline phases with

an order-two rotation symmetry or an inversion symmetry for the

complex Altland-Zirnbauer classes. The symbols R and I refer to

twofold rotation (d‖ = 2) and inversion (d‖ = d = 3), respectively.

d = 2 d = 3 d = 3

class s t R R I

AS 0 0 0 0 Z2

AIIIS+ 1 0 0 0 0

ACS 0 1 0 Z2 0

AIIIS− 1 1 Z2 0 0

has an integer classification, only the odd topological numbers

map to a nontrivial second-order phase.

It is interesting to point out that for a nontrivial bulk

crystalline phase in a symmetry class that does not allow

for protected hinge modes, i.e., for which the corresponding

Altland-Zirnbauer class in d = 2 dimensions is trivial, the

mass term obtained by tilting the surface away from the

invariant direction is not unique. With two or more masses

m1(θ,φ) and m2(θ,φ), the antisymmetry relation m1,2(θ,φ) =
−m1,2(θ,φ + π ) no longer forces the mass to be zero for certain

values of the azimuthal angle φ, so that no stable gapless modes

exist at hinges. This is a key difference with the case of mirror

reflection-symmetric crystalline insulators, where protected

modes are guaranteed at mirror-symmetric corners or hinges

even in the presence of multiple mass terms.

The resulting classification is shown in the Tables XI–XIII.

The nontrivial entries in these tables are those Shiozaki-

Sato symmetry classes, for which both the purely crystalline

classification groupsK ′ of Tables V–VII and the corresponding

entry Table I are both nonzero. Below we give detailed

considerations making this construction explicit for the non-

trivial complex Altland-Zirnbauer classes with unitary twofold

rotation symmetry or antisymmetry. The complex Altland-

Zirnbauer classes with antiunitary twofold rotation symmetry

or antisymmetry and the real Altland-Zirnbauer classes are

discussed in Appendix D.

Class AIIIR+ , (s,t) = (1,0). The presence of the chiral

antisymmetry with UC = σ3 allows one to assign a chirality ±
to surface modes with Dirac-like dispersion ∝−iσ1∂x ± iσ2∂y ,

where x and y are the Cartesian coordinates parameterizing

the surface and the twofold rotation operation sends x → −x

TABLE XII. Same as table XI, but for antiunitary symmetries and

antisymmetries.

d = 2 d = 3 d = 3

class s R R I

AT +S 0 0 Z2 0

AIIIT
+S+ 1 0 0 0

AP+S 2 0 0 0

AIIIT
−S− 3 0 0 0

AT −S 4 0 0 0

AIIIT
−S+ 5 0 0 0

AP−S 6 0 0 Z2

AIIIT
+S− 7 Z2 0 0

TABLE XIII. Classification of topological crystalline phases with

an order-two crystalline symmetry or antisymmetry for the real

Altland-Zirnbauer classes. The symbols R and I refer to twofold

rotation (d‖ = 2), and inversion (d‖ = d = 3), respectively.

d = 2 d = 3 d = 3

class s t R R I

AIS+ 0 0 0 0 0

BDIS++ 1 0 0 0 0

DS+ 2 0 0 0 0

DIIIS++ 3 0 0 0 0

AIIS+ 4 0 0 0 Z2

CIIS++ 5 0 0 0 0

CS+ 6 0 0 0 Z2

CIS++ 7 0 0 0 0

AICS− 0 1 0 0 0

BDIS+− 1 1 Z2 0 0

DCS+ 2 1 Z2 Z2 0

DIIIS−+ 3 1 Z2 Z2 0

AIICS− 4 1 0 Z2 0

CIIS+− 5 1 Z2 0 0

CCS+ 6 1 0 Z2 0

CIS−+ 7 1 0 0 0

AIS− 0 2 0 0 0

BDIS−− 1 2 0 0 0

DS− 2 2 Z2 0 Z2

DIIIS−− 3 2 Z2 Z2 Z2

AIIS− 4 2 0 Z2 Z2

CIIS−− 5 2 0 0 0

CS− 6 2 0 0 Z2

CIS−− 7 2 0 0 0

AICS+ 0 3 0 0 0

BDIS−+ 1 3 0 0 0

DCS− 2 3 0 0 0

DIIIS+− 3 3 Z2 0 Z2

AIICS+ 4 3 0 Z2 Z2

CIIS−+ 5 3 Z2 0 0

CCS− 6 3 0 Z2 0

CIS+− 7 3 0 0 0

and y → −y. The crystalline bulk has a Z
2 classification [19],

with purely crystalline classifying group K ′ = Z, see Table V.

For a second-order topological phase, we restrict ourselves to

the purely crystalline topological phases, which have equal

numbers of Dirac cones of both chiralities. Such Dirac cones

can not mutually gap out for a rotation-invariant surface if they

have the same parity underRC. At a minimal surface, in which

all surface modes have the same parity under RC, the twofold

rotation symmetry may be represented by UR = UC = σ3.

With a suitable choice of basis and after rescaling, the

surface Hamiltonian of a minimal surface may be written as

Hsurface = −iv(σ1τ3∂x + σ2∂y)1N , (24)

where 1N is the N × N unit matrix. The mass terms allowed

by chiral symmetry and rotation symmetry are m1(x,y)σ1τ1 +
m2(x,y)σ1τ2 with m1,2(x,y) = −m1,2(−x,−y) N × N Her-

mitian matrices. Although surfaces related by the twofold

rotation operation have opposite masses, the existence of two
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mass terms allows the crystal faces to avoid domain walls and

the associated protected hinge modes.

Class ACR, (s,t) = (0,1). The bulk has a Z topological

classification, with an integer topological invariant N equal to

the difference of surface states with positive and negative parity

σCR at zero energy. For a minimal surface, all surface states

have the same value of σCR and one may effectively represent

CR using UCR = 1. With a suitable choice of basis and after

rescaling the corresponding surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ2∂y)1N , (25)

with1N the N × N identity matrix and x and y are coordinates

at the invariant surface. The unique mass term m(x,y)σ3 with

m(x,y) = −m(−x,−y) an N × N Hermitian matrix gaps out

the surface states. If N is odd the existence of hinge modes at

the intersection of surfaces with opposing signs of det m(x,y)

is guaranteed by the rotation antisymmetry. If N is even one

can still construct a mass term which is nonzero everywhere

(except at the origin), corresponding to a state without hinge

modes.

B. Twofold rotation symmetry for d = 2

and inversion symmetry

The above construction can not be applied to two-

dimensional crystals with twofold rotation symmetry and to

three-dimensional crystals with inversion symmetry, because

these do not have symmetry-invariant boundaries. Instead, we

argue for the existence of a second-order topological phase

in this case using the reflection-matrix based dimensional

reduction scheme outlined in Sec. III. Starting from a second-

order topological phase in d + 1 dimensions in Shiozaki-Sato

symmetry class (s + 1,t) (class s + 1 for complex Hamilto-

nians with antiunitary symmetries) and d‖ < d + 1 inverted

coordinates, the dimensional reduction scheme allows one

to construct a second-order topological insulator or super-

conductor in Shiozaki-Sato symmetry class (s,t) (class s

for complex Hamiltonians with antiunitary symmetries) in

d dimensions, with the same number d‖ of inverted dimen-

sions. The real-space version of the reflection-matrix based

dimensional reduction scheme directly maps hinge states in

a three-dimensional second-order topological insulator or su-

perconductor with twofold rotation symmetry to corner states

in a two-dimensional topological insulator or superconductor

with twofold rotation symmetry, see Fig. 12. Similarly, it maps

generalized hinge states of a four-dimensional second-order

topological insulator or superconductor with an order-two

inversion with d‖ = 3 to hinge states of a three-dimensional

second-order topological insulator or superconductor with

inversion symmetry. The resulting Z2 classification is given

in Tables XI–XIII.

VI. EXAMPLES

In this section, we give various tight-binding model realiza-

tions of the second-order topological insulators. The models

we consider all follow the same pattern. We first describe their

general structure and then turn to a description of specific

Shiozaki-Sato symmetry classes. The model Hamiltonian we

2d 2nd order topological
insulator with twofold
rotation symmetry

H
3

dimensional 
reduction

r

rotation symmetry

3d 2nd order topological
insulator with twofold

ideal lead

H2

FIG. 12. Dimensional reduction scheme from a three-

dimensional second-order topological insulator with twofold

rotation symmetry to a two-dimensional second-order topological

insulator with inversion symmetry. Upon dimensional reduction, the

Altland-Zirnbauer class changes from s to s − 1 (modulo 2 for the

complex classes, modulo 8 for the real classes), see the discussion in

the main text.

consider is of the general form H (k) = H0(k) + H1, with

H0(k) =
d

∑

j=0

dj (k)Ŵj , H1 =
d

∑

j=1

bjBj , (26)

where the Ŵj and the Bj , j = 1, . . . ,d, are matrices that depend

on the specific Shiozaki-Sato class and that satisfy Ŵ2
j = B2

j =
1, the bj are real numbers typically chosen to be numerically

small, and

d0(k) = m +
d

∑

j ′=1

(1 − cos kj ′),

(27)
dj (k) = sin kj , j = 1, . . . ,d.

The matrices Ŵ0 and Ŵj , j = 1, . . . ,d, anticommute mutually,

which ensures that for small numbers bj , the Hamiltonian (26)

is in a nontrivial topological crystalline phase for −2 < m < 0.

We further choose the matrix B1 such that it commutes with

Ŵ1 and Ŵ0 and anticommutes with Ŵj with j � 1. For the

remaining matrices Bj with j > 1, we set

Bj = ŴjŴ1B1, j = 2, . . . ,d, (28)

which ensures that Bi commutes with Ŵi and Ŵ0 and anticom-

mutes with Ŵj for j �= i. Mirror symmetry with k1 → −k1

requires b2 = b3 = 0; twofold rotation symmetry with rotation

around the x3 axis requires b3 = 0. The role of the perturbation

H1 is to reduce the symmetry of the Hamiltonian, while

preserving the crystalline symmetry of interest. Further, as

we will show below, each Bj term gaps the surface that is

perpendicular to the xj direction. When appropriate, we will

simplify our notation by writing the matrices Ŵj and Bj and the

numbers bj as vectors, Ŵ = (Ŵ1, . . . ,Ŵd ), B = (B1, . . . ,Bd ),

and b = (b1, . . . ,bd ).

For all of the examples that we discuss below we verified the

existence of Majorana corner modes or gapless hinge modes
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by numerical diagonalization of a finite cluster. (All numerical

calculations in this section were performed using the KWANT

software package [44].) Alternatively, for a Hamiltonian of

the form (26), with the constraints as described above, the

existence of zero-energy corner modes or gapless hinge modes

can also be concluded from an explicit solution of the low-

energy theory, modeling the crystal boundaries as interfaces

between regions with negative and positive m, with negative

m corresponding to the interior of the crystal. The low-energy

limit of H0 near a sample boundary has the form

H0 = m(x⊥)Ŵ0 − ih̄Ŵ · ∂r, (29)

where x⊥ = n · r is the coordinate transverse to a boundary

with outward-pointing normal n. We require m(x⊥) > 0 for

x⊥ > 0 and m(x⊥) < 0 for x⊥ < 0, so that the sample interior

corresponds to negative x⊥. The Hamiltonian (29) admits a

zero-energy boundary mode with spinor wave function ψ(x⊥)

satisfying

∂x⊥ψ(x⊥) = −
i

h̄
m(x⊥)(n · Ŵ)Ŵ0ψ(x⊥). (30)

For 2b-dimensional spinors, this equation has b bounded solu-

tions with an x⊥-independent spinor structure. The projection

operator to the b-dimensional space of allowed spinors is

P (n) = 1
2
[i(n · Ŵ)Ŵ0 + 1]. (31)

The effective b-band surface Hamiltonian is obtained using

the projection operator P (n). To illustrate this procedure,

we consider a family of surfaces with surface normal n =
(cos φ, sin φ) for d = 2 or n = (cos φ, sin φ,0) for d = 3. In

this case, we write the projection operator as

P (φ) = 1
2
(iŴ1Ŵ0 cos φ + iŴ2Ŵ0 sin φ + 1)

= eφŴ2Ŵ1/2P (0)e−φŴ2Ŵ1/2. (32)

The projected Hamiltonian then reads,

P (n)HP (n) = eφŴ2Ŵ1/2P (0)

×
[

−ih̄
(

Ŵ2∂x‖ + Ŵ3∂x3

)

+ m(φ)B1

]

× P (0)e−φŴ2Ŵ1/2, (33)

where m(φ) = b1 cos φ + b2 sin φ and ∂x‖ = cos φ ∂x2
−

sin φ ∂x1
is the derivative with respect to a coordinate along

the surface. [For d = 2 the terms proportional to ∂x3
should

be omitted from Eq. (33) and from Eq. (34) below.] From

Eq. (33), we derive the effective boundary Hamiltonian

Hboundary = −ih̄
(

Ŵ′
2∂x‖ + Ŵ′

3∂x3

)

+ m(φ)B ′
1, (34)

where Ŵ′
2 = P (0)Ŵ2P (0), Ŵ′

3 = P (0)Ŵ3P (0), and B ′
1 =

P (0)B1P (0) are effectively b × b matrices because of the

projection operator P (0). (Note that Ŵ2, Ŵ3, and B1 commute

with P (0).) The boundary Hamiltonian (34) supports boundary

modes with a gap |m(φ)|. For d = 2 zero-energy corner states

appear between crystal edges with opposite sign of m(φ); for

d = 3 gapless hinge modes appear between crystal faces with

opposite sign of m(φ).

A. Examples in two dimensions

1. Class D with t = d‖

This example applies to symmetry class DCM+ , (s,t) =
(2,1) and to symmetry class DR− , (s,t) = (2,2). We represent

the symmetry operations using UP = σ1, UCM = σ1, and

UR = σ3. The mirror operation sends k1 → −k1. For the

matrices Ŵj and Bj in the tight-binding Hamiltonian (26), we

choose

Ŵ0 = σ3, Ŵ = (τ3σ1,σ2), B = (τ2σ3,−τ1). (35)

For class DCM+ , the mirror antisymmetry imposes that b2 = 0;

for class DR− nonzero b1 and b2 are allowed. We note that

for b1 = 0 this example also possesses a mirror symmetry for

mirror reflection k2 → −k2, which is represented by σ2τ3. The

mirror-symmetric case hosts Majorana zero modes at corners

that are bisected by the mirror axis. The rotation-symmetric

case also hosts Majorana modes at corners, but these corners

are determined by the orientation of the vector b (numerical

data not shown).

2. Class D with t = d‖ + 3 mod 4

This example applies to symmetry class DM+ , (s,t) = (2,0)

and to symmetry class DCR+ , (s,t) = (2,1). We represent the

symmetry operations using UP = 1, UM = σ1, and UCR =
τ3σ1. For the matrices Ŵj and Bj in the tight-binding Hamil-

tonian (26), we choose

Ŵ0 = τ2, Ŵ = (τ1σ3,τ3), B = (τ2σ1,−σ2). (36)

Again the mirror symmetry imposes that b2 = 0; for class

DCR− nonzero b1 and b2 are allowed. As in the previous

example, the mirror-symmetric case hosts Majorana zero

modes at corners that are bisected by the mirror axis [9]. The

rotation-symmetric case also hosts Majorana zero modes at

corners that are determined by the orientation of the vector b

(numerical date not shown).

3. Class DIII with t = d‖ − 1 mod 4

This example applies to symmetry classes DIIIM++ and

DIIIR−+ , which both have a Z2 classification. We consider

an eight-band model, for which we represent the symmetry

operations using UT = σ2, UP = τ1, UM = ρ3, and UR = σ3,

where the ρj , σj , and τj are Pauli matrices acting on different

spinor degrees of freedom. For the matrices Ŵj and Bj in the

tight-binding Hamiltonian (26), we choose

Ŵ0 = τ3, Ŵ = (ρ1τ1σ1,ρ3τ1σ1),

B = (ρ3τ3,−ρ1τ3). (37)

Mirror symmetry imposes that b2 = 0. The perturbation b1B1

preserves both mirror and rotation symmetries, but breaks

a mirror symmetry with x2 → −x2, represented by ρ1. As

shown in Fig. 13(a), the mirror-symmetric model with nonzero

b1 hosts Majorana Kramers pairs at its symmetry-invariant

corners. The corner states persist if the mirror-symmetry-

breaking perturbation b2B2 is switched on, see Fig. 13(b). In

this case, the ratio of b1 and b2 determines the corner at which

the Majorana Kramers pairs reside, such that they move to the

other corners if b1 = 0, see Fig. 13(c).
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(a)  (b) (c)

FIG. 13. Support of the zero-energy corner state obtained from

exact diagonalization of the two-dimensional time-reversal invariant

superconductor in class DIII with Hamiltonian (26) with m = −1 and

Ŵ and B given by Eq. (37) with b = (0.3,0) (a), b = (0.3,0.1) (b), and

b = (0,0.3) (c).

4. Class AII with t = d‖ + 2 mod 4

This example applies to symmetry classes AIICM+ and

AIIR+ . We represent the symmetry operations using UT = σ2,

UCM = τ2σ3, and UR = τ2σ1. This symmetry class allows a

perturbation H1 of the form

H1 =
d

∑

j=1

bjBj +
d

∑

j=1

cjCj , (38)

where the matrices Cj anticommute with the matrices Bj and

otherwise satisfy the same properties, see Eq. (28) and the

discussion preceding that equation. For the matrices Ŵj , Bj ,

and Cj , we choose

Ŵ0 = τ2σ1, Ŵ = (σ3,σ2),

B = (μ2τ3σ3,μ2τ3σ2), C = (μ2τ1σ3,μ2τ1σ2), (39)

where the μj , σj , and τj are Pauli matrices acting on different

spinor degrees of freedom. As in the previous examples the mir-

ror antisymmetry imposes that b2 = c2 = 0; for class AIIR+

nonzero b1,2 and c1,2 are allowed. The mirror antisymmetry

can protect a zero-energy Kramers pair at mirror-symmetric

corners. However, if the mirror antisymmetry is broken, the

twofold rotation symmetry alone cannot protect a topologically

protected zero-energy state if both b and c are nonzero and

linearly independent. (If b and c are both nonzero and linearly

dependent, the model specified by Eq. (39) obeys an accidental

chiral antisymmetry, effectively placing it in the Shiozaki-Sato

symmetry classes CIIM−− and CIIR+− , which stabilizes a

zero-energy corner mode even if mirror symmetry is broken.)

Figure 14 shows the result of the exact diagonalization of

this model on a finite-sized lattice. Panel (a) shows the support

of the Kramers pairs for a system with b2 = c1 = c2 = 0

as well as the spectrum near zero energy. Upon adding the

mirror-antisymmetry-breaking perturbation c2C2 locally near

the top corner, the Kramers pair located there acquires a finite

energy, see panel (b). Both Kramers pairs disappear if the

mirror-symmetry-breaking perturbation is added to both top

and bottom corners, see Fig. 14(c).

B. Examples in three dimensions

1. Class A with t = d‖ + 1 mod 4

Langbehn et al. [9] considered this class for the case of a

mirror symmetry with k1 → −k1 represented by UM = σ1.

Here we give an example that also has twofold rotation

(a)

(b)

(c)

0.2

0.1
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FIG. 14. Support of the zero-energy eigenstates (if present, left)

and the lowest 30 eigenvalues [right (a)–(c)] of the model discussed in

Sec. VI A 4. (a) is for the case that mirror antisymmetry is present, b =
(0.4,0) and c = (0,0), which has a Kramers pair of zero-energy states

localized at the mirror-symmetric top and bottom corners. Breaking

the mirror antisymmetry locally at the top corner removes one zero-

energy Kramers pair, as shown in (b). No zero-energy Kramers pairs

remain after removing the mirror antisymmetry at both the top and

the bottom corner, as shown in (c).

antisymmetry, represented by UCR = τ2σ1, and inversion sym-

metry, represented by UI = τ1σ1. For the matrices Ŵj and Bj

in the tight-binding Hamiltonian (26), we choose

Ŵ0 = τ1σ1, Ŵ = (τ1σ3,τ2,τ3), B = (τ1,τ2σ3,τ3σ3). (40)

Mirror symmetry imposes that b2 = b3 = 0; twofold rotation

antisymmetry imposes that b3 = 0. The mirror-symmetric

model with b2 = b3 = 0 was already considered in Sec. III.

Additionally, the system has a mirror symmetry sending k2 →
−k2 (k3 → −k3) represented by UM = τ3σ2 (UM = τ2σ2) and

a twofold rotation antisymmetry around x1 axis (x2 axis) repre-

sented byUCR = σ2 (UCR = τ3σ1). The mirror-symmetric case

AM in which only the perturbation b1B1 is present has a single

chiral mode wrapping around the sample hinges [9]. These

modes persist when all three perturbations bjBj are switched

on, where the orientation of the vector b determines which

hinges support the chiral hinge modes. As an example, Fig. 15

shows the support of the chiral hinge modes for two different

choices of b.

Upon performing the reflection-matrix dimensional reduc-

tion scheme of Sec. III the model defined by the choice
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(a) (b)

(c)

FIG. 15. Support of the zero-energy hinge modes for a

three-dimensional crystal with tight-binding Hamiltonian specified

by Eqs. (26) and (40) for b = (0.8,0.8,0.8)/
√

3 (a) and b =
(0.8,0.8,0)/

√
2 (b). The example shown in (a) has mirror-reflection

symmetry, twofold rotation symmetry, and inversion symmetry; the

example in (b) has inversion symmetry only. (c) shows the support

of the zero-energy corner modes obtained for the two-dimensional

tight-binding model specified by Eqs. (26) and (41) with b = (0.4,0).

(40) can be used to generate an eight-band two-dimensional

Hamiltonian in classes AIIIM+ and AIIIR− with UC = μ3,

UM = σ1, and UR = μ1τ2σ1. Figure 5 shows the support of the

zero-energy corner states of the two-dimensional Hamiltonian

that is obtained this way. For comparison, we may con-

sider a four-band model for a two-dimensional tight-binding

Hamiltonian, with UC = τ3, UM = σ1, and UR = τ1σ1 and

Hamiltonian specified by

Ŵ0 = τ1σ1, Ŵ = (τ1σ3,τ2), B = (τ1,τ2σ3). (41)

The above model has a mirror symmetry for b2 = 0 and a

twofold rotation symmetry for arbitrary b1, b2. This model

has zero-energy corner states. Figure 15(c) shows the support

of these zero-energy corner states for the parameter choice

b = (0.4,0).

2. Class AII with s = 4, t = d‖ + 1 mod 4

This example applies to the classes AIIM− , AIICR+ , and

AIII+ , which all have a Z bulk crystalline classification, with

purely crystalline component K ′ = 2Z [19–23,46]. We use

UT = σ2, represent the (spinful) mirror operation by UM =
σ3τ3, rotation antisymmetry by UCR = σ1τ2, and inversion as

UI = τ3. The lattice Hamiltonian is specified by

Ŵ0 = τ3, Ŵ = (σ3τ1,σ2τ1,σ1τ1),

B = (σ3τ0ρ2,σ2τ0ρ2,σ1τ0ρ2), (42)

where mirror symmetry forces b2 = b3 = 0 and rotation anti-

symmetry forces b3 = 0. In addition to the spatial symmetries

mentioned above, the model has a mirror symmetry with k2 →
−k2 if b1 = b3 = 0, represented by σ2τ3, a mirror symmetry

with k3 → −k3 if b1 = b2 = 0, represented by σ1τ3, and

rotation antisymmetries around the x1 axis (if b1 = 0) and x2

axis (if b2 = 0), represented by σ3τ2 and σ2τ2, respectively. The

(a)  (b)

FIG. 16. Support of helical hinge modes of the tight-binding

Hamiltonian (26) with Ŵ and B given by Eq. (42) and b = (0.4,0.4,0)

(a) and b = (0.4,0.4,0.4) (b). For the example shown in (a) the top

and bottom surfaces are invariant with respect to the twofold rotation

symmetry, which explains the presence of gapless surface modes at

the top and bottom surface. The twofold rotation symmetry is broken

in (b), which has inversion symmetry only.

model with mirror symmetry has a single helical mode located

at the mirror-symmetric sample hinges [9]. The helical modes

persist upon turning on all perturbations bjBj , j = 1,2,3,

leaving inversion as the only symmetry of the model. Figure 16

shows the helical hinge modes for two different choices of b.

The existence of hinge modes in the presence of inversion sym-

metry is consistent with Refs. [14,36], where the same symme-

try class was considered. The case of a spinful mirror symmetry

was analyzed previously in Refs. [4,9].

3. Class AII with s = 4, t = d‖

This example applies to the classes AIICM− , AIIR− , and

AIICI+ , which all have a Z
2
2 bulk crystalline classification

[19–23,46], with purely crystalline component K ′ = Z2. Here

we again represent time-reversal as UT = σ2, and use UCM =
σ1τ3, UR = σ3, and UCI = τ3 to represent the mirror antisym-

metry, spinful rotation symmetry, and inversion antisymmetry.

We choose the matrices of the tight-binding Hamiltonian as

Ŵ0 = τ1ρ3, Ŵ = (σ1τ3ρ3,σ2τ3,σ3τ3),

B = (σ0τ2ρ2,−σ3τ2ρ1,σ2τ2ρ1), (43)

where mirror antisymmetry forces b2 = b3 = 0 and rotation

symmetry forces b3 = 0. The model has additional mirror an-

tisymmetries with k2 → −k2 (if b1 = b3 = 0) and k3 → −k3

(if b1 = b2 = 0), represented by σ2τ3 and σ3τ3, respectively,

and rotation symmetries around the x1 axis (if b1 = 0) and

x2 axis (if b2 = 0), represented by σ1 and σ2, respectively. A

numerical diagonalization gives results that are indistinguish-

able from those of Fig. 16. The existence of hinge modes in

the presence of spinful twofold rotation symmetry is consistent

with Ref. [36], where the same symmetry class was considered.

4. Antiunitary symmetry: Class A with s = 4 − 2d‖ mod 8

This example applies to the classes AP+M, AT +R, and

AP−I . We represent the symmetry operations using UPM =
τ3, UT R = σ1, and UPI = σ2 and consider a tight-binding

Hamiltonian of the form (26) with

Ŵ0 = σ2τ0, Ŵ = (σ1τ1,σ1τ3,σ3τ0),

B = (σ2τ3,−σ2τ1,σ0τ2), (44)
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(c)                           (d)

(a)  (b)

FIG. 17. Support of the zero-energy states of the tight-binding

Hamiltonian (26) with Ŵ and B given by Eq. (44) and b =
(0.4,−0.4,0) (a) and b = (0.4,−0.4,0.4) (b). For the example shown

in (a), the top and bottom surfaces are invariant with respect to the

twofold rotation symmetry, which explains the presence of gapless

surface modes at the top and bottom surface. The twofold rotation

symmetry is broken in (b), which only has inversion symmetry.

(c) shows the support of the zero-energy corner modes of the

two-dimensional Hamiltonian in class AIIIT
+R− obtained by dimen-

sional reduction of the three-dimensional model, with parameter

b = (0.4,−0.4,0). For comparison, (d) shows the support of the zero-

energy corner modes obtained for the two-dimensional tight-binding

model specified by Eqs. (26) and (45) with b = (0.4,−0.4).

where the antiunitary mirror antisymmetry requires that b2 =
b3 = 0 and the twofold antiunitary rotation symmetry requires

that b3 = 0. Figures 17(a) and 17(b) show the hinge states

for two example lattice structures with m = −1 and b =
(0.4,−0.4,0) and b = (0,4,−0.4,0.4), respectively.

Upon performing the reflection-matrix dimensional reduc-

tion scheme of Sec. III, the model defined by the choice (44)

can be used to generate a two-dimensional Hamiltonian in

classes AIIIT
+M+ and AIIIT

+R− with UC = ρ3, UT M = σ0τ3,

and UT R = σ1ρ1. Figure 17 d shows the support of the zero-

energy corner states of the two-dimensional Hamiltonian that

is obtained this way.

The model that is obtained using the dimensional reduction

scheme is an eight-band model. This is not the minimal number

of bands for which a nontrivial second-order topological

insulator in the classes AIIIT
+M+ and AIIIT

+R− exists. An

example of a minimal model is given by a two-dimensional

tight-binding Hamiltonian of the form (26) with

Ŵ0 = σ2τ0, Ŵ = (σ1τ1,σ1τ3), B = (σ2τ3,−σ2τ1), (45)

which has a chiral symmetry UC = σ3, mirror symmetry

UT M = σ3τ3 for b2 = 0 and a twofold rotation symmetry

UT R = σ1 for arbitrary b1, b2. This model has zero-energy

corner states, as shown in Fig. 17(d) for the parameter choice

m = −1, b = (0.4,−0.4).

VII. CONCLUSION

In this work, we extend the construction scheme introduced

by Langbehn et al. [9] for second-order topological insulators

and superconductors with mirror reflection symmetry to the

larger class of topological insulators and superconductors

stabilized by any order-two crystalline symmetry or anti-

symmetry, unitary or antiunitary. The order-two crystalline

symmetries include mirror reflection, twofold rotation, and

inversion.

For the mirror-symmetric topological crystalline insulator

and superconductors, we showed that a topologically nontrivial

bulk implies that either all boundaries have gapless modes,

in which case the topological crystalline insulator or super-

conductor is a strong topological insulator or superconductor

which does not rely on the crystalline symmetry for its

protection, or it is a second-order topological insulator, with

zero-energy states at mirror-symmetric corners or gapless

modes at mirror-symmetric hinges. Moreover, we showed

that there is a “corner-to-bulk correspondence” or “hinge-to-

bulk correspondence,” according to which the classification

of possible protected corner or hinge states modulo lattice

termination effects is identical to the that of the bulk topology,

after removal of the strong topological phases. On the other

hand, no complete corner-to-bulk correspondence or hinge-to-

bulk correspondence exists for topological crystalline phases

protected by a twofold rotation symmetry or by inversion

symmetry, since these symmetries no not allow for symmetry-

invariant corners or hinges in two and three dimensions.

Instead, there is a partial correspondence, which relates the

parity of the number of corner states or hinge modes to the

bulk topology.

For topological crystalline phases in which the number

d‖ of inverted spatial dimensions is smaller than the spatial

dimension d, such as phases protected by mirror reflection

for d � 2 or twofold rotation for d � 3, there is a bulk-

to-boundary correspondence, which uniquely links the bulk

topology with the boundary states on a symmetry-invariant

boundary. The corner-to-bulk correspondence or hinge-to-bulk

correspondence for those phases shows that they may have

protected states at corners or hinges, too, but it does not

provide information beyond what is already known from

considering symmetry-invariant boundaries. This is different

for topological crystalline phases with d‖ = d, such as twofold

rotation symmetry for d = 2 or inversion symmetry for d = 3,

for which there are no symmetry-invariant boundaries and,

hence, no (first-order) bulk-to-boundary correspondence. In

this case, the Z2 sum rule for the number of corner states or

hinge modes that we derive here provides a unique boundary

signature of a nontrivial topological crystalline phase for

a case in which no other boundary signatures are known

to exist [14,36]. Correspondingly, the demonstration that a

nontrivial topological crystalline phase implies the existence

of protected corner states or hinge modes cannot start from a

theory of gapless boundary modes, as it does for d‖ < d [9],

but, instead, must start from the gapped bulk, as is done in

Ref. [36] and Sec. VI for specific examples, or, as a general

construction, by dimensional reduction from a hypothetical

higher-dimensional topological crystalline phase for which

symmetry-invariant boundaries exist. This is the route we take
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in Sec. V, using a real-space dimensional reduction scheme

based on the scattering matrix [22,43].

It is important to stress that, although crystalline symme-

tries are key to our construction of second-order topological

phases, second-order topological phases are immune to weak

perturbations that break the crystalline symmetry, as long as

the boundary gaps are preserved [9]. In our description, this

stability is reflected in the use of two classification schemes: an

extrinsic classification scheme, which classifies corner states

or hinge modes with respect to continuous transformations of

the Hamiltonian that preserve both bulk and boundary gaps,

and an intrinsic classification, which allows transformations

of the Hamiltonian in which the boundary gap is closed, as

long as the bulk gap is preserved. The intrinsic classification

depends on the bulk topology only, and is independent of

the lattice termination. On the other hand, it is the extrinsic

classification, with the possible inclusion of local symmetry-

breaking perturbations, that captures the robustness of the

phenomena associated with a second-order topological phase

to weak symmetry-breaking perturbations.

Not all two-dimensional materials with corner states or all

three-dimensional materials with gapless hinge modes are in

a second-order topological phase—just like not all materials

with a gapped bulk and gapless boundary states are topological.

For a second-order topological phase it is necessary that the

corner states or hinge modes have a topological protection.

A classification of the type that we present here is a key

prerequisite to determine whether a true topological protection

can exist, or whether the existence of corner states or hinge

modes in a given model is merely a matter of coincidence. For

example, the existence of zero-energy corner modes always

requires that the Hamiltonian satisfy an antisymmetry, ruling

out a second-order phase in a two-dimensional lattice model

with symmetries only—in contrast to recent claims in the

literature [47–49].

The phenomenology of a second-order topological phase—

the existence of protected zero-energy corner states or gapless

hinge modes on an otherwise gapped boundary—is not the

only possible manifestation of a nontrivial bulk topology

if the standard bulk-to-boundary correspondence does not

apply. As pointed out in Refs. [6,7,47,50,51], a nontrivial

bulk crystalline topology may also manifest itself through

a nontrivial quantized electric multipole moment or through

the existence of fractional end or corner charges. (Note

that a corner charge is different from a zero-energy corner

state: a zero-energy corner state implies a degeneracy of the

many-body ground state, whereas a corner charge implies the

local accumulation of charge in an otherwise nondegenerate

many-particle ground state.) If the Hamiltonian possesses an

antisymmetry, as is the case for certain models considered in

the literature [6,50], a nontrivial electric multipole moment and

protected zero-energy corner states can exist simultaneously,

but this need not always be the case. A counterexample is

the “breathing pyrochlore lattice” of Ref. [47], for which the

nontrivial bulk topology manifests itself through a quantized

bulk polarization, whereas the zero-energy corner states of

Ref. [47] lack topological protection.

Only few materials have been proposed as realizations

of second-order phases. Examples are strained SnTe [4]

or odd-parity superconducting order in doped nodal-loop

materials [52] both with mirror symmetry, and bismuth [53]

with inversion symmetry. Simultaneously, the phenomenology

of second-order phases has been reproduced experimentally

in artificial “materials,” such as electrical [54] or microwave

[55] circuits, or coupled mechanical oscillators [56]. We hope

that the complete classification presented here will help to

identify new material candidates for the solid-state realizations

of second-order topological insulators and superconductors.
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APPENDIX A: REFLECTION-MATRIX-BASED

DIMENSIONAL REDUCTION SCHEME

In this appendix, we describe details of the reflection-matrix

based dimensional reduction scheme. We first review how

this method works in the absence of crystalline symmetry,

following the original article by Fulga et al. [43], and then show

how to include order-two crystalline symmetries with d‖ < d,

generalizing the analysis of Ref. [22]. The reflection-matrix

based dimensional reduction scheme leaves d‖ unchanged, so

that the minimal dimension it can achieve is d = d‖. The main

text discusses how the reflection-matrix based dimensional re-

duction scheme can also be applied to second-order topological

insulators and superconductors.

1. Altland-Zirnbauer classes without crystalline symmetries

The key step in the method of Ref. [43] is the construction

of a (d − 1)-dimensional gapped Hamiltonian Hd−1 for each

d dimensional gapped Hamiltonian Hd . The Hamiltonians Hd

and Hd−1 have different symmetries, but the same (strong)

topological invariants. Fulga et al. show how the Hamiltonian

Hd−1 can be constructed from the reflection matrix rd if a

gapped system with Hamiltonian Hd is attached to an ideal

lead with a (d − 1)-dimensional cross section.

To be specific, following Ref. [43], we consider a d-

dimensional gapped insulator with Hamiltonian Hd (k) =
Hd (k⊥,kd ), occupying the half space xd > 0 and periodic

boundary conditions in the transverse directions, see Fig. 18.

The half space xd < 0 consists of an ideal lead with transverse

modes labeled by the d − 1 dimensional wave vector k⊥. The

amplitudes aout(k⊥) and ain(k⊥) of outgoing and incoming

modes are related by the reflection matrix rd (k⊥),

aout(k⊥) = rd (k⊥)ain(k⊥). (A1)

Since Hd is gapped, rd (k⊥) is unitary. Time-reversal symme-

try, particle-hole antisymmetry, or chiral antisymmetry pose

additional constraints on rd (k⊥). These follow from the action
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FIG. 18. Schematic picture of a d-dimensional gapped crystalline

insulator occupying the half space xd > 0, with periodic boundary

conditions applied along the remaining (d − 1) dimension, coupled to

an ideal lead with a (d − 1)-dimensional cross section. The reflection

matrix rd (k⊥) relates the amplitudes aout(k⊥) and ain(k⊥) of outgoing

and incoming modes in the lead.

of these symmetries on the amplitudes ain and aout,

T ain(k⊥) = QT a∗
out(−k⊥),

(A2)
T aout(k⊥) = VT a∗

in(−k⊥),

Pain(k⊥) = VP a∗
in(−k⊥),

(A3)
Paout(k⊥) = QP a∗

out(−k⊥),

Cain(k⊥) = QC aout(k⊥),
(A4)

Caout(k⊥) = VC ain(k⊥),

where VT , QT , VP , QP , VC , and QC are k⊥-independent

unitary matrices that satisfy VT Q∗
T = QT V ∗

T = T 2, VPV ∗
P =

QPQ∗
P = P2, and QCVC = C2 = 1. Systems with both time-

reversal symmetry and particle-hole antisymmetry also have

a chiral antisymmetry, with QC = VPQ∗
T = T 2P2QT Q∗

P and

VC = QPV ∗
T = T 2P2VT V ∗

P . For the reflection matrix rd (k⊥),

the presence of time-reversal symmetry, particle-hole antisym-

metry, and/or chiral antisymmetry leads to the constraints

rd (k⊥) = QT
T rd (−k⊥)TV ∗

T , (A5)

rd (k⊥) = QT
Prd (−k⊥)∗V ∗

P , (A6)

rd (k⊥) = Q
†
Crd (k⊥)†VC . (A7)

The effective Hamiltonian Hd−1 is constructed out of rd (k⊥)

in different ways, depending on the presence or absence of

chiral symmetry. With chiral symmetry one sets

Hd−1(k) ≡ QCrd (k), (A8)

using Eq. (A7) to verify that Hd−1 is indeed Hermitian. (Recall

that VC = Q
†
C since QCVC = C2 = 1.) Equation (A8) simpli-

fies to Eq. (9) of the main text if the basis of scattering states is

chosen such that QC = VC = 1. Without chiral symmetry one

defines Hd−1 as

Hd−1(k) =
(

0 rd (k)

r
†
d (k) 0

)

, (A9)

which is manifestly Hermitian and satisfies a chiral symmetry

with UC = σ3 = diag (1,−1). Hence, for the complex classes,

the dimensional reduction procedure Hd → Hd−1 maps a

Hamiltonian with chiral symmetry to one without, and vice

versa, corresponding to the period-two sequence

A
d−1−−→ AIII

d−1−−→ A.

Bulk-boundary correspondence implies that the bulk, which

is described by the Hamiltonian Hd (k), and the boundary,

which determines the reflection matrix rd (k⊥), have the same

topological classification. Since rd (k⊥) is in one-to-one corre-

spondence with the Hamiltonian Hd−1(k⊥), this implies that

Hd and Hd−1 have the same topological classification.

Central point in the construction of Ref. [43] is that if the

Hamiltonian Hd possesses an additional antiunitary symmetry

and/or antisymmetry, placing it in one of the real Altland-

Zirnbauer classes labeled s = 0,1, . . . ,7, then Hd−1 possesses

an antiunitary symmetry and/or antisymmetry, too, such that it

is in Altland Zirnbauer class s − 1 [22,43]. Hence, for the real

Altland-Zirnbauer classes, the reflection-matrix based dimen-

sional reduction scheme generates the period-eight sequence

CI
d−1−−→ C

d−1−−→ CII
d−1−−→ AII

d−1−−→ DIII

d−1−−→ D
d−1−−→ BDI

d−1−−→ AI
d−1−−→ CI, (A10)

which is the well-known period-eight Bott periodicity known

from the classification of topological insulators and supercon-

ductors [15,17,39–42].

2. With order-two crystalline symmetries

Bulk-boundary correspondence continues to exist in the

presence of an order-two crystalline symmetry with d‖ < d,

if the sample surface is left invariant under the symmetry

operation. (For d‖ = d, there are no such invariant surfaces.)

Correspondingly, the reflection-matrix based dimensional re-

duction scheme may be used in the presence of such crystalline

symmetries, too, as was shown for the case of reflection

symmetry by two of us in Ref. [22].

Labeling the coordinates as in Sec. II, the coordinate xd

is left invariant by the crystalline symmetry operation S
if d‖ < d. Hence, taking the same geometry as above, the

lead and the lead-crystal interface are mapped to themselves

under S . We now discuss the four cases of unitary symmetry,

unitary antisymmetry, antiunitary symmetry, and antiunitary

antisymmetry separately.

Unitary symmetry. As with the nonspatial symmetries, the

action of a unitary symmetry operation S on the amplitudes ain

and aout of incoming and outgoing states in the leads involves

multiplication with k⊥-independent unitary matrices,

Sain(k⊥) = VS ain(Sk⊥),
(A11)

Saout(k⊥) = QSaout(Sk⊥),

where Sk⊥ = (−k1, . . . ,−kd‖ ,kd‖+1, . . . ,kd−1) denotes the ac-

tion of the symmetry operation on the mode vector k and the

matrices VS and QS satisfy V 2
S = Q2

S = S2 = 1. The presence

of the order-two crystalline symmetry leads to a constraint on

the reflection matrix,

rd (k⊥) = Q
†
Srd (Sk⊥)VS . (A12)
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The algebraic relations involving the matrices QS , VS de-

pend on whether the symmetry operation S commutes

or anticommutes with the nonspatial symmetry opera-

tions T , P , and C, QT Q∗
S = ηT VSQT , VT V ∗

S = ηT QSVT ,

VPV ∗
S = ηPVSVP , QPQ∗

S = ηPQSQP , QCQS = ηCVSQC ,

and VCVS = ηCQSVC .

Unitary antisymmetry. An order-two unitary antisymmetry

CS also exchanges incoming and outgoing modes, such that

one has

CSain(k⊥) = QCS aout(Sk⊥),
(A13)

CSaout(k⊥) = VCSain(Sk⊥),

with Sk⊥ defined a above. For an antisymmetry operation

CS , the matrices VCS and QCS satisfy VCSQCS = QSCVCS =
(CS)2 = 1. The presence of the crystalline unitary antisymme-

try CS implies that the reflection matrix satisfies

rd (k⊥) = Q
†
CSrd (Sk⊥)†VCS , (A14)

and the matrices QCS and VCS satisfy the algebraic rela-

tions QT V ∗
CS = ηT QCSVT , VT Q∗

CS = ηT VCSQT , VPQ∗
CS =

ηPQCSQP , QPV ∗
CS = ηPVCSVP , QCSVC = ηCQCVCS , and

VCSQC = ηCVCQCS .

Antiunitary symmetry. The action of an order-two antiuni-

tary symmetryT ±S on the scattering amplitudes is represented

by unitary matrices VT S and QT S ,

T Sain(k⊥) = QT S a∗
out(−Sk⊥),

(A15)
T Saout(k⊥) = VT Sa∗

in(−Sk⊥),

with VT SQ∗
T S = QT SV ∗

T S = (T S)2 = ±1. The presence of

the order-two crystalline antiunitary symmetry leads to a

constraint on the reflection matrix,

rd (k⊥) = QT
T Srd (−Sk⊥)TV ∗

T S , (A16)

and the matrices QT S and VT S satisfy the algebraic relations

QT V ∗
T S = ηT QT SV ∗

T , VT Q∗
T S = ηT VT SQ∗

T , VPQ∗
T S =

ηPQT SQ∗
P , QPV ∗

T S = ηPVT SV ∗
P , QT SV ∗

C = ηCQCVT S , and

VT SQ∗
C = ηCVCQT S .

Antiunitary antisymmetry. Finally, for an antiunitary anti-

symmetry P±S one has

PSain(k⊥) = VPS a∗
in(−Sk⊥),

(A17)
PSaout(k⊥) = QPSa∗

out(−Sk⊥),

with VPSV ∗
PS = QPSQ∗

PS = (PS)2 = ±1. The reflection ma-

trix satisfies

rd (k⊥) = QT
PSrd (−Sk⊥)∗V ∗

PS (A18)

and the algebraic relations involving the matrices QPS and VPS

are QT Q∗
PS = ηT VPSQ∗

T , VT V ∗
PS = ηT QPSV ∗

T , VPV ∗
PS =

ηPVPSV ∗
P , QPQ∗

PS = ηPQPSQ∗
P , QCQPS = ηCVPSQ∗

C , and

VCVPS = ηCQPSV ∗
C .

To see how the presence of an order-two crystalline symme-

try or antisymmetry affects the dimensional reduction scheme,

we first consider the complex classes A and AIII. We start

from a Hamiltonian in Shiozaki-Sato symmetry class AS ,

(s,t) = (0,0), which is represented by a Hamiltonian Hd in

symmetry class A with a unitary symmetry S . Constructing a

Hamiltonian Hd−1 in class AIII as described above, we find

that the unitary symmetry S imposes the additional constraint

Hd−1(k⊥) = U
†
SHd−1(Sk⊥)US , (A19)

on Hd−1, with

US =
(

QS 0

0 VS

)

. (A20)

Since US commutes with σ3 and U 2
S = 1, we conclude that

dimensional reduction maps the class AS to class AIIIS+ . In the

classification of Shiozaki and Sato this class is labeled (s,t) =
(1,0). Similarly, ifHd is a Hamiltonian in Shiozaki class (s,t) =
(0,1), which is represented by a unitary antisymmetry CS , the

mapped Hamiltonian Hd−1 satisfies the additional symmetry

U
†
CSHd−1(Sk⊥)UCS (A21)

with

UCS =
(

0 VCS

QCS 0

)

. (A22)

This is a unitary symmetry operation that anticommutes with

the chiral operation σ3, so that the mapped Hamiltonian is

in Shiozaki-Sato class AIIIS− , (s,t) = (1,1). Finally, starting

with a Hamiltonian with symmetry of type (s,t) = (1,t),

represented by a class AIII Hamiltonian with an order-two

crystalline symmetry S commuting (ηC = 1) or anticommut-

ing (ηC = −1) with C for t = 0, 1, respectively, the mapped

Hamiltonian satisfies the constraint

Hd−1(k⊥) = ηCV
†
SHd−1(Sk⊥)VS , (A23)

which is a symmetry of Shiozaki-Sato type (s,t) = (0,t), t =
0,1. (It is a unitary symmetry for ηC = 1 and an antisymmetry

for ηC = −1.)

A similar procedure can be applied to the remaining

complex Shiozaki-Sato classes, which are labeled by a single

integer s = 0,1, . . . ,7. Starting with a Hamiltonian of Shiozaki

classes s = 0 and s = 4 (classes AT +S and AT −S , antiunitary

symmetry T S squaring to 1 and −1, respectively), we find that

the mapped Hamiltonian Hd−1 satisfies the constraint

Hd−1(k⊥) = U
†
T SHd−1(−Sk⊥)∗UT S (A24)

with

UT S =

(

0 V ∗
T S

Q∗
T S 0

)

. (A25)

Hence Hd−1 satisfies an antiunitary symmetry that anticom-

mutes with the chiral operation C and squares to 1 or −1,

so that the mapped Hamiltonian is in Shiozaki classes s = 7

and s = 3, respectively. Similarly, for symmetry classes s =
2 and s = 6, corresponding to an antiunitary antisymmetry

squaring to 1 or −1, respectively, we find that Hd−1 satisfies

the constraint

Hd−1(k⊥) = U
†
PSHd−1(−Sk⊥)∗UPS (A26)

with

UPS =
(

Q∗
PS 0

0 V ∗
PS

)

. (A27)

This is an antiunitary symmetry that commutes with the chiral

operation and squares to 1 or −1, corresponding to symmetry
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classes s = 1 and s = 5, respectively. Finally, for the remaining

symmetry classes we may start from an antiunitary symmetry

squaring to ±1 and find that the mapped Hamiltonian satisfies

Hd−1(k⊥) = ηC(QCVT S )†Hd−1(−Sk⊥)∗(QCVT S ), (A28)

which is an antiunitary symmetry (for ηC = 1) or antisymmetry

(for ηC = −1) that squares to ±ηC , so that under dimensional

reduction the class s = 1, 3, 5, 7 is mapped to s = 0, 2, 4, and

6, respectively.

For the real classes, we may proceed in the same way.

One finds that under dimensional reduction the Shiozaki-Sato

symmetry class (s,t) is mapped to (s − 1,t), with s modulo 8.

The derivation is identical to that given in Ref. [22] for the case

of mirror reflection symmetry.

APPENDIX B: CLASSIFICATION OF

MIRROR-SYMMETRIC CORNERS OF

TWO-DIMENSIONAL CRYSTALS

In this appendix, we explain the origin of the entries in

Tables VIII–X. Throughout we will use the convention that

the chiral operation C squares to one.

1. Complex classes with antiunitary symmetries

and antisymmetries

Class AT +M, s = 0. The topological crystalline phases co-

incide with the strong topological phases of Altland-Zirnbauer

class A. No protected zero-energy corner states can persist in

the trivial strong phase.

Class AIIIT
+M+ , s = 1. Since the antiunitary mirror reflec-

tion operation T M commutes with the chiral operation C,

corner state have a well-defined parity σC under C and can be

chosen to be mapped to themselves under the antiunitary mirror

reflection operation T M. Two corner states with opposite

σC can be gapped out by a reflection-symmetric mass term,

so that we may use the (extrinsic) integer topological index

N = N+ − N− to characterize the zero-energy states at a

corner.

A decoration of the edges by a topologically nontrivial

one-dimensional chain leads to the addition of two zero-energy

states |L〉 and |R〉 = T M|L〉 placed symmetrically around

the corner as in Fig. 8. Since T M commutes with C, these

corner states have the same value of σC . Moreover, the linear

combinations |L〉 + |R〉 and i(|L〉 − |R〉) map to themselves

under T M, so that they meet the classification criteria for

corner states formulated above. Hence, by changing the lattice

termination we may change N+ or N− and, hence, N , by two.

The parity of N remains unchanged under such a change of

termination, which corresponds to an intrinsic Z2 topological

index.

If the antiunitary mirror reflection symmetry is broken

locally near the corner, these conclusions do not change. We

may still define N = N+ − N− as a topological invariant,

which can not change without closing a boundary gap or the

bulk gap, and by changing the lattice termination one may still

change add pairs of zero modes to the corner, so that N mod 2

is the appropriate invariant if topological equivalence is defined

with respect to transformations that possibly close boundary

gaps.

Class AP+M, s = 2. In this symmetry class, the antiunitary

reflection antisymmetryPMmay protect a single zero-energy

state at a mirror-symmetric corner. A pair of zero-energy

states can, however, be gapped out by a mirror-antisymmetric

perturbation. To see this, consider two zero modes |1〉 and |2〉,
for which we may assume that they are both invariant under

PM. Then i(|1〉〈2| − |2〉〈1|) is a local perturbation that obeys

the mirror reflection antisymmetry and gaps out the states

|1〉 and |2〉. We conclude that a mirror-symmetric corner is

described by a Z2 index.

Class AIIIT
−M− , s = 3. The bulk phase is always topo-

logically trivial [19]. However, a single pair of corner states

can be obtained by symmetrically decorating mirror-related

edges with topologically nontrivial one-dimensional chains,

as in Fig. 8. To see this, denote states |L〉 and |R〉 = T M|L〉,
as in Fig. 8. Since (T M)2 = −1 the states |L〉 and |R〉 form a

Kramers pair under the antiunitary mirror reflection operation,

|L〉 = −T M|R〉. A single such pair of zero-energy states can

not be gapped out by a perturbation that respects the antiunitary

mirror reflection symmetry.

Class AT −M, s = 4. The nontrivial topological crystalline

insulator phases in this symmetry class are also strong topo-

logical phases, i.e., they have protected edge modes on all

edges, not only on mirror-symmetric edges. A second-order

topological insulator phase with gapped edges and protected

corner states does not exist for this symmetry class.

Class AIIIT
−M+ , s = 5. The bulk phase is topologically

trivial [19]. However, (multiple) pairs of corner states can

be obtained by symmetrically decorating mirror-related edges

with topologically nontrivial one-dimensional chains, as in

Fig. 8. To see this, denote states |L〉 and |R〉 = T M|L〉,
as in Fig. 8. The states |L〉 and |R〉 have the same parity

under the chiral operation C, since the antiunitary mirror

reflection operation T M commutes with C. Antisymmetry of

the Hamiltonian under C protects corner states of equal parity,

corresponding to a 2Z topological index.

Class AP−M, s = 6. In this symmetry class, the bulk phase

is topologically trivial. Alternatively, one can see that no

protected zero-energy corner states can be consistent with

the existence of an antiunitary mirror reflection antisymmetry

PM with (PM)2 = −1: Such corner states would have to

appear in pairs |0〉, PM|0〉, which can be gapped out by the

mass term |0〉〈0|PM + PM|0〉〈0|, which obeys the required

antisymmetry under PM.

Class AIIIT
+M− , s = 7. This symmetry class is topologi-

cally trivial as a bulk phase and no corner states can be obtained

by symmetrically decorating mirror-related edges with topo-

logically nontrivial one-dimensional chains. To see, we again

denote these end states |L〉 and |R〉 = T M|L〉, as in Fig. 8.

The states |L〉 and |R〉 have opposite parity under the chiral

operation C, since the antiunitary mirror reflection operation

T M anticommutes with C. The Hamiltonian |R〉〈L| + |L〉〈R|
anticommutes with C, commutes with T M, and gaps out the

zero modes |L〉 and |R〉.

2. Real classes

We represent the Shiozaki-Sato classes using unitary mirror

reflection symmetries M or antisymmetries CM squaring to

one.
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Class AIM+ , (s,t) = (0,0). This class has a topologically

trivial bulk phase and does not allow for protected corner

modes.

Class BDIM++ , (s,t) = (1,0). In a mirror-symmetric corner,

corner states can be chosen to have well-defined parities σC and

σM with respect to the chiral operation C and mirror reflection

M. We use NσCσM
to denote the number of corner states with

the corresponding parities. No mass terms can be added that

gap out states with the same parity σC . Local mass terms may

gap out pairs of corner states with different σC , but only if

they have the same value of σM; corner states with different

σC and different σM are protected. As a result, N++ − N−+
and N+− − N−− are two independent topological invariants

describing a mirror-symmetric corner. This gives rise to an

extrinsic Z
2 topological index.

Upon changing the lattice termination while preserving

the global mirror reflection symmetry, e.g., by “glueing” a

topologically nontrivial one-dimensional chain to the crystal

edges as in Fig. 8, a pair of corner states with the same

parity σC and opposite parities σM can be added to a corner.

Such changes of the lattice termination change the invariants

N++ − N−+ and N+− − N−−, but leaves their difference

N++ − N−+ − N+− + N−− unaffected. Hence, if crystals that

differ only by lattice termination are considered equivalent, the

relevant topological invariant is N++ − N−+ − N+− + N−−,

corresponding to an intrinsic Z topological index.

If mirror reflection symmetry is broken locally at the corner,

corner states can be characterized by their parity σC only. Using

NσC
to denote the number of corner states with parity σC , N+ −

N− is a topological invariant—corresponding to an extrinsic Z

classification—which is defined modulo 2 only if crystals that

differ only lattice termination are considered equivalent.

Class DM+ , (s,t) = (2,0). In this class, zero-energy corner

states can be chosen to be particle-hole symmetric (i.e., they

are Majorana states) and with well-defined parity σM under

mirror reflection M. We use NσM
to denote the number of

corner states at parity σM. The numbers N+ and N− are defined

modulo two only, since two zero modes of the same parity can

be gapped out by a mirror-symmetric mass term. This gives

an extrinsic Z
2
2 topological classification of mirror-symmetric

corners.

A change of lattice termination, e.g., by the addition of

topologically nontrivial one-dimensional superconductors on

mirror-related edges, adds two zero modes of opposite mirror

parity to the corner. This reduces the extrinsic Z
2
2 classification

to an intrinsic Z2 classification in case that crystals differ

only by their lattice termination are considered equivalent.

Without local mirror reflection symmetry at the corner, any

pair of Majorana zero modes can gap out, corresponding to a

Z2 classification.

Class DIIIM++ , (s,t) = (3,0). Since particle-hole conju-

gation P and time-reversal T anticommute with the chiral

operation C—recall that we require that C2 = 1—zero-energy

corner states always appear in Kramers pairs |0〉 and T |0〉,
which have opposite parities under C. Since both states of

such a Kramers pair have the same mirror parity σM, we may

characterize the corner states with the help of the number NσM

of Kramers pairs of corner states of mirror parity σM. Mirror

reflection symmetry forbids the gapping out of Kramers pairs

at opposite mirror parity σM, but allows two Kramers pairs at

same σM to annihilate. As a result, both N+ and N− are defined

modulo two only, giving rise to a Z
2
2 topological classification.

A change of lattice termination, e.g., by the addition of

topologically nontrivial one-dimensional superconductors on

mirror-related edges, adds two Kramers pairs of zero-energy

states of opposite mirror parity to the corner, thus reducing

the extrinsic Z
2
2 classification to an intrinsic Z2 classification.

Without local mirror reflection symmetry at the corner, any

two Kramers pairs of Majorana zero modes can gap out,

corresponding to a Z2 classification.

Class AIIM+ , (s,t) = (4,0). This class has a topologically

trivial bulk phase and does not allow for protected corner

modes.

Class CIIM++ , (s,t) = (5,0). For Altland-Zirnbauer class

CII the chiral operation C commutes with particle-conjugation

P and time reversal T , so that a corner hosts Kramers pairs

of zero modes at the same parity σC under the chiral operation

C. Both states in such a Kramers pair have the same mirror

parity σM, which allows us to count the number NσC ,σM
of

Kramers pairs with the corresponding parities σC and σM.

Two Kramers pairs with opposite σC but the same σM may

be gapped by a local mirror reflection-symmetric perturbation

to the Hamiltonian, giving rise to integer topological invariants

N++ − N−+ and N+− − N−−. This corresponds to a 2Z
2

extrinsic topological classification.

A change of lattice termination, e.g., by the addition of topo-

logically nontrivial one-dimensional chains on mirror-related

edges, adds two Kramers pairs of zero modes of opposite

parity σM to the corner. This leaves N++ − N−+ − N+− +
N−− as the only integer invariant, corresponding to a 2Z

classification.

Without local mirror reflection symmetry at the corner,

Kramers pairs corner states are characterized by their parity σC

only. The difference N+ − N− of the number of zero-energy

Kramers doublets with the corresponding parities σC is an

integer topological invariant. If crystals that differ only in

lattice termination are considered equivalent, this difference

is defined modulo two only, leading to a Z2 topological

invariant.

Classes CM+ , (s,t) = (6,0), and CIM++ , (s,t) = (7,0).

These classes have a topologically trivial bulk phase and do

not allow for protected corner modes.

Class AICM− , (s,t) = (0,1). This class has a topologically

trivial bulk phase and does not allow for protected corner

modes. This conclusion holds despite the presence of a mir-

ror reflection antisymmetry CM. Since CM anticommutes

with the time-reversal operation, corner modes can not be

simultaneously eigenstates of CM and of the time-reversal

operation T . Hence corner modes appear as pairs, which can

be chosen such that the two states |±〉 in the pair are invariant

under T and CM|±〉 = ±i|∓〉. Then the local perturbation

|+〉〈−| + |−〉〈+| satisfies time-reversal symmetry and mirror

reflection antisymmetry and gaps out these two corner states.

Class BDIM+− , (s,t) = (1,1). This class has a topologically

trivial bulk phase. To see whether stable corner states may be

induced by a suitably chosen lattice termination, we consider

adding two topologically nontrivial one-dimensional chains in

a symmetric fashion to two symmetry-related crystal edges,

as in Fig. 8. The chains have zero-energy end states |L〉 and

|R〉 = M|L〉, which may be chosen to be invariant under time
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reversal. Since the mirror reflection operation M anticom-

mutes with C, the states |L〉 and |R〉 have opposite parity

under C. The Hamiltonian |L〉〈R| + |R〉〈L| is mirror reflection

symmetric, satisfies the symmetry constraints of class BDI,

and gaps out the states |L〉 and |R〉. We conclude that no stable

corner states may be induced on top of an otherwise trivial bulk

by suitably adapting the lattice termination.

Class DCM+ , (s,t) = (2,1). Particle-hole symmetric (i.e.,

Majorana) corner states can be counted according to their

parity σCM under the mirror reflection antisymmetry. Since

a pair of corner states |±〉 with opposite parity σCM can be

gapped by the local perturbation i(|+〉〈−| − |−〉〈+|), whereas

corner states with equal parity σCM are protected by the

mirror reflection antisymmetry, the difference N+ − N− of

the numbers NσC
of corner states with parity σC is a well-

defined topological invariant. This number remains unchanged

if one-dimensional topological superconductors are “glued”

to mirror-related edges, since this procedure adds a pair of

zero-energy states with opposite σCM. We conclude that there

is a Z topological classification.

If the mirror reflection symmetry is broken locally at the

corner, any pair of Majorana states can be gapped out by a local

perturbation, and one arrives at a Z2 topological classification.

Class DIIIM−+ , (s,t) = (3,1). Since time-reversal T anti-

commutes with C, zero-energy corner states appear as Kramers

pairs with opposite parity with respect to the chiral operation

C. We denote such a Kramers pair as |+〉 and |−〉 = T |+〉,
where the sign ± refers to the C eigenvalue. Since mirror

reflection M anticommutes with C, these states can not be

chosen to simultaneously beM eigenstates. However, multiple

Kramers pairs of zero modes can always be organized in such

a way that M acts within a single Kramers pair. Since M
anticommutes with C andM2 = 1, one hasM|±〉 = e±iφ |∓〉,
where we may fix the phases of the basis kets |±〉 such that

φ = 0. Whereas a single such Kramers pair is topologically

protected, two Kramers pairs |±,1〉 and |±,2〉 can be gapped

out by the local perturbation i(|+,1〉〈−,2| − |−,2〉〈+,1| −
|+,2〉〈−,1| + |−,1〉〈+,2|), which obeys all relevant symme-

tries. We conclude that the only invariant is the parity of

the number of zero-energy Kramers pairs, which gives a Z2

topological classification.

Class AIICM− , (s,t) = (4,1). A corner may host Kramers

pairs of zero modes, which may also be chosen to have a well-

defined parity under the mirror reflection antisymmetry CM.

Since CM anticommutes with time-reversal T , the two states

in the Kramers pair have opposite CM parity. Denoting the two

members of a Kramers pair by |±〉, time-reversal symmetry

forbids perturbations that have a nonzero matrix element

between the states |+〉 and |−〉, whereas mirror reflection

antisymmetry forbids perturbations that have nonzero matrix

elements between |+〉 and |+〉 and between |−〉 and |−〉. We

conclude that a single such Kramers pair is protected by the

combination of time-reversal symmetry and mirror reflection

antisymmetry. A pair of such Kramers pairs can, however,

be gapped out: denoting the states in the two Kramers pairs

by |±,1〉 and |±,2〉, such a pair of Kramers pairs is gapped

out by the local perturbation i(|+,1〉〈−,2| − |−,2〉〈+,1| −
|+,2〉〈−,1| + |−,1〉〈+,2|). As a result, we find that this class

has a Z2 topological index. If mirror reflection (anti)symmetry

is locally broken at the crystal corner, a Kramers pair can obtain

a finite energy and no protected zero-energy corner states

exist.

Class CIIM+− , (s,t) = (5,1). This class has a topologically

trivial bulk phase and does not admit corner states. To see this,

note that a mirror reflection operator withM2 = 1 represents a

Hermitian operator which satisfies all symmetry requirements

for this class: it commutes with time-reversal T and itself,

and anticommutes with particle-hole conjugation P . Hence

M is a valid term in the Hamiltonian, which gaps out any

mirror-symmetric configuration of corner states.

Class CCM+ , (s,t) = (6,1). Corner states appear as pairs

related by particle-hole conjugation P . Since the mirror re-

flection antisymmetry CM commutes with P , the two states

in the Kramers pair have the same mirror eigenvalue σCM.

Multiple Kramers pairs with the same σCM can not be gapped

out by a mirror reflection-antisymmetric Hamiltonian, but

Kramers pairs of opposite parity σCM may be mutually gapped

out by a local mirror reflection-antisymmetric Hamiltonian.

(For example, in a representation in which P = σ2K and

CM = τ3, τ2 gaps out two pairs of Kramers pairs at opposite

CM parity.) We conclude that the difference N = N+ − N−
between the numbers of Kramers pairs with CM-parity σCM

is a well-defined topological invariant, giving a Z topological

classification. Since Altland-Zirnbauer class C does not allow

one-dimensional chains with protected zero-energy end states,

this conclusion does not depend on whether freedom of

lattice termination plays a role in the topological classification.

No corner states can be stabilized in the absence of mirror

reflection antisymmetry.

Classes CIM−+ , (s,t) = (7,1), and AIM− , (s,t) = (0,2).

These classes have a topologically trivial bulk phase and do

not allow for protected corner modes.

Class BDIM−− , (s,t) = (1,2). This class has a topologically

trivial bulk phase. To see whether stable corner states may be

induced by a suitably chosen lattice termination, we consider

adding two topologically nontrivial one-dimensional chains in

a symmetric fashion to two symmetry-related crystal edges,

as in Fig. 8. The chains have zero-energy end states |L〉 and

|R〉 = M|L〉, which may be chosen to be invariant under

time reversal and particle-hole conjugation. Since the mirror

reflection operation M commutes with C, the states |L〉 and

|R〉 have equal parity σC under C. Taking symmetric and

antisymmetric linear combinations of the states |L〉 and |R〉,
one obtains a corner state doublet with opposite parity under

M, but equal σC . Multiple doublets of this type with the same

σC cannot be gapped out by a local perturbation, whereas two

corner state doublets with opposite σC can. Hence N+ − N− is

a valid integer topological invariant, where NσC
is the number

of zero-energy doublets of C-parity σC .

Class DM− , (s,t) = (2,2). This class has a topologically

trivial bulk phase. No zero-energy corner states can be induced

by a suitably chosen lattice termination. To see this, we

consider a mirror reflection symmetry M that squares to one,

so that M is represented by a Hermitian operator. Since M
anticommutes with particle-hole conjugation P , M is itself a

valid perturbation to the Hamiltonian which gaps out any set

of corner states.

Class DIIIM−− , (s,t) = (3,2). Since T 2 = −1 and T anti-

commutes with C, corner modes consist of Kramers Majorana

pairs of opposite parity under the chiral operation C. Since
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the product MC commutes with the time-reversal operation T
and with the chiral operation C, both states in a Kramers pair

have the same “mixed parity” σMC under MC. Two Kramers

pairs of equal mixed parity σMC can not be gapped out by a

mirror-symmetric perturbation, since MC anticommutes with

the Hamiltonian. Two Kramers pairs of opposite mixed parity

σMC can be gapped out by a local perturbation satisfying T
andM symmetries and C antisymmetry. (For example, the two

Kramers pairs |σMC,σC〉withσMC andσC = ± and |σMC,−〉 =
T |σMC,+〉, are gapped out by the perturbation |+,+〉〈−,−| +
|−,−〉〈+,+| − |+,−〉〈−,+| − |−,+〉|+,−〉.) Denoting the

number of zero-energy Kramers pairs with mixed parity σMC

by NσMC
, we thus find that N+ − N− is a valid integer topolog-

ical invariant. This invariant can not be changed by changing

the lattice termination, since addition of two one-dimensional

topological superconductors on mirror-related crystal edges as

in Fig. 8 leads to the addition of two Kramers doublets with

opposite mixed parities σMC . If the mirror symmetry is broken

locally at the corner, any pair of Majorana Kramers doublets

can gap out, and the Z topological classification is reduced to

a Z2 classification.
Class AIIM− , (s,t) = (4,2). The bulk crystalline phase is

a strong topological phase, and no stable zero-energy states
can be induced by a suitably chosen lattice termination in the
trivial bulk phase.

Class CIIM−− , (s,t) = (5,2). Corners allow Kramers dou-
blets with equal C parity σC but opposite M parity σM. Two
doublets at the same C-parity σC can not be gapped out, but
two doublets with opposite C can. (For example, the two
Kramers doublets |σC,σM〉 with σC and σM = ± and |σC,−〉 =
T |σC,+〉, are gapped out by the perturbation |+,+〉〈−,+| +
|−,+〉〈+,+| + |−,−〉〈+,−| + |+,−〉|−,−〉.) Denoting the
number of Kramers pairs with C-parity σC by NσC

, we thus find
that N+ − N− is a well-defined integer topological invariant.

A change of lattice termination, e.g., by the addition of topo-

logically nontrivial one-dimensional chains on mirror-related

edges, adds two Kramers pairs of zero modes of the same

parity σC to the corner. Taking symmetric and antisymmetric

linear combinations these can be reorganized into two Kramers

pairs |σC,±〉 of the type discussed above. Since changing the

lattice termination allows one to change N+ − N− by an even

number, it is only the modulo two part if this invariant which

is determined by the bulk band structure. The above analysis

does not change if the mirror reflection symmetry is broken

locally at the corner.

Class CM− , (s,t) = (6,2). This class has a topologically

trivial bulk phase and does not allow for protected corner

modes.

Class CIM−− , (s,t) = (7,2). Corner states appear in doublets

related by particle-hole conjugation P . Such doublets have

opposite parity under the chiral operation, since P and the

chiral operation C anticommute for this class. The product

MC commutes with P and C, so that both states in a doublet

have the same mixed parity σMC under MC. Two doublets

of equal mixed parity σMC can not be gapped out by a

mirror-symmetric perturbation, since MC anticommutes with

the Hamiltonian. Two doublets of opposite mixed parity

σMC can be gapped out by a local perturbation satisfying

M symmetry and P and C antisymmetries. (For example,

the two doublets |σMC,σC〉 with σMC and σC = ± and

|σMC,−〉 = P|σMC,+〉, are gapped out by the

perturbation |+,+〉〈−,−| + |−,−〉〈+,+| + |+,−〉〈−,+| +
|−,+〉|+,−〉.) Denoting the number of zero-energy Kramers

pairs with mixed parity σMC by NσMC
, we thus find that

N+ − N− is a valid integer topological invariant. This invariant

can not by changed by changing the lattice termination, since

the Altland-Zirnbauer class CI does not allow a nontrivial

one-dimensional phase with protected end states.

Class AICM+ , (s,t) = (0,3). The mirror reflection anti-

symmetry CM allows for the protection of corner states

at a mirror-symmetric corner. Corner states can be chosen

to be real and with well-defined parity σCM under mirror

reflection. Corner states of equal parity can not be gapped out

because of the mirror reflection antisymmetry; corner states

with opposite parity can be gapped out. Hence N = N+ − N−
is an appropriate topological invariant, with NσCM

the number

of corner states with CM-parity σCM.

Class BDIM−+ , (s,t) = (1,3). This class has a trivial bulk

phase. To see whether stable corner states may be induced by

a suitably chosen lattice termination, we consider adding two

topologically nontrivial one-dimensional chains in a symmet-

ric fashion to two symmetry-related crystal edges, as in Fig. 8.

The chains have zero-energy end states |L〉 and |R〉 = M|L〉,
which may be chosen to be invariant under particle-hole conju-

gation since the mirror reflection operation M commutes with

particle-hole conjugationP . A pair of zero-energy states |L,R〉
is protected by the combination of P antisymmetry and M
symmetry. Two such doublets |L,R,1〉 and |L,R,2〉, however,

can be gapped out by the local perturbation i(|L,1〉〈R,2| −
|R,2〉〈L,1| − |L,2〉〈R,1| + |R,1〉〈L,2|), which obeys P and

C antisymmetries and M symmetry. We conclude that the

only invariant is the parity of the number of such zero-energy

doublets, which gives a Z2 topological classification. If mirror

reflection symmetry is broken locally at the corner, the M-

induced protection of a single doublet disappears, and even a

single doublet of zero-energy corner states can be gapped out.

Class DCM− , (s,t) = (2,3). This class is a strong topological

phase, which has doublets of chiral Majorana modes at edges.

A single chiral Majorana mode is not compatible with the

symmetries, since such mode would have to be invariant

under P and CM, which is not possible since P and CM
anticommute. Nevertheless, by a suitable choice of lattice

termination, a protected pair of Majorana zero modes can

be localized at a mirror-symmetric corner in the topologi-

cally trivial bulk phase. To see this, we consider adding two

one-dimensional superconductors with Majorana end states

|L〉 and |R〉 to mirror-related crystal edges of an otherwise

topologically trivial bulk crystal, as in Fig. 8. The end states

|L,R〉 are chosen invariant under particle-hole conjugation P .

Since CM anticommutes with P we have |R〉 = iCM|L〉. A

zero-energy doublet |L,R〉 is then protected by the combination

of CM and P antisymmetries. Two such doublets, however,

can be gapped out by a local perturbation, which results in a

Z2 topological classification.

Class DIIIM+− , (s,t) = (3,3). This class has a trivial bulk

phase and cannot host protected corner states. (In a repre-

sentation in which M2 = 1 the mirror reflection operation

M is represented by a Hermitian operator, which satisfies

P antisymmetry and T symmetry and gaps out any set of

zero-energy states localized at the corner).
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Class AIICM+ , (s,t) = (4,3). This class allows mirror-

protected zero-energy Kramers pairs at corners. Since the

mirror reflection antisymmetry CM commutes with the time-

reversal operator T , such Kramers pairs have the same parity

σCM under mirror reflection. Reflection antisymmetry protects

zero-energy Kramers pairs with equal parity σCM, but allows

the mutual gapping out of Kramers pairs with opposite σCM.

Hence N = N+ − N− is a valid integer topological index for

this class, with NσCM
the number of zero-energy corner states

with CM parity σCM.

Class CIIM−+ , (s,t) = (5,3). This class has a topologically

trivial bulk phase, and does not allow protected zero-energy

states at corners. To see this, we consider the addition of

two topologically nontrivial one-dimensional chains in a sym-

metric fashion to two symmetry-related crystal edges, as in

Fig. 8. We denote the doublets at the two chains by |L〉,
|L′〉 = P|L〉, |R〉 = M|L〉 and |R′〉 = P|R〉 = PM|L〉. Since

M anticommutes with C, doublets at the ends of the left and

right chains have opposite parity under the chiral operation

C. These four states can be gapped out by the perturbation

i(|L〉〈R′| − |R′〉〈L| + |R〉〈L′| − |L′〉〈R|).
Class CCM− , (s,t) = (6,3). This class is a strong topo-

logical phase, which has chiral modes at edges. No corner

modes can be constructed in the trivial bulk phase, because

the Altland-Zirnbauer class C is topologically trivial in one

dimension.

Class CIM+− , (s,t) = (7,3). This class is topologically

trivial and does not allow for protected zero-energy corner

states.

APPENDIX C: EDGE-TO-CORNER CORRESPONDENCE

FOR TWO-DIMENSIONAL MIRROR-SYMMETRIC

CRYSTALS

A nontrivial mirror-symmetric topological crystalline bulk

phase implies the existence of protected gapless states on

mirror-symmetric edges. If the topological crystalline insulator

or superconductor is not in a strong topological phase, these

edge states can be gapped out for edges that are not invariant

under the mirror operation. In that case, protected zero-energy

states remain at mirror-symmetric corners. The main text dis-

cusses this scenario in detail for the complex Altland-Zirnbauer

classes with unitary mirror symmetries and antisymmetries. In

this appendix, we give details for the complex classes with

antiunitary mirror symmetries and antisymmetries and for the

real Altland-Zirnbauer classes. For completeness, we repeat

the discussion of those mirror-symmetric topological phases

that were already contained in Ref. [9].

Throughout this appendix we will use x as a coordinate

along a mirror-symmetric edge, see Fig. 9(a), or along an edge

that is symmetrically deformed from a mirror-symmetric edge,

with a mirror-symmetric corner located at x = 0, see Fig. 9(b).

Further, v is a constant with the dimension of velocity, and

we use σj , τj , j = 0,1,2,3 to refer to Pauli matrices acting

on different spinor degrees of freedom, and 1N to denote the

N × N unit matrix. Edge Hamiltonians are always given in the

simplest possible form, after a suitable basis transformation

and after rescaling of energies and coordinates.

1. Complex Altland-Zirnbauer classes with antiunitary

symmetries and antisymmetries

Class AT +M, s = 0. Representing T M by complex con-

jugation K , this phase allows chiral edge modes with Hamil-

tonian Hedge = −iv1N∂x . This is a strong topological phase,

which does not allow localized zero-energy states at corners.

Class AIIIT
+M+ , s = 1. We represent the chiral operation C

using UC = σ3 and the antiunitary mirror reflection operation

using UT M = 1, so that the bulk Hamiltonian H (kx,ky) satis-

fies the constraints H (kx,ky) = −σ3H (kx,ky)σ3 = H ∗(kx,ky).

A nontrivial mirror-symmetric edge is described by the edge

Hamiltonian

Hedge = −ivσ1∂x . (C1)

This edge allows a unique mass term mσ2, which is odd under

T M. The intersection of two mirror-related edges represents

a domain wall with respect to such a mass term and hosts

a protected zero-energy mode. The chiral parity σC of such

a corner state depends on the sign of m far away from the

corner, such that σC is negative if m(x) is positive for x → ∞.

The Z (extrinsic) classification of corner states follows from

the observation that corner states at equal parity σC can not

mutually gap out.

Class AP+M, s = 2. We represent the antiunitary mir-

ror antisymmetry PM by complex conjugation K , so that

H (kx,ky) = −H ∗(kx,−ky). The edge Hamiltonian at a mirror-

symmetric edge is

Hedge = −ivσ2∂x . (C2)

Upon deforming the edge away symmetrically around a corner

at x = 0, two mass terms m1(x)σ1 + m2(x)σ3 are allowed, with

m1,2(x) = −m1,2(−x). Such a Hamiltonian hosts a zero mode

symmetrically located around the corner at x = 0. A mirror-

symmetry-breaking perturbation near x = 0 can however push

this state away from zero energy.

Class AT −M, s = 2. We represent T M by σ2K , where K

is complex conjugation. A mirror-symmetric edge can host

multiple Kramers pairs of chiral modes, described by the edge

Hamiltonian Hedge = −ivσ01N∂x . This is a strong topological

phase which does not allow for localized states at corners.

2. Real classes

Class BDIM++ , (s,t) = (1,0). We use UT = 1, UP = σ3,

UC = σ3, and UM = σ3τ3 to represent time-reversal, particle-

hole conjugation, chiral operation, and mirror reflection. The

integer topological invariant N for class BDIM++ counts the

difference of the number of helical edge states with positive

and negative mixed parity σMC at zero energy. For a minimal

mirror-invariant edge with N � 0, all edge states have the same

(positive) mixed parity, so that effectively we may set UM =
σ3. With a suitable choice of basis and after rescaling the edge

Hamiltonian takes the form

Hedge = −ivσ21N∂x . (C3)

The unique mass term mσ1, with m a N × N Hermitian matrix,

is odd under reflection. The intersection of two mirror-related

edges represents a domain wall with respect to such a mass

term and hosts N protected zero-energy modes. The parity σC

of these modes depends on the sign of the eigenvalues of the
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matrix m(x) away from the corner at x = 0, such that a positive

eigenvalue for x → ∞ corresponds to a corner state with

positive σC . This reproduces the Z
2 (extrinsic) classification

of corner states derived in Appendix B.

Class DM+ , (s,t) = (2,0). We choose the unitary matrices

UP = 1 and UM = σ1 to represent particle-hole conjugation

and mirror reflection. The bulk topological crystalline phase

has a Z2 classification, for which the nontrivial phase has

counterpropagating edge modes at a mirror-symmetric edge

described by the edge Hamiltonian Hedge = −ivσ3∂x . This

edge Hamiltonian has a unique mass term mσ2. The intersec-

tion between two mirror-related edges represents a domain

wall and hosts a localized zero-energy state. The mirror parity

σM depends on the sign of m far away from the corner at

x = 0, such that a positive value of m for x → ∞ corresponds

to a positive mirror parity σM. Since no matrix elements may

exist between two corner state with opposite mirror parity σM,

this reproduces the Z
2
2 (extrinsic) classification of corner states

derived in Appendix B.

Class DIIIM++ , (s,t) = (3,0). We setUT = σ2,UP = 1, and

UM = σ2τ2. With a suitable choice of basis, a mirror-invariant

edge in the nontrivial topological crystalline phase has a pair

of counter-propagating Majorana modes with Hamiltonian

Hedge = −ivσ3τ0∂x . (C4)

The unique mass term mσ1τ2 is odd under M. As a result,

intersection between two mirror-related edges represents a

domain wall and hosts a Kramers pair localized zero-energy

states. The mirror parity σM depends on the sign of m far away

from the corner at x = 0. The Z
2
2 (extrinsic) classification of

corner states derived in Appendix B follows upon noting that

no matrix elements may exist between two corner state with

opposite mirror parity σM.

Class CIIM++ , (s,t) = (5,0). We set UT = σ2, UP = σ2τ3,

so that UC = τ3. The 2Z bulk classification of this symmetry

class counts the difference N of “edge quartets” with positive

and negative “mixed parity” σCM. For a minimal edge all edge

modes have the same mixed parity, so that effectively M may

be represented by UM = τ3. A minimal edge has Hamiltonian

Hedge = −iv∂xσ0τ21N . (C5)

The unique mass term gapping out such edge modes is mτ1,

with m a real symmetric N × N matrix. This mass term is odd

under mirror reflection, ensuring the existence of N Kramers

pairs of corner states at the intersection between two mirror-

related edges. Both states in such a Kramers pair have the same

parity σC , which is determined by the sign of the eigenvalues of

m far away from the corner at x = 0. This corresponds to the

2Z
2 (extrinsic) classification of corner states derived in Sec. B.

Class DCM+ , (s,t) = (2,1). We represent particle-hole con-

jugation P by complex conjugation and the mirror antisym-

metry CM by UCM = σ3. We use NLσCM
and NRσCM

to denote

the numbers of left-moving and right-moving edge modes

with mirror parity σM at zero energy, respectively. Since

edge modes moving in opposite directions and with opposite

mirror parity can mutually gap out, the differences NR+ −
NL− and NR− − NL+ are topological invariants, giving a Z

2

classification of edge states. The sum NR+ − NL− + NR− −
NL+ is a strong topological invariant. For a second-order

topological superconductor phase, we are interested in the

case NR+ − NL− + NR− − NR+ = 0, a minimal realization

of which has NL− = NR− = 0 and N = NR+ = NL+. With a

suitable choice of basis and after rescaling, the corresponding

edge Hamiltonian reads

Hedge = −ivτ31N∂x, (C6)

where τ3 is a Pauli matrix in the left mover–right mover basis.

The unique mass term mτ2 is odd under the mirror antisymme-

try, so that the intersection between two mirror-related edges

hosts N Majorana corner states. All N corner states have the

same mirror parity, so that no further classification is possible.

This is consistent with the Z (extrinsic) classification derived

in Appendix B.

Class DIIIM−+ , (s,t) = (3,1). Here we choose the repre-

sentations UT = σ2 and UP = σ1, so that UC = σ3. Although

in the most general case the representation of M requires

the introduction of additional spinor degrees of freedom,

the generators for the nontrivial topological phases can be

constructed using the simpler representation UM = σ1. The

two generators of the Z
2
2 topological crystalline classification

have edge Hamiltonians Hedge,1 = −ivσ2∂x and Hedge,2 =
−ivσ2τ3∂x . The former edge Hamiltonian represents a strong

topological phase and is not compatible with a second-order

topological phase. The latter edge Hamiltonian has a unique

mass term mσ2τ2, which is odd under mirror reflection. As

a result, the intersection of two mirror-related edges hosts a

Kramers pair of Majorana zero modes.

Class AIICM− , (s,t) = (4,1). We represent T by σ2K

and CM by σ3. The two generators of the Z
2
2 topological

crystalline classification have edge Hamiltonians Hedge,1 =
−ivσ3∂x and Hedge,2 = −ivτ2σ0∂x , where x is the coordinate

along the mirror-symmetric edge and the Pauli matrix τ2

acts on a separate spinor degree of freedom. The former

edge Hamiltonian Hedge,1 describes a strong phase in which

the edge state is protected by time-reversal symmetry alone

and can not be gapped out. The latter Hamiltonian Hedge,2

has two mass terms m1τ1σ0 + m2τ3σ0, which are both odd

under mirror reflection. Such a Hamiltonian hosts a zero mode

symmetrically located around a mirror-symmetric corner at

x = 0. A local perturbation near the corner at x = 0 that

breaks the mirror symmetry can move this state away from

zero energy.

Class CCM+ , (s,t) = (6,1). We set UP = σ2. This phase

allows a strong topological phase with doublets of particle-

hole conjugated co-propagating chiral edge modes. Pairs of

counterpropagating doublets are prevented from mutually

gapping out if they have the same parity under CM. Hence,

within the relevant subspace, we may represent CM by the

identity, UCM = 1. The edge Hamiltonian for N such pairs of

counterpropagating doublets reads

Hedge = −ivσ1τ2∂x1N , (C7)

where τ2 is a Pauli matrix acting on a different spinor degree

of freedom than the σ matrices. Upon deforming the edge

away symmetrically around a corner at x = 0, four mass

terms m1(x)ρ0σ2 + m2(x)ρ0σ3 + m3(x)σ1ρ1 + m4(x)σ1ρ3 are

allowed under a global reflection symmetry, with mj (x) =
−mj (−x), j = 1,2,3,4. Such a Hamiltonian hosts N doublets

of zero modes symmetrically located around the corner at

x = 0.
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Class DIIIM−− , (s,t) = (3,2). We choose the representa-

tions UT = σ2 and UP = σ1, so that UC = σ3. The Z bulk

topological invariant N is the difference of the numbers of

helical edge doublets with positive and negative “mixed parity”

σMC . For a “minimal” edge with N � 0 all modes have the

same (positive) mixed parity and we may represent UM = σ3.

Only topological crystalline phases with an even number N

of pairs of helical modes can be used for the construction

of a second-order topological insulator, since a single helical

Majorana mode corresponds to a strong topological phase.

With a suitable rescaling and basis choice, an edge with N

pairs of helical modes is described by the edge Hamiltonian

Hedge = −ivσ1τ31N/2∂x . (C8)

This edge Hamiltonian has the unique mass term mτ2σ1, where

m is a real symmetric N/2 × N/2 matrix. The mass term is

odd under mirror reflection, ensuring the existence of N/2

Majorana Kramers pairs at a mirror-symmetric corner.

Class AIIM− , (s,t) = (4,2). We represent time-reversal and

mirror symmetry using UT = σ2 and UM = σ3, respectively.

The bulk has a Z2 topological crystalline classification, the

generator of which has edge Hamiltonian Hedge = −ivσ3∂x ,

with x a coordinate along a mirror symmetric edge. This is a

strong topological phase.

Class CIIM−− , (s,t) = (5,2). We choose UT = σ2, UP =
σ2τ3, and UM = σ3. With a suitable choice of basis, the

nontrivial topological crystalline phase has edge Hamiltonian

Hedge = −ivσ1τ1∂x . (C9)

The unique mass term mσ1τ2 for this Hamiltonian is odd under

mirror reflection, ensuring the existence of a Kramers pair

of zero-energy states at a mirror-symmetric corner. A pair of

corner states has a well defined parity σC with respect to the

chiral operation C, which depends on the asymptotic sign of the

mass m far away from the corner. Multiple corner doublets with

the same σC cannot gap out, consistent with the 2Z (extrinsic)

classification of corner states derived in Appendix B.

Class CIM−− , (s,t) = (7,2). We represent T by σ1K , P
by σ2K , so that UC = σ3. An edge allows multiple pairs of

counterpropagating states with support on orbitals with the

same parity under the product MC, so one may represent

M by UM = σ3 on a minimal edge. With a suitable basis

transformation and after rescaling, an edge with N such

pairs of counterpropagating modes is described by the edge

Hamiltonian

Hedge = −ivσ1τ2∂x1N , (C10)

where τ2 is a Pauli matrix acting on an additional spinor degree

of freedom. Upon deforming the edge away symmetrically

around a corner at x = 0, three mass terms m1(x)σ1τ1 +
m2(x)σ2 + m3(x)σ1τ3 are allowed under a global reflection

symmetry, with mi real symmetric matrices satisfying mi(x) =
−mi(−x), i = 1,2,3. Such a Hamiltonian hosts 2N zero-

energy Majorana states symmetrically located around the

corner at x = 0.

Class AICM+ , (s,t) = (0,3). We represent T by complex

conjugation K . An edge allows multiple pairs of counterprop-

agating states with support on orbitals with the same mirror

parity, so that we may represent the mirror antisymmetry CM

using UCM = 1 for a minimal edge. The corresponding edge

Hamiltonian reads

Hedge = −ivτ2∂x1N , (C11)

where τ2 is a Pauli matrix acting on an additional spinor degree

of freedom. Upon deforming the edge away symmetrically

around a corner at x = 0, two mass terms m1(x)τ1 + m2(x)τ3

are allowed under a global reflection symmetry, with m1 and

m2 real symmetric matrices satisfying m1(x) = −m1(−x) and

m2(x) = −m2(−x). Such a Hamiltonian hosts N zero modes

symmetrically located around the corner at x = 0.

Class DCM− , (s,t) = (2,3). We choose UP = 1 and UCM =
σ2. These symmetries allow a chiral edge Hamiltonian Hedge =
−ivσ01N∂x , with x a coordinate along the edge and 1N the

N × N identity matrix. Such an edge represents a strong

topological phase.

Class AIICM+ , (s,t) = (4,3). We represent T by σ2K . An

edge allows multiple pairs of helical modes with support on

orbitals with the same CM parity, so that we may represent

CM using UCM = 1 for a minimal model. An insulator with an

odd number of such helical edge modes is a strong topological

insulator. With a suitable choice of basis, a “minimal” edge

with an even number N of helical modes is described by the

edge Hamiltonian

Hedge = −ivσ1τ0∂x1N/2, (C12)

where τ0 the 2 × 2 identity matrix acting an additional spinor

degrees of freedom. Upon deforming the edge away symmet-

rically around a corner at x = 0, two mass terms m1(x)τ2σ2 +
m2(x)τ2σ3 are allowed under a global reflection symmetry,

withm1 andm2 real symmetricN/2 × N/2 matrices satisfying

m1(x) = −m1(−x) and m2(x) = −m2(−x). Such a Hamilto-

nian hosts N/2 Kramers pairs of zero modes symmetrically

located around the corner at x = 0.

Class CCM− , (s,t) = (6,3). We set UP = σ2 and UCM =
σ3. An edge allows multiple pairs of chiral modes, described

by the edge Hamiltonian Hedge = −ivσ11N∂x , where x is a

coordinate along the edge and 1N the N × N identity matrix.

This is a strong topological phase.

APPENDIX D: SURFACE-TO-HINGE CORRESPONDENCE

WITH TWOFOLD ROTATION SYMMETRY

In this appendix, we give details for the surface-to-hinge

correspondence for topological crystalline insulators and su-

perconductors with twofold rotation symmetry or antisym-

metry and with mirror symmetry or antisymmetry, starting

from a symmetry characterization of the gapless surface states

on symmetry-invariant surfaces. The general idea underlying

the surface-to-hinge correspondence is the same as for edge-

to-corner correspondence with mirror-symmetric edges and

corners, see Sec. IV B and Appendix C. The low-energy theory

of the surface states is given in terms of one or multiple

Dirac cones that are compatible with the nonspatial and spatial

symmetries of the corresponding Shiozaki-Sato class [19].

Tilting the surface away from the invariant direction, as in

Fig. 11, allows for mass terms which must be odd under twofold

rotation or mirror reflection—because otherwise they would

be allowed for the symmetry-invariant surface orientation. If

the mass term is unique, the intersection of surfaces with
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opposite sign of the mass constitutes a domain wall, hosting a

gapless hinge state. If the mass term is not unique, a mirror-

symmetric hinge will still host a gapless mode, but there is no

protection for gapless hinge modes in the rotation-symmetric

case.

Throughout this appendix, x and y are coordinates on

a (eventually tilted) rotation-invariant or mirror-symmetric

surface, where the mirror reflections sends x → −x, 1N is

the N × N unit matrix, and σi , τi , ρi , and μi , i = 0,1,2,3, are

Pauli matrices acting on different spinor degrees of freedom.

We will restrict our discussion to symmetry classes with a

nontrivial bulk topological crystalline phase, see Ref. [19] and

Tables VI and VII.

1. Complex classes with antiunitary symmetries

and antisymmetries

Classes AT +R, s = 0, and AP+M, s = 2. We choose UT R =
σ1 and UPM = σ3 to represent the magnetic point group sym-

metry T R and mirror antisymmetry PM, respectively. These

symmetries can protect a single gapless surface state with

a Dirac-like dispersion Hsurface = −iv(σ1∂x + σ2∂y) (with a

suitable choice of basis). The unique mass term mσ3 is

odd under T R and PM. A hinge at the intersection of

crystal surfaces with opposite signs of m host a gapless hinge

mode.

Classes AIIIT
+R+ , s = 1, and AIIIT

−M− , s = 3. We choose

UC = σ3, UT R = 1, UT M = σ2τ3. The nontrivial phase hosts

a pair of Dirac cones with dispersion Hsurface = −ivσ1(τ1∂x +
τ3∂y) (with a suitable choice of basis). There are two mass

terms that may gap the Dirac cones if the surface is tilted away

from the invariant direction, m1σ2τ0 + m2σ1τ2, where both m1

and m2 must change sign upon shifting to the rotated/mirror-

reflected tilt direction. With two mass terms, there is a protected

hinge mode at a mirror-symmetric hinge, but not generically

in the presence of the twofold rotation symmetry T R.

Classes AIIIT
−R− , s = 3 and AIIIT

−M+ , s = 5. We use

UC = σ3, UT R = σ2, UT M = σ3τ2 to represent the operations

C, T R, and T M, respectively. The twofold rotation symme-

try is compatible with pairs of Dirac cones with dispersion

∝−ivτ2(σ1∂x ± σ2∂y), which defines the chirality ±. The 2Z

bulk topological crystalline index for this symmetry class

counts the difference N = N+ − N− of such Dirac cones with

positive and negative chirality. For a “minimal” surface all sur-

face Dirac cones have the same chirality, so that after rescaling

and with suitable choice of basis the surface Hamiltonian reads

Hsurface = −ivτ2(σ1∂x + σ2∂y)1N . Since such surface states

are protected by chiral antisymmetry alone, this represents a

strong topological phase.

Classes AIIIT
+R− , s = 7, and AIIIT

+M+ , s = 1. Like the

previous case, this is a strong phase, with gapless surface

states on all surfaces. We choose UC = σ3, UT R = σ1 and

UM = 1. The integer bulk topological crystalline index counts

the difference N = N+ − N− of surface Dirac cones with

dispersion ∝−iv(∂xσ1 ± ∂yσ2). For a “minimal” surface all

surface Dirac cones have the same chirality, so that after rescal-

ing and with suitable choice of basis the surface Hamiltonian

reads Hsurface = −iv(∂xσ1 + ∂yσ2)1N . Such surface states are

protected by chiral antisymmetry alone.

2. Real classes

Classes BDIR++ , (s,t) = (1,0), and BDIM−+ , (s,t) = (1,3).

We represent time-reversal and particle-hole conjugation using

UT = σ0, UP = σ3, UC = σ3, UR = σ3ρ3, and UM = σ2. A

symmetry-invariant surface may host multiple pairs of Dirac

cones with dispersion ∝−iv(σ1τ2∂x ± σ2τ0∂y), which defines

the “mirror chirality” ± for class BDIM−+ . The integer invari-

ant N counts the number of such pairs of Dirac cones, weighted

by the parity underRC (for class BDIR++) or by mirror chirality

(for class BDIM−+). A minimal surface with N � 0 has pairs

of Dirac cones of the same mirror chirality or the same RC
parity, so that effectively we may use UR = σ3 to represent R.

The corresponding surface Hamiltonian is

Hsurface = −iv(σ1τ2∂x + σ2τ0∂y)1N . (D1)

Two mass terms m1σ1τ1 + m2σ1τ3, with m1 and m2 N × N

real symmetric matrices, are allowed upon tilting the surface

away from the symmetry-invariant orientation. These mass

terms are odd under R and M. Since there are two such mass

terms, there are no protected hinge modes for the rotation-

symmetric case. However, there are protected hinge modes at

mirror-symmetric hinges in the mirror-symmetric case.

Classes DIIIR++ , (s,t) = (3,0), and DIIIM+− , (s,t) = (3,3).

We set UT = σ2, UP = σ1, UM = σ1τ2, and UR = τ3. Without

rotation or mirror symmetry, there are protected surface states

with dispersion −iv(σ1∂x ± σ2∂y), which defines the chirality

±. The integer topological invariant N counts the number of

such surface Dirac cones, weighted by the chirality. One such

Dirac cone is not compatible with R or M symmetry on a

symmetry-invariant surface, but two Dirac cones with the same

chirality are, the dispersion for a pair of Dirac cones being

−ivτ1(σ1∂x ± σ2∂y). Since they have the same chirality, such a

pair of Dirac cones is protected byT andP alone. A phase with

multiple such pairs of Dirac cones is a strong topological phase

with gapless surface states for surfaces of arbitrary orientation.

Classes CIIR++ , (s,t) = (5,0), and CIIM−+ , (s,t) = (5,3).

We let time-reversal be represented by UT = iσ2 and particle-

hole by UP = iσ2τ3, so that UC = τ3. We further set UM =
τ3 and UR = τ3ρ3. A symmetry-invariant surface admits

pairs of gapless surface states with Dirac-like dispersion

∝−i(σ0τ2∂x ± σ1τ1∂y), which defines the mirror chirality ±
for class CIIM−+ . The integer invariant N counts the number

of such pairs of Dirac cones, weighted by the parity under RC
(for class CIIR++) or by mirror chirality (for class CIIM−+). A

minimal surface with N � 0 has pairs of Dirac cones of the

same mirror chirality or the same RC parity, so that effectively

we may use UR = τ3 to represent R. A single pair of Dirac

cones is protected by T and P symmetry alone, corresponding

to a strong topological phase with gapless surface states on all

surfaces. A purely crystalline phase requires an even number

N of pairs of surface Dirac cones, so that the corresponding

surface Hamiltonian is

Hsurface = −iv(τ1σ1∂x + τ2σ0∂y)μ01N/2. (D2)

Such a Hamiltonian admits two mass terms m1τ1σ2μ2 +
m2τ1σ3μ2, where m1 and m2 are N/2 × N/2 real symmetric

matrices, which change sign under mirror reflection and

twofold rotation. Since there are two mass terms, the rotation-

symmetric class CIIR++ does not have protected hinge modes,
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whereas the mirror-symmetric class CIIM−+ has protected

gapless modes at mirror-symmetric hinges.

Classes CIR++ , (s,t) = (7,0), and CIM+− , (s,t) = (7,3). We

set UT = σ1 and UP = σ2, so that UC = σ3. We further set

UR = τ3 and UM = σ1τ3. A symmetry-invariant surface ad-

mits surface states with dispersion −iτ2(σ1∂x ± σ2∂y), where

± defines the chirality. The integer invariant counts the number

of such pairs of surface Dirac cones, weighted by chirality.

Since such pairs of surface Dirac cones do not rely on

crystalline symmetries for their protection this is a strong

phase, which has gapless surface states on surfaces of arbitrary

orientation.

Classes DCR+ , (s,t) = (2,2), and DM+ , (s,t) = (2,1). We

set UP = 1, UCR = τ3, and UM = σ3. A symmetry-invariant

surface admits surface states with dispersion ∝−i(σ1∂x ±
σ3∂y), which defines the mirror chirality ± (for class DM+).

This class has an integer topological invariant N , which counts

the differences of the number of Dirac cones with positive

and negative CR parity at zero energy or mirror chirality, as

appropriate. On a minimal surface with N � 0 all surface Dirac

cones have the same mirror chirality or CR parity, so that we

may effectively represent CR by UCR = 1. The corresponding

surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ3∂y)1N . (D3)

Such a surface admits a unique mass term σ2m, with m an

N × N real symmetric matrix, which changes sign under

mirror reflection or under the rotation antisymmetry. Corre-

spondingly, a mirror-symmetric hinge admits gapless modes.

With twofold rotation antisymmetry, gapless hinge modes are

guaranteed to exist if N is odd.

Classes DIIIR−+ , (s,t) = (3,1), and DIIIM++ , (s,t) =
(3,0).— We set UT = σ2 and UP = σ1, so that UC = σ3,

UR = σ1τ3, UM = τ3. The crystalline bulk phase has a Z2

topological classification, for which the nontrivial phase has a

surface state with Hamiltonian

Hsurface = −iv(σ1τ1∂x + σ2τ0∂y) (D4)

at a symmetry-invariant surface. There is a unique mass term

mσ1τ2, which is odd under twofold rotation and under mirror

reflection. We conclude that the conditions for the existence of

gapless hinge modes are met.

Classes AIICR− , (s,t) = (4,1) and AIIM+ , (s,t) = (4,0).

For a minimal model we choose UT = σ2, UCR = σ1, and

UM = τ3. The crystalline bulk phase has a Z2 topological

classification, for which the nontrivial phase has a surface state

with Hamiltonian

Hsurface = −ivσ1(τ1∂x + τ3∂y). (D5)

The model admits a unique mass term mσ1τ2, which changes

sign under the twofold rotation antisymmetry operation and

under mirror reflection. Correspondingly, this model admits a

helical gapless hinge mode.

Classes CCR+ , (s,t) = (6,1) and CM+ , (s,t) = (6,0). We

set UP = σ2, UCR = ρ3, and UM = τ2σ3. The surface admits

pairs of surface states with a dispersion −ivτ2(σ1∂x ± σ3∂y),

which defines the mirror chirality (for class CM+ ). The integer

topological invariant N for class CCR+ counts the difference of

the number of surface Dirac cones with CR eigenvalue 1 and

−1 on a symmetry-invariant surface, and we may use UCR = 1

to represent CR on a minimal surface with N � 0. With mirror

symmetry, N counts the number of pairs of surface Dirac cones

weighted by mirror chirality. In both cases, a minimal surface

with N � 0 has Hamiltonian

Hsurface = −ivτ2(σ1∂x + σ3∂y)1N . (D6)

Such a surface has a unique mass term mτ2σ2, with m a real

symmetric N × N matrix which is odd under CR and M.

Correspondingly, this mirror-symmetric model admits helical

gapless hinge modes at a mirror-symmetric hinge for all N ,

whereas the rotation-antisymmetric model has gapless hinge

modes if N is odd.

Classes DIIIR−− , (s,t) = (3,2) and DIIIM−+ , (s,t) = (3,1).

We set UT = σ2, UP = σ1, UC = σ3, UR = σ3τ3, and UM =
σ1. These classes admit surface states with Dirac dispersion

−iv(σ2∂x ± σ1∂y), which defines the chirality ±. Such a

surface state is compatible with R and M symmetries, but

protected by chiral antisymmetry C alone. The corresponding

strong integer index counts their number, weighted by chirality.

A pair of surface states of opposite chirality, with dispersion

−iv(σ2ρ3∂x ± σ1ρ0∂y), where the sign ± defines the mirror

chirality for class DIIIM−+ , is protected by rotation or mirror

symmetry. The associated integer topological index N counts

the number of such pairs of surface Dirac cones, weighted

by RC parity (for class DIIIR−−) or by mirror chirality (for

class DIIIM−+). This allows one to effectively set UR = σ3

for a minimal surface with N � 0. The corresponding surface

Hamiltonian reads

Hsurface = −iv(σ2ρ3∂x + σ1ρ0∂y)1N . (D7)

The surface Hamiltonian admits a unique mass term mσ2ρ2,

withm a real symmetricN × N matrix, which changes sign un-

der the twofold rotation antisymmetry operation and under mir-

ror reflection. Correspondingly, this mirror-symmetric model

admits helical gapless hinge modes at a mirror-symmetric

hinge for all N , whereas the rotation-antisymmetric model has

gapless hinge modes if N is odd.

Classes AIIR− , (s,t) = (4,2), and AIICM− , (s,t) = (4,1)

We set UT = σ2, UR = σ3, and UCM = σ1. These classes

have a Z
2
2 classification, with purely crystalline part Z2.

A generator for the strong phase has a surface state with

Dirac dispersion −iv(σ1∂x + σ2∂y), which is protected by

time-reversal symmetry alone. The generator for the purely

crystalline topological phase has a pair of surface Dirac cones

with surface Hamiltonian

Hsurface = −iv(σ1τ0∂x + σ2τ3∂y). (D8)

This surface Hamiltonian has a unique mass term mσ2τ2, which

is odd under R or M. We conclude that these classes admits

a protected hinge mode.

Classes CIIR−− , (s,t) = (5,2) and CIIM+− , (s,t) = (5,1).

We set UT = σ2, UP = σ2τ3, UC = τ3, UR = σ3 and UM =
σ2τ2. These classes have a Z

2
2 classification, with purely

crystalline part Z2. On a symmetry-invariant surface, the

generator for the strong phase has a pair of surface Dirac cones

with dispersion −ivτ1(σ2∂x + σ1∂y), which is compatible with

R and M symmetries, but does not rely on those symmetry
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for its protection. The nontrivial purely crystalline phase has

two pairs of surface Dirac cones with Hamiltonian

Hsurface = −ivτ1(σ1ρ0∂x + σ2ρ3∂y). (D9)

This surface Hamiltonian admits two mass terms m1σ2τ1ρ2 +
m2σ1τ2ρ1, which is odd under R or M. We conclude that

class CIIM+− admits a protected hinge mode along mirror-

symmetric hinges, whereas class CIIR−− does not allow pro-

tected hinge modes.

Classes CIR−− , (s,t) = (7,2), and CIM−+ , (s,t) = (7,1).

We choose UT = σ1, UP = σ2, UC = σ3, UR = σ3ρ3, UM =
σ2τ2. These classes admit pairs of surface states with dispersion

−ivτ2(σ1∂x ± σ2∂y), which defines the chirality ±. Such a

surface state is compatible with R and M symmetries, but

protected by chiral antisymmetry C alone. The corresponding

strong integer index counts their number, weighted by chirality.

Two pairs of surface states of opposite chirality, with dispersion

−ivτ2(σ1μ3∂x ± σ2μ0∂y), where the sign ± defines the mirror

chirality for class CIM−+ , are protected by rotation or mirror

symmetry. The associated integer topological index N counts

the number of such pairs of surface Dirac cones, weighted

by RC parity (for class CIR−−) or by mirror chirality (for

class CIM−+). This allows one to effectively set UR = σ3 for

a minimal surface with N � 0. The corresponding surface

Hamiltonian reads

Hsurface = −ivτ2(σ1μ3∂x + σ2μ0∂y)1N . (D10)

The surface Hamiltonian admits four mass terms m1σ1τ2μ2 +
m2σ2τ1μ1 + m3σ2τ3μ1 + m4σ1τ0μ1, with m1, m2, m3, and m4

real symmetric N × N matrices which change sign under the

twofold rotation antisymmetry operation and under mirror re-

flection. Correspondingly, this mirror-symmetric model admits

helical gapless hinge modes at a mirror-symmetric hinge for

all N , but the rotation-symmetric model has no protected hinge

states.

Classes AICR+ , (s,t) = (0,3), and AIM− , (s,t) = (0,2). We

choose UT = 1, UCR = ρ3, and UM = σ2τ3 to represent time

reversal, twofold rotation antisymmetry, and mirror reflection

symmetry, respectively. A symmetry-invariant surface admits

pairs of surface states with a dispersion −ivσ2(τ1∂x ± τ3∂y),

which defines the mirror chirality (for class AIM−). The integer

topological invariant N counts the number of such pairs of

surface Dirac cones, weighted by CR parity or by mirror

chirality, as appropriate. On a minimal surface with N � 0 we

may use UCR = 1 to represent CR. The corresponding surface

Hamiltonian reads

Hsurface = −ivσ2(τ1∂x + τ3∂y)1N . (D11)

Such a surface has three mass terms m1σ1τ1 + m2σ2τ2 +
m3σ3τ0, with m1, m2, and m3 real symmetric N × N matrices.

Correspondingly, this mirror-symmetric model admits helical

gapless hinge modes at a mirror-symmetric hinge for all N ,

but the rotation-antisymmetric model has no protected hinge

states.

Classes AIICR+ , (s,t) = (4,3) and AIIM− , (s,t) = (4,2).

We set UT = σ2, UCR = τ3, and UM = σ2. This phase allows

surface Dirac cones on symmetry-invariant surfaces with dis-

persion −iv(σ1∂x ± σ2∂y), which defines the mirror chirality

for class AIIM− . The integer invariant N counts the number

of such surface Dirac cones, weighted by CR parity or mirror

chirality, as appropriate. Odd values of N correspond to strong

phases, which have gapless surface states irrespective of the

surface orientation. For even N , one has a purely crystalline

phase. For a minimal model with N � 0, one may effectively

use UR = 1 to represent twofold rotation. The corresponding

surface Hamiltonian is

Hsurface = −ivρ0(σ1∂x + σ2∂y)1N/2. (D12)

There is a unique mass term mσ3ρ2, with m an N/2 × N/2

matrix, which is odd under CR or M. Correspondingly, a

mirror-symmetric hinge has N/2 protected helical modes,

whereas there are protected hinge modes in the presence of

twofold rotation antisymmetry if N/2 is odd.

Classes CIIR−+ , (s,t) = (5,3), and CIIM−− , (s,t) = (5,2).

We set UT = σ2, UP = σ2τ3, UC = τ3, UR = σ3τ1, and UM =
σ1. These classes have a Z2 classification, for which the

nontrivial phase has a pair of Dirac cones with dispersion

−iτ1(σ1∂x + σ2∂y) on a symmetry-invariant surface. Such a

pair of Dirac cones is protected by time-reversal symmetry

and particle-hole antisymmetry alone, so that this is a strong

topological phase, which has gapless modes on all surfaces.

Classes CCR− , (s,t) = (6,3), and CM− , (s,t) = (6,2). We

choose UP = τ2, UCR = τ3, and UM = τ3σ3. These classes

have a Z2 classification, for which the nontrivial phase has a

pair of Dirac cones with dispersion −iτ0(σ1∂x + σ3∂y) on a

symmetry-invariant surface. Such a surface admits a unique

mass term mσ2τ0, which is odd under CR and M. We

conclude that the conditions for gapless hinge modes on a

mirror-symmetric hinge or with rotation-symmetric crystal

termination at surfaces are met.
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