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The problem of second-order water wave diffraction of an incident monochromatic
wave field by an array of bottom-mounted circular cylinders is solved by a semi-
analytical approach. The solution for the second-order potential is obtained by
combining eigenfunction expansions with an integral representation. Unlike the in-
direct approach for second-order forces (Lighthill 1979; Molin 1979), this approach
gives complete information about local flow characteristics (pressure, velocities, wave
elevation, etc.) thus providing a basis for solving the third-order problem. The results
obtained are compared with other published data, and new detailed results, useful for
benchmarking purposes, are given. Finally the influences of wave incidence, cylinder
radius and cylinder configuration are considered. This leads to the suggestion that
there exists a near-trapping phenomenon for the second-order wave in an array of
cylinders, at half the wave frequency at which the corresponding linear near-trapped
mode occurs.

1. Introduction

Even under the simplifying assumptions of potential flow, the nonlinear interaction
of water waves with floating bodies is too difficult a problem to be treated directly.
Only a few studies intended to solve the complete three-dimensional problem in
the time domain are known (e.g. Romate 1989; Ferrant 1996; Xue & Yue 1995).
Some encouraging results for simple configurations have been obtained, though the
computational times for these kinds of calculations are still prohibitive in a design
context. There is still a need for simple approaches which capture the essential features
of the hydrodynamics.

Linearization is the usual way to treat the wave–body interaction. This leads to a
relatively much simpler problem and one can reasonably state that the analysis of
linearized water wave diffraction–radiation by arbitrary floating bodies (not having
forward speed) is now completely mastered. The linear solution however has several
limitations. Perhaps the most important is its inability to predict the loads at fre-
quencies different from those contained in the incident wave spectrum. It is known
from physical experiments that responses of a floating body can occur at its natural
frequencies, at which however the incident wave spectrum may have negligible en-
ergy. The observations indicate that the responses at these frequencies can be very
significant. The excitation at these frequencies, however, can be explained only by
introducing nonlinearities into the model. This is why ‘second-order hydrodynamics’
has received much attention in the recent past. It is now generally accepted that
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second-order wave loads are the main source of excitation for the slow drift motions
of slack moored floating structures; and for the high-frequency resonant motion
(‘springing’) of tension leg platforms (TLPs). Molin (1994) gives a review of the
latter problem. These second-order loads can be formulated by an elegant indirect
approach, based on the use of the Haskind relations (Lighthill 1979; Molin 1979),
which avoids explicit calculation of the second-order potential. Numerical codes exist
today which calculate the springing loads by means of this approach (Chen, Molin &
Petitjean 1991; Newman & Lee 1992; Eatock Taylor & Chau 1992). Another method
of obtaining the second-order forces is the direct integration of the pressure over the
body surface up to second order (e.g. Chau 1989; Kim & Yue 1989; Scolan & Molin
1989; Kriebel 1990). Compared with the indirect one, this method is more complex
to implement, but it has the benefit of giving detailed information about the local
features of the flow (pressure, particle velocities, wave elevation, etc).

The direct method was used by Chau & Eatock Taylor (1992) to formulate the
second-order diffraction problem for a single bottom-mounted circular cylinder. The
authors used a special kind of Green function which, in addition to the homogeneous
free surface condition, also satisfies the condition of zero normal velocity on the cylin-
der surface. The resulting expression for the second-order potential was reproduced
by Malenica & Molin (1995), using the ordinary wave Green function method, and
by Newman (1996) using the Weber transform. By this approach, the expression for
the second-order potential at any point in the fluid is obtained in the form of an
eigenfunction expansion, with the coefficients accounting for the integration of the
forcing term on the free surface. This approach can also be extended to truncated
cylinders, and to the case of bichromatic waves (Huang & Eatock Taylor 1996a;
Eatock Taylor & Huang 1997a, b). In the case of single bodies, the troublesome
integral over the free surface can be evaluated efficiently so that even the third-
order problem can be treated (as shown by Malenica & Molin 1995 for a single
bottom-seated cylinder). For practical purposes, however, it is necessary to analyse
multi-column structures such as TLPs; but unfortunately these may not be modelled
reliably as groups of isolated columns. This is because interaction effects between
the columns are found to be very important at first and second order (Chau 1989;
Linton & Evans 1990; Chen 1991; Evans & Porter 1997; Scolan & Malenica 1998),
and can also be anticipated to have a profound influence on behaviour at higher
orders.

The third-order problem becomes important in view of the so-called ‘ringing’
phenomenon, which has been observed on some deep water offshore structures such as
TLPs and gravity base structures (GBSs). Ringing appears at frequencies 3 to 5 times
the peak frequency of the incoming wave system so that second-order theory cannot
provide an explanation for the phenomenon: a higher-order nonlinear formulation
is required. In order to tackle the third-order problem, the second-order problem
must first be completely mastered so that accurate evaluation of the second-order
potential and its derivatives on the free surface becomes possible. Since the numerical
methods for calculating the second-order potential are very expensive, and in some
cases not sufficiently precise, a semi-analytical approach for idealized multi-column
configurations could be very useful. The present paper pursues this idea, following an
approach similar to that initiated independently by Huang & Eatock Taylor (1996b)
and Malenica (1997).

The arrangement of the paper is as follows. Section 2 recapitulates the general
formulation for second-order wave diffraction, and § 3 describes the development of
the solutions for the first- and second-order potentials. The latter is divided into
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different components, and careful attention is given to that part which is defined
to satisfy an inhomogeneous condition on the free surface and a homogeneous
condition on the surface of the cylinders. Section 4 discusses details of the numerical
implementation, and this is followed by results which demonstrate convergence of the
series and illustrate features of the second-order interaction phenomena arising with
multiple cylinders.

2. General formulation

2.1. The boundary value problem

We adopt the usual framework of potential flow theory, assuming that the fluid is
incompressible and irrotational, so that the governing equation in the fluid becomes
Laplace’s equation for the velocity potential Φ(x, y, z, t). We use Cartesian coordinates
x = (x, y, z), with x, y lying in the undisturbed free surface and z pointing vertically
upwards. The velocity field is the gradient of the potential, v = ∇Φ, and pressure
is calculated from the Bernoulli equation. The solution is assumed to be periodic in
time, so that the time dependence can be factorized. In the bichromatic wave case,
this means that the second order effects will appear at the frequencies (ωi ±ωj) where
ωi and ωj are the frequencies of each wave component. The monochromatic wave
field treated here can be regarded as a special case in which ωi = ωj = ω. Thus, if
we assume the following perturbation series for the potential:

Φ = ǫφ(1)(x, t) + ǫ2φ(2)
x, t) + · · · , (2.1)

the first- and second-order potentials φ(1) and φ(2) (and other quantities such as
pressure or wave kinematics) will have the following form:

ǫφ(1)(x, t) = Re {ϕ(1)(x)e−iωt}, (2.2)

ǫ2φ(2)(x, t) = ϕ̄(2)(x) + Re {ϕ(2)(x)e−2iωt}. (2.3)

After introducing the perturbation series, equation (2.1), into the original nonlinear
boundary value problem (BVP) we can obtain corresponding BVPs for the potentials
at the different orders. The details of the derivation are well known and will not
be repeated here. We just recall the final expressions for the free surface conditions
which cause the main difficulty in the resolution of problems of this type (here we
are interested only in the periodic components, so that the potential ϕ̄(2) will not be
treated). Thus at first and second order the conditions are

−νϕ(1) +
∂ϕ(1)

∂z
= 0, (2.4)

−4νϕ(2) +
∂ϕ(2)

∂z
=

iω

g

[

∇ϕ(1)
∇ϕ(1) − 1

2
ϕ(1)

(

∂2ϕ(1)

∂z2
− ν

∂ϕ(1)

∂z

)]

, (2.5)

where ν = ω2/g is the infinite-depth wavenumber, g is gravity, and the expressions
are to be evaluated for z = 0. In addition, the potential must satisfy the condition of
no flow on the fixed boundaries, and the radiation condition at infinity.

2.2. Expressions for wave elevation, pressure and forces

The expressions for the free surface elevation components at first and second order are

η(1) =
iω

g
ϕ(1), (2.6)



352 Š. Malenica, R. Eatock Taylor and J. B. Huang

η(2) =
2iω

g
ϕ(2) −

1

4g
∇ϕ(1)

∇ϕ(1) −
ν2

2g
ϕ(1)ϕ(1). (2.7)

After introducing the perturbation series, equation (2.1), into the Bernoulli equation

p = −̺gz − ̺
∂Φ

∂t
− 1

2
̺∇Φ∇Φ, (2.8)

the dynamic pressures at the different orders are obtained as

p(1) = iω̺ϕ(1), (2.9)

p(2) = 2iω̺ϕ(2) − 1
4
̺∇ϕ(1)

∇ϕ(1), (2.10)

where ̺ is the density of the fluid.
The loads are calculated by integrating pressure over the wetted body surface. We

obtain the following expressions for the components of surge force and pitch moment
(about the y-axis):

F (1)
x =

∫∫

SB0

iω̺ϕ(1)nxdS, (2.11)

F (2)
x =

∫∫

SB0

(2iω̺ϕ(2) − 1
4
̺∇ϕ(1)

∇ϕ(1))nxdS + 1
4
̺g

∫

CB0

η(1)η(1)nxdC, (2.12)

M(1)
y =

∫∫

SB0

iω̺ϕ(1)znxdS, (2.13)

M(2)
y =

∫∫

SB0

(2iω̺ϕ(2) − 1
4
̺∇ϕ(1)

∇ϕ(1))znxdS + 1
4
̺g

∫

CB0

η(1)η(1)znxdC, (2.14)

where SB0 is the mean wetted surface of the body, CB0 its waterline and nx is the
x-component of the normal (chosen to point out of the fluid domain). We are here
assuming that the body is composed of vertical cylinders reaching to the seabed, so
the only contribution to the moment is from the vertical surfaces.)

3. Solution for the potentials

At both first and second order, the potential ϕ is further decomposed into incident
and diffracted wave parts (ϕ = ϕI + ϕD). Each of the potentials is treated separately.

3.1. Incident potential

The first and second components of the incident potential can be written in the forms

ϕ
(1)
I = −

igA

ω
f

(1)
0 (z)eik0(x cos β+y sin β)

= −
igA

ω
f

(1)
0 (z)

∞
∑

m=−∞

eim(π/2−β)Jm(k0r)e
imθ , (3.1)

ϕ
(2)
I =

3iωνA2

2 sinh2 k0h
f

(2)
I (z)e2ik0(x cos β+y sin β)

=
3iωνA2

2 sinh2 k0h
f

(2)
I (z)

∞
∑

m=−∞

eim(π/2−β)Jm(2k0r)e
imθ , (3.2)
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where A is the amplitude of the incident wave, β is the incident angle relative to the
x-axis, h is the water depth, k0 is the finite-depth wavenumber (k0 tanh k0h = ν), and
Jm denotes the mth-order Bessel function. Furthermore

f
(1)
0 (z) =

cosh k0(z + h)

cosh k0h
, f

(2)
I (z) = −

cosh 2k0(z + h)

4ν sinh2 k0h
. (3.3)

3.2. First-order diffraction potential

All notation corresponds to the multiple cylinder configuration presented in figure 1;
ak is the radius of the kth cylinder, of which there are Nc. The first-order diffraction
solution used here was given by Linton & Evans (1990). We just recall the basic steps.
The diffraction potential ϕ(1)

D is first assumed to have the general form

ϕ
(1)
D = f

(1)
0 (z)

Nc
∑

k=1

∞
∑

m=−∞

Ak
mZ

(1)k
m0 Hm(k0rk)e

imθk , (3.4)

where Z
(1)k
m0 = J

′

m(k0ak)/H
′

m(k0ak), and Hm stands for the Hankel function Hm =
Jm + iYm. The use of Graf’s addition theorem for Bessel functions (Abramowitz &
Stegun 1970) facilitates the application of the boundary conditions on each cylinder
(∂ϕ(1)

D /∂n = −∂ϕ
(1)
I /∂n), so that the interaction coefficients Ak

m can be found as
solutions of the linear system of equations

Ak
m +

Nc
∑

j 6=k

∞
∑

n=−∞

Aj
nZ

(1)j
n0 ei(n−m)αjkHn−m(k0Rjk) = −I

(1)
k eim(π/2−β), (3.5)

where m = −∞, . . . ,∞, k = 1, . . . , Nc and I
(1)
k = eik0[Xk cos β+Yk sin β] is the phase correction

accounting for the position (Xk , Yk) of each cylinder.
In the vicinity of the cylinders, Graf’s theorem together with equation (3.5) can be

used to write the total potential ϕ(1) = ϕ
(1)
D + ϕ

(1)
I in terms of the local coordinates

(rk , θk , z). The final simple expression is

ϕ(1)(rk , θk , z) = f
(1)
0 (z)

∞
∑

m=−∞

Ak
m[Z (1)k

m0 Hm(k0rk)−Jm(k0rk)]e
imθk , rk < Rjk ∀j 6= k. (3.6)

3.3. Second-order diffraction potential

The second-order diffraction potential ϕ(2)
D is now further decomposed into two parts:

ϕ
(2)
D = ϕ

(2)
DI + ϕ

(2)
DD . The potential ϕ(2)

DI is chosen to satisfy the homogeneous condition
on the free surface and a non-homogeneous condition on the cylinders; while the
potential ϕ

(2)
DD satisfies a non-homogeneous condition on the free surface and a

homogeneous one on the cylinders.

3.3.1. Potential ϕ
(2)
DI

Due to the specified homogeneous condition on the free surface, this potential
satisfies a similar BVP to that satisfied by the first-order potential, ϕ(1)

D , so that the
same method can be used. The only difference is that the solution for the potential
ϕ

(2)
DI , in addition to the propagating wave part associated with the Hankel functions

Hm, will also include evanescent (local) wave components associated with modified
Bessel functions Km of the second kind.



354 Š. Malenica, R. Eatock Taylor and J. B. Huang

r
j

r
k

a
k

θ
k

R
jk

θ
j

α
jk

a
j

X

Y

Figure 1. Basic configuration.

We assume the following eigenfunction expansion for ϕ
(2)
DI :

ϕ
(2)
DI =

Nc
∑

k=1

∞
∑

m=−∞

[

f
(2)
0 (z)Dk

m0Z
(2)k
m0 Hm(κ0rk) +

∞
∑

l=1

f
(2)
l (z)Dk

mlZ
(2)k
ml Km(κlrk)

]

eimθk , (3.7)

where κi(i = 0, 1 . . .) are solutions of 4ν = κ0 tanh κ0h = −κl tan κlh, and

Z
(2)k
m0 =

J
′

m(κ0ak)

H
′

m(κ0ak)
, Z

(2)k
ml =

I
′

m(κlak)

K
′

m(κlak)
,

f
(2)
0 (z) =

cosh κ0(z + h)

cosh κ0h
, f

(2)
l (z) =

cos κl(z + h)

cos κlh
.



















(3.8)

Im is the modified Bessel function of the first kind. After applying the boundary
condition on each cylinder (∂ϕ(2)

DI/∂n = −∂ϕ
(2)
I /∂n), we obtain the following system of

equations for the unknown coefficients Dk
mi:

Dk
m0 +

Nc
∑

j 6=k

∞
∑

n=−∞

D
j
n0Z

(2)j
n0 ei(n−m)αjkHn−m(κ0Rjk) = γkm0, (3.9)

Dk
ml + (−1)m

Nc
∑

j 6=k

∞
∑

n=−∞

D
j
nlZ

(2)j
nl ei(n−m)αjkKn−m(κlRjk) = γkml , (3.10)

where m = −∞, . . . , ∞, k = 1, . . . , Nc, l = 1, . . . , ∞; and

γkm0 = −
3iωνA2

2 sinh2 k0h
I

(2)
k

4k0C
(2)
0

κ0(4k
2
0 − κ2

0)
eim(π/2−β) J

′

m(2k0ak)

J
′

m(κ0ak)
, (3.11)

γkml = −
3iωνA2

2 sinh2 k0h
I

(2)
k

4k0C
(2)
l

κl(4k
2
0 + κ2

l )
eim(π/2−β) J

′

m(2k0ak)

I
′

m(κlak)
, (3.12)

with I
(2)
k = e2ik0(Xk cos β+Yk sin β) and C

(2)
i = [2

∫ 0

−h
f

(2)
i (z)f(2)

i (z)dz]−1.
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As in the case of the first-order potential in equation (3.6), this expression can be
simplified near the cylinders, rk < Rjk , ∀j 6= k:

ϕ
(2)
DI (rk , θk , z) =

∞
∑

m=−∞

{

f
(2)
0 (z)[Dk

m0Z
(2)k
m0 Hm(κ0rk) + (γkm0 − Dk

m0)Jm(κ0rk)]

+

∞
∑

l=1

f
(2)
l (z)[Dk

mlZ
(2)k
ml Km(κlrk) + (γkml − Dk

ml)Im(κlrk)]

}

eimθk . (3.13)

3.3.2. Potential ϕ
(2)
DD

This part of the potential is the most difficult to evaluate because of the non-
homogeneous condition on the free surface. We start by writing Green’s theorem for
a point outside the fluid domain. By using a classical wave source Green function at
frequency 2ω, satisfying the homogeneous free surface boundary condition obtained
from (2.5), we can write

∫∫

SB

ϕ
(2)
DD

∂G

∂n
dS =

∫∫

SF

GQ
(2)
D dS, (3.14)

there being no contribution from the integral at infinity as shown by Malenica &
Molin (1995). Q(2)

D is the right-hand-side term in the free surface condition (2.5) from
which the contributions due to the direct products of the incident wave terms have
been removed. In the case of bottom-mounted circular cylinders it can be expressed as

Q
(2)
D =

iω

2g
(3ν2 − k2

0)(ϕ
(1)
D ϕ

(1)
D + 2ϕ(1)

I ϕ
(1)
D ) +

iω

g
(∇0ϕ

(1)
D ∇0ϕ

(1)
D + 2∇0ϕ

(1)
I ∇0ϕ

(1)
D ) (3.15)

where ∇0 is the horizontal gradient operator (∂/∂x, ∂/∂y). The Green function
G(rk , θk , z; ρk , ϑk , ζ) is written (cf. Fenton 1978) in the eigenfunction expansion form:

G =

∞
∑

m=−∞

{

−
i

2
C

(2)
0

(

Hm(κ0rk)Jm(κ0ρk)

Jm(κ0rk)Hm(κ0ρk)

)

f
(2)
0 (z)f(2)

0 (ζ)

−
1

π

∞
∑

n=1

C (2)
n

(

Km(κnrk)Im(κnρk)

Im(κnrk)Km(κnρk)

)

f(2)
n (z)f(2)

n (ζ)

}

eim(θk−ϑk),

(

rk > ρk

rk < ρk

)

. (3.16)

The potential ϕ(2)
DD on the kth cylinder is also assumed in the eigenfunction expansion

form

ϕ
(2)k
DD (ak , θk , z) =

∞
∑

m=−∞

[

Bk
m0f

(2)
0 (z) +

∞
∑

l=1

Bk
mlf

(2)
l (z)

]

eimθk . (3.17)

We substitute these into equation (3.14) for a point inside the cylinder k, i.e. for
rk = ak − δ, 0 < δ 6 ak , and carry out the integration with respect to ζ, using
the orthogonality of the functions f(2)

n (ζ). Using Graf’s addition theorem for the
Bessel functions, exploiting the orthogonality of the functions eimθ , and rearranging
the different terms, we obtain the following system of equations for the unknown
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coefficients Bk
mi:

Bk
m0 +

Nc
∑

j 6=k

aj

ak

∞
∑

n=−∞

B
j
n0

J
′

n(κ0aj)

H
′

m(κ0aj)
Hn−m(κ0Rjk)e

i(n−m)αjk

= −
C

(2)
0

πakκ0H
′

m(κ0ak)

∫∫

SF

Hm(κ0ρk)e
−imϑkQ

(2)
D (ρk , ϑk)dS, (3.18)

Bk
ml + (−1)m

Nc
∑

j 6=k

aj

ak

∞
∑

n=−∞

B
j
nl

I
′

n(κlaj)

K
′

m(κlaj)
Kn−m(κlRjk)e

i(n−m)αjk

= −
C

(2)
l

πakκlK
′

m(κlak)

∫∫

SF

Km(κlρk)e
−imϑkQ

(2)
D (ρk , ϑk)dS, (3.19)

where m = −∞, . . . ,∞, k = 1, . . . , Nc, l = 1, . . . ,∞.
This completes the solution for the potential ϕ(2)

DD on the cylinders. As we can see,
the solution is written in the form of eigenfunction expansions, with the eigenfunctions
in the z-direction satisfying the homogeneous free surface condition, even though the
required condition on the free surface is non-homogeneous. This important point was
discussed by Chau & Eatock Taylor (1992) and Eatock Taylor & Huang (1997a),
who showed that the non-homogeneous condition on the free surface is nevertheless
satisfied in the limiting sense as z → 0−. The consequence of this representation is slow
convergence of the infinite summation over l in equation (3.17) and the appearance
of a logarithmic singularity. Furthermore, special care is required when calculating
the potential on the free surface.

Once the potential on the cylinders has been found, the solution at any point in
the fluid can be formulated using Green’s theorem. The resulting expression is

ϕ
(2)
DD =

Nc
∑

j=1

2πaj

∞
∑

m=−∞

[

B
j
m0

1
4
iκ0J

′

m(κ0aj)f
(2)
0 (z)Hm(κ0rj)

+

∞
∑

n=1

Bj
mn

κn

2π

I
′

m(κnaj)f
(2)
n (z)Km(κnrj)

]

eimθj −

∫∫

SF

GQ
(2)
D dS. (3.20)

As above (cf. equations (3.6) and (3.13)), the use of Graf’s theorem together with
equations (3.18) and (3.19) leads to simplified expressions for the potential near the
cylinders rk < Rjk , ∀j 6= k:

ϕ
(2)
DD =

∞
∑

m=−∞

{

iπakκ0

2
f

(2)
0 (z)Bk

m0[J
′

m(κ0ak)Hm(κ0rk) − H
′

m(κ0ak)Jm(κ0rk)]

+

∞
∑

l=1

akκlf
(2)
l (z)Bk

ml[I
′

m(κlak)Km(κlrk) − K
′

m(κlak)Im(κlrk)]

+

∫ rk

0

{

iπC (2)
0 f

(2)
0 (z)[Hm(κ0rk)Jm(κ0ρk) − Jm(κ0rk)Hm(κ0ρk)]

+2

∞
∑

l=1

C
(2)
l f

(2)
l (z)[Km(κlrk)Im(κlρk) − Im(κlrk)Km(κlρk)]

}

×Q
(2)
Dm(ρk)ρkdρk

}

eimθk . (3.21)
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An important feature of equation (3.21) is that once the coefficients Bk
mi have been

obtained (by solving equations (3.18) and (3.19)), the potential at any arbitrary point
in the vicinity of the cylinders can be obtained without the need for the infinite
quadrature indicated in equation (3.20). We may also note that in the limiting case
of a single cylinder the expressions (3.18) (3.19), and (3.21) reduce to the expressions
given by Chau & Eatock Taylor (1992), or Malenica & Molin (1995).

4. Numerical implementation

4.1. Interaction effects and the free surface integrals

Calculation of the first-order diffraction potential ϕ
(1)
D , and the first part of the

second-order diffraction potential ϕ(2)
DI , needs no special treatment, and the numerical

implementation is straightforward. In the case of ϕ(2)
DI , however, much computational

time can be saved if the interaction effects are neglected after some value of l, i.e. for κl

sufficiently large. This is justified by the fact that after some value of l the interaction
effects become negligibly small, which can be deduced from equation (3.10). In fact,
for large values of κl , the product Z (2)j

nl Kn−m(κlRjk) behaves asymptotically as

lim
l→∞

I
′

n(κlaj)

K
′

n(κlaj)
Kn−m(κlRjk) = −

eκl (2aj−Rjk)

√

2πκlRjk

. (4.1)

Knowing that κl is a monotonically increasing function of l, with κl → lπ/h for
l → ∞, we can adopt a simple rule for choosing L = lmax We specify

κL >
− ln ǫ1

Rjk − 2aj
, (4.2)

where in our double precision calculations the coefficient ǫ1 is choosen to be 10−12.
Neglect of the interaction effects implies that the coefficients Dk

ml become equal to γkml
for l > L.

In the evaluation of the potential ϕ(2)
DD , several simplifications are also possible. The

main difficulty in solving the system of equations (3.18) and (3.19) is associated with
the evaluation of the free surface integrals, which must exclude the cylinder water
planes. In order to minimize the effort in performing the two-dimensional integration,
the following procedure can be adopted. We refer to the notation defined in figure 2.
In the inner (r0 6 Rb) and outer (r0 > Re) regions we can use Graf’s addition theorem
and write the first-order diffraction potential ϕ(1)

D in terms of the global coordinates
(r0, θ0):

ϕ
(1)
D

∣

∣

∣

r06Rb

= f
(1)
0 (z)

∞
∑

m=−∞

{

Nc
∑

k=1

∞
∑

n=−∞

Ak
nZ

(1)k
n0 Hm−n(k0R0k)e

i(n−m)α0k

}

Jm(k0r0)e
imθ0 , (4.3)

ϕ
(1)
D

∣

∣

∣

r0>Re

= f
(1)
0 (z)

∞
∑

m=−∞

{

Nc
∑

k=1

∞
∑

n=−∞

Ak
nZ

(1)k
n0 Jm−n(k0R0k)e

i(n−m)α0k

}

Hm(k0r0)e
imθ0 . (4.4)

The forcing function Q
(2)
D can then be easily written in the form of a Fourier series

expansion:

Q
(2)
D =

∞
∑

m=−∞

Q
(2)
Dm(r0)e

imθ0 . (4.5)
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At the same time we use Graf’s theorem to develop the term Hm(κ0ρk)e
−imϑk as follows:

Hm(κ0ρk)e
−imϑk =

∞
∑

n=−∞

Hn−m(κ0R0k)e
i(n−m)α0kJn(κ0ρ0)e

−inϑ0

=

∞
∑

n=−∞

αk0mnJn(κ0ρ0)e
−inϑ0 , (ρ0 6 R0k), (4.6)

Hm(κ0ρk)e
−imϑk =

∞
∑

n=−∞

Jn−m(κ0R0k)e
i(n−m)α0kHn(κ0ρ0)e

−inϑ0

=

∞
∑

n=−∞

βk0
mnHn(κ0ρ0)e

−inϑ0 , (ρ0 > R0k). (4.7)

The free surface integral is now divided into three parts:
∫∫

SF

=

∫ 2π

0

∫ Rb

0

+

∫∫

Sd

+

∫ 2π

0

∫ ∞

Re

, (4.8)

where Sd is the surface between Rb and Re without cylinder surfaces. In the first and
third integral, the integration with respect to ϑ0 can be carried out explicitly. For the
propagating mode
∫ 2π

0

∫ Rb

0

Hm(κ0ρk)e
−imϑkQ

(2)
D ρ0dρ0dϑ0 = 2π

∞
∑

n=−∞

αk0mn

∫ Rb

0

Jn(κ0ρ0)Q
(2)
Dn(ρ0)ρ0dρ0, (4.9)

∫ 2π

0

∫ ∞

Re

Hm(κ0ρk)e
−imϑkQ

(2)
D ρ0dρ0dϑ0,= 2π

∞
∑

n=−∞

βk0
mn

∫ ∞

Re

Hn(κ0ρ0)Q
(2)
Dn(ρ0)ρ0dρ0; (4.10)

and a similar procedure applies for evanescent parts of the solution. In this way
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we reduce these two-dimensional surface integrals to one-dimensional line integrals
and, at the same time, the most difficult integral (from Re to ∞) is put in the same
form as in the single cylinder case so that the same method can be used for its
evaluation. Furthermore, the integrations in both inner and outer regions become the
same for all cylinders, which is very important from a numerical point of view. The
only full two-dimensional integration needed is that over the surface Sd, and since this
surface is relatively small, it can be done with relatively small computational effort.
For the results below, the numerical integration step length in both the radial and
circumferential directions was based on the relation

LT =
π

NT (2k0 + κ0)
. (4.11)

Numerical tests indicated that the value of NT should be chosen in the range 15–25.
As discussed above in connection with ϕ

(2)
DI , we may also neglect the influence of

interaction effects on ϕ
(2)
DD for sufficiently large values of l. The neglect of the effects

of interaction for l>L then implies, from equation (3.19), that the coefficients Bk
ml

become

Bk
ml = −

C
(2)
l

πakκlK
′

m(κlak)

∫ 2π

0

∫ Rk

ak

Km(κlρk)Q
(2)
Dm(ρk)e

−imϑkdS, l > L, (4.12)

where ak < Rk < Rjk , ∀j 6= k. Since the first-order potential in the vicinity of the kth
cylinder can be written in the form of equation (3.6), and Rk can be chosen sufficiently
close to the body, the calculation of the coefficients Bk

ml becomes very similar to the
single cylinder case (Eatock Taylor & Huang 1997b). Hence much computational
time can be saved. In view of the efficient evaluation of the forcing term Q

(2)
Dm, using

equation (3.6) for the first-order potential in equation (3.15), it is found that the
following condition must be satisfied for the chosen value of L:

κL >
− ln ǫ2

Rk − ak
. (4.13)

This condition is consistent with requiring the asymptotic value of the modified Bessel
function Km(κLρk), for ρk = Rk , to be less than ǫ2 times its value for ρk = ak . In our
calculations the value of ǫ2 is chosen to be 10−5 for Rk = Rjk/2. It should be noted
that equation (4.12) is also well suited to evaluation of the second-order potential in
the vicinity of the kth cylinder, because the logarithmic singularity can be treated in
a similar way as for the single cylinder case.

4.2. Convergence tests

In order to demonstrate the convergence of various infinite sums arising in the
expressions for the potentials, we chose the example of an array of four cylinders.
Each cylinder is centred at the corner of a square with side length equal to six times
the radius a of each cylinder. The z-axis passes through the centre of the square,
and the cylinders are numbered in an anti-clockwise sense, starting with the cylinder
placed at the point (X,Y ) = (3a, 3a). The water depth is 3a, and for these convergence
tests the non-dimensional wavenumber is k0a = 1.1 and the wave incidence angle is
β = 0. Figure 3 shows η(22), which is that part of the second-order free surface
elevation due to the second-order potential ϕ(2) over cylinder 2 (θ = π is the upwave
side, and θ = 3π/2 is on the inside of the square for this upwave cylinder). We can
see that for this intermediate wave number, eight Fourier harmonics are sufficient
to represent the free surface elevation around the cylinder using equations (3.17),
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(3.7) and (3.2). It should be noted however that, in order to calculate the eight
terms in the Fourier series expansion (3.17), many more terms should be used in the
evaluation of the integrals in expressions (4.10) and (4.10). This is because the use
of Graf’s theorem in obtaining equations (4.3), (4.4), (4.6) and (4.7) necessitates a
sufficient number of terms to provide an accurate transformation of the coordinates.
This number depends on the values of Rb and Re, which are not necessarly equal to
R0k ± ak . For (Rb, Re) = Rk ± 1.3ak , and depending on the wavenumber, we usually
need around three times the number of harmonics retained in equation (3.17).

In order to illustrate the convergence of the eigenfunction expansion in the vertical
direction, we show in figure 4 the second-order elevation η(22) on cylinder 2 at the
upwave point (r2, θ2, z) = (a, π, 0). The calculations are made for M = 10 Fourier
modes, and different numbers N of vertical eigenfunctions. We observe that the
convergence is very slow if the logarithmic singularity is not extracted. In this case,
up to 500 terms are necessary in order to obtain a converged result, while only
15 terms are needed when the logarithmic singularity is extracted. We should note
that this problem of convergence is not present when only the forces are calculated,
because the additional integration with respect to z regularizes the summation.

5. Numerical results and discussion

Results for the first-order problem have been presented and discussed by Linton
& Evans (1990) and others. In this section we give only the results for the second-
order quantities. We start by presenting some results which validate our approach.
In figure 5 we show comparisons for the second-order surge force on a four-column
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Figure 5. (a) Real and (b) imaginary parts of the dimensionless second-order surge force components
for an array of four cylinders. Dot-dashed line: |F (21)
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x |/̺gA2a; full line:
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x |/̺gA2a; symbols: results of Chen et al. (1995).

structure in head waves, obtained by the present method, with those obtained by
Chen, Molin & Petitjean (1995) using the indirect approach (with a semi-analytical
solution for the ‘assisting’ radiation potential used in the Haskind relation). The four
columns are of 25 m diameter, placed at the corners of a square of side length 76 m in
water of 130 m depth. The complete second-order force, F (2), is divided in two parts:
the first, F (12)

x , is associated with the quadratic products of first-order quantities; and
the second, F (22)

x , with the contribution from the second-order potential. The figure
shows the variation of these components with frequency. The structure investigated
by Chen et al. consisted of cylinders truncated at a draught equal to half the water
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Figure 6. Vertical distribution of the second-order diffraction potential down each of two
cylinders in tandem, for k0a = 1.4. Lines: semi-analytical results; symbols: results of Chau (1989).

depth. In both their approach and ours the interaction effects are calculated for
complete cylinders extending to the seabed, but the integration of the pressure is
performed only over the draught of the cylinders. Thus, as far as the forces are
concerned, the only essential difference between the two methods is the treatment of
the free surface integral. In Chen et al. (1995) the integration in the vicinity of the
cylinders is performed by numerical quadrature, while the integration to infinity is
approximated by filtering the oscillations in the integrand. This probably explains the
small differences in the results. In figure 5 (where lines correspond to our results and
the plotting symbols to those of Chen et al.) two points should be noted. First, due
to the different conventions in the two methods, the second-order forces plotted on
figure 5 are twice the values which should be obtained from the definition in equation
(2.12). Secondly, one can observe small wiggles in these (and some subsequent) curves.
These are not thought to be due to lack of convergence.

Comparisons for another case are shown in figure 6. This illustrates the distri-
bution of the second-order potential down the sides of two cylinders in a tandem
configuration. These results were first obtained numerically by Chau (1989), using
the boundary integral equation technique. Each cylinder has radius a, the water
depth is 3a and the wave incidence β = 0. The axes of the cylinders are located
at (X1, Y1) = (2a, 0) and (X2, Y2) = (−2a, 0). In figure 6 the vertical distribution
of |ϕ(2)

D |, for the non-dimensional frequency k0a = 1.4 is shown for four points:
T1 = (3a, 0); T2 = (−3a, 0); T3 = (a, 0); and T4 = (−a, 0). The lines represent the
semi-analytical results obtained here, and the symbols correspond to the numerical
results from Chau (1989). One can observe the effects of shielding, and the well-known
slow depthwise decay of the second-order potential (discussed by Newman 1990 in the
context of the deep water case). But of more importance here, we can see very good
agreement between the two sets of results. Several other comparisons, not presented
here, show a similar level of agreement.

Next we present some results which may be useful in connection with more detailed
benchmark studies. Figure 7 shows the circumferential variation of the total second-
order free surface elevation (as defined in equation (2.7)) on two of the cylinders in
the four-column configuration considered in figures 3 and 4. The non-dimensional
wavenumber is k0a = 1.1. Two angles of incidence are investigated, β = 0 and
β = π/4, and the results for an isolated cylinder are also presented for comparison.
We can observe that the distribution of elevation on the surface of each cylinder has
a completely different shape when the interaction effects are accounted for. A similar
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single-cylinder case; dotted line: four-cylinder case for incidence β = 0; dot-dashed line: four-
cylinder case for incidence β = π/4.

conclusion can be drawn from figure 8, where the distributions of the second-order
pressure down the downwave sides (θ = 0) of all four cylinders are presented. We
again note the slow attenuation of the second-order potential.

The interaction between the cylinders also affects the forces acting on each cylinder.
In figure 9 the amplitude of the second-order dimensionless surge force and pitch
moment on each cylinder is presented, for the same four-cylinder array as in the pre-
vious example. The results for an isolated cylinder are also presented for comparison.
It may be observed that throughout almost all of the frequency range plotted, the
force and moment on each cylinder of the array is larger than that on the isolated
cylinder.
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In figure 10 some results for different configurations are compared, each in water
of depth 3a. The four-cylinder configuration is that from the previous example; the
three-cylinder configuration is obtained by placing the cylinders at the vertices of an
equilateral triangle of side length 6a, with the origin at the centre of the triangle and
the first cylinder on the positive x-axis; the two-cylinder configuration is a tandem
configuration with the axes of the cylinders 6a apart on the x-axis. The variation with
frequency of the average dimensionless second-order force and moment are plotted,
i.e. the total force amplitude on the configuration, divided by the number of cylinders.
It may be seen that even though the individual forces on the cylinders may be larger
for the array than for an individual cylinder (figure 9), the total second-order force
may not be, because of phase differences between the cylinders.

Finally, we present results for the free surface elevations in the vicinity of a four-
column structure. These highlight the advantages of the analysis described here, as
compared with other published analyses of arrays of cylinders which can provide
second-order forces but not second-order kinematics. We can anticipate from the
findings of Evans & Porter (1997) that the phenomenon of near-trapping of the first-
order waves would influence the second-order elevations at certain frequencies. Some
interesting features of the second-order elevation near an array of cylinders have
already been reported by Scolan & Malenica (1998); they mention near-trapping in
this context, but no clear conclusions were reached. We have investigated this further
here, obtaining second-order results for two of the configurations examined by Evans
& Porter (1997) in the context of near-trapping at first-order.

We first consider the case where the bottom-mounted cylinders are at the corners
of a square of side length 4a (i.e. a/d = 0.5, where 2d is used by Evans & Porter
to define the side length). The water depth is 3a. The origin of the coordinates is
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Figure 9. Amplitude of (a) the second-order dimensionless surge force and (b) the pitch moment on
each cylinder in the four-cylinder configuration for an incidence β = 0. Full line: isolated cylinder;
dot-dashed line: first and fourth cylinder; dotted line: second and third cylinder.

taken at the centre of the square, with axes parallel to the sides. Figures 11(a) to
11(d) show the components of first- and second-order non-dimensionalised elevation
amplitude along the diagonal x = y when the waves are incident along the diagonal
(β = π/4). The vertical lines identify the positions of the cylinders. Each sub-plot
shows results for three wave frequencies: the dotted line is for k0a = 0.754; the
dashed line is for k0a = 0.468; and the solid line is for k0a = 1.66. Figure 11(a) shows
the linear component |η(1)|. Figures 11(b) and 11(c) show |η(21)| and |η(22)|, which
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x = y for a four-cylinder array (a/d = 0.5) at near-trapping. Wave incidence is β = π/4. Solid line:
k0a = 1.66; dashed line: k0a = 0.468; dotted line: k0a = 0.754.

are associated respectively with quadratic products of the first-order quantities and
with the second-order potential, as defined in equation (2.7). The total second-order
elevation amplitude |η(2)| is given in figure 11(d). As found by Evans & Porter (1997),
|η(1)|/A is rather large (> 4) on the upwave face of cylinder 1 when k0a = 1.66, and
elsewhere the incident wave amplitude is significantly increased. They have shown
that this wavenumber corresponds to the phenomenon of a near-trapping mode in
this configuration. Likewise, we see from the solid line in figure 11(b) that the second-
order component |η(21)| is also large at this position for k0a = 1.66, as expected.
The amplitude of η(22) is similarly large, but its phase relative to η(21) is such that
the total second-order elevation at this position is not especially large at this near-
trapping frequency. Now consider the behaviour at k0a = 0.468 (the dashed line),
which corresponds to one half of the near-trapping frequency in this water depth. We
find that |η(1)| and |η(21)| are unremarkable, whereas |η(22)| is again large at the upper
face of cylinder 1. This highly significant result suggests that near-trapping of the
second-order wave occurs when its frequency coincides with the linear near-trapping
frequency. The magnitude of the effect is such that it dominates the total second-order
wave (the dashed line shown in figure 11d). The results shown as dotted lines in these
figures, however, show no such remarkable features. These being associated with
k0a = 0.754 correspond to a wave frequency which is two thirds of the near-trapping
frequency, so large magnification effects would not be anticipated at first or second
order.
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The influence of the near-trapping phenomenon on the first- and second-order
waves is shown further in figures 12 and 13. These show the components of first- and
second-order run-up amplitude around three of the four cylinders (numbered anti-
clockwise from the cylinder in the positive quadrant, as for the results in figures 7
to 9). Figure 12 corresponds to the near-trapping frequency, i.e. with k0a = 1.66.
One can observe the large first-order amplitudes of run-up at the inside faces of the
cylinders, as also found by Evans & Porter. The individual second-order components
η(21) and η(22) are also large at these locations but, as noted above, due to their
phase differences the associated total second-order elevation η(2) is relatively small for
cylinders 1, 2 and 4. Figure 13 corresponds to half the near-trapping frequency, i.e.
with k0a = 0.468. The linear run-up around all of the cylinders is seen to be small,
whereas the second-order run-up is now large. The highest second-order run-up is
at the inside face of cylinder 1 (the single downwave cylinder for this π/4 wave
incidence). This appears to correspond to a near-trapping phenomenon associated
with the second-order wave.

Next we consider an arrangement where the cylinders are more closely spaced,
at the corners of a square of side length 3.333a (a/d = 0.6). This case was also
investigated by Evans & Porter (1997). Figure 14 shows results analogous to those
shown in figure 11 for a/d = 0.5, but at a different set of frequencies: k0a = 2.271
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Figure 13. As figure 12 but at k0a = 0.468.

corresponds to the near-trapping frequency in the linear problem, as shown by Evans
& Porter, and k0a = 0.600 corresponds to half that frequency. The third set of results,
for k0a = 1.014, corresponds to two thirds of the near-trapping frequency for this
spacing. The behaviour is similar to that shown in figure 11, with large wave elevations
occurring at the near-trapping frequency and at half that frequency. In this case with
the cylinders now more closely spaced, the increases in the second-order amplitude
are very much more pronounced (a factor of 40 for the elevation on the upwave face
of the downwave cylinder). We can note again that at the first-order near-trapping
frequency, k0a = 2.271 in this case, the components η(21) and η(22) largely cancel each
other, so that the total second-order elevation amplitude |η(2)| at this frequency is not
especially large. At half this near-trapping frequency, however (i.e. for k0a = 0.600),
the total second-order amplitude |η(2)| is very large, because again |η(22)| is large but
|η(21)| is not. This is further evidence suggesting that near-trapping of the second-order
wave occurs when its frequency coincides with the linear near-trapping frequency.

The frequency (or wavenumber) dependence of the components of elevation may
be seen more clearly in figure 15. This corresponds to the four cylinders at the closer
spacing (a/d = 0.6), and shows the run-up at the upwave face of the downwave cylin-
der. It is clear that the above-mentioned large increases in wave elevation only occur
over a very narrow range of frequencies, close to what we might now describe as first-
and second-order near-trapping. The peak in the second-order run-up corresponding
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Figure 14. Components of non-dimensional first- and second-order wave elevation amplitude along
x = y for a four-cylinder array (a/d = 0.6) at near-trapping. Wave incidence is β = π/4. Solid line:
k0a = 2.271; dashed line: k0a = 0.600; dotted line: k0a = 1.101.

to second-order near-trapping (i.e. around k0a = 0.600) is even sharper than the
peak in the first-order run-up at first-order near-trapping (i.e. around k0a = 2.271).
The cancellation of the second-order components η(21) and η(22) at the first-order
near-trapping frequency is also highlighted in figures 15(b) and 15(c) for the real and
imaginary parts respectively.

All these results confirm the importance of the influence of interaction between
cylinders on the final results. The idealization of an array of cylinders as a group of
isolated cylinders is not justified and is wrong.

6. Concluding remarks

A complete semi-analytical solution for the second-order diffraction of an incident
monochromatic wave by an array of vertical circular cylinders has been presented.
As in the first-order case considered by Linton & Evans (1990) and Evans & Porter
(1997), the importance of interaction effects when calculating the local or global
quantities is again highlighted. The empirical evidence of the results shown in this
paper suggests that the phenomenon of near-trapping in cylinder arrays, identified by
Evans & Porter for the linear wave problem, also occurs at second order. In particular,
near-trapping has been shown to occur when the frequency of the second-order wave
coincides with the linear near-trapping frequency. The resulting magnification of the
local wave elevation near the cylinders can be extremely high.
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The next step in the analysis should be extension to the evaluation of third-
order forces. This can be done by the indirect approach referred to above, using
the Haskind relations, provided that the second-order potential and its derivatives
can be accurately evaluated on a very large part of the free surface. This paper has
provided the basis for evaluating the potential to the required level of accuracy. The
remaining difficulty associated with the third-order calculation is the evaluation of
the free surface term involving second-order derivatives of the second-order potential,
especially in the intermediate region (i.e. as shown in figure 2).

Lastly we remark that adopting a semi-analytical approach for the case of multiple
cylinders can provide important insights into the behaviour of practical platforms such
as TLPs. But it should also be noted that, even with this approach, the formulation
is complex, and the CPU time required is low only if the programming is carried out
carefully.

The first author carried out this work within the scope of the CLAROM project
‘Large amplitude wave amplifications in the vicinity of offshore structures’ in which
the partners are Bureau Veritas, Bouygues Offshore, Doris Engineering, GESIM,
Principia R & D and SIREHNA. The other authors acknowledge the support of
grant GR/L19355 from the UK Engineering and Physical Sciences Research Council.
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