
Tohoku Math. J.
65 (2013), 523–543

SECOND VARIATIONAL FORMULA AND THE STABILITY OF
LEGENDRIAN MINIMAL SUBMANIFOLDS

IN SASAKIAN MANIFOLDS

TORU KAJIGAYA

(Received August 22, 2012, revised February 6, 2013)

Abstract. In this paper, we investigate compact Legendrian submanifolds L in
Sasakian manifolds M, which have extremal volume under Legendrian deformations. We call
such a submanifold L-minimal Legendrian submanifold. We derive the second variational for-
mula for the volume of L under Legendrian deformations in M. Applying this formula, we
investigate the stability of L-minimal Legendrian curves in Sasakian space forms, and show
the L-instability of L-minimal Legendrian submanifolds in S2n+1(1). Moreover, we give a
construction of L-minimal Legendrian submanifolds in R2n+1(−3).

1. Introduction. In [10], [11], Y. G. Oh introduced the notion of Hamiltonian-
minimal (H-minimal) Lagrangian submanifolds in Kähler manifolds. Such a submanifold
is a critical point of the volume functional under the Hamiltonian deformation. This is an
extension of the notion of minimal submanifold, and has been studied by many authors (for
example, [7], [8], [11], [14] and see references therein). An H-minimal Lagrangian subman-
ifold is called Hamiltonian-stable (H-stable) if the second variation is non-negative for any
Hamiltonian deformation. Oh studied H-stablity of some examples of H-minimal Lagrangian
submanifold in a specific Kähler manifold ([10], [11]). For example, the real projective space
RPn and the Clifford torus in CPn, and the standard tori in Cn are H-stable. Besides these
examples, Schoen and Wolfson studied the H-stablity of two-dimensional H-minimal La-
grangian cones ([14]), and Iriyeh studied the three-dimensional case ([8]). Furthermore, in
[1], Amarzaya and Ohnita proved that all compact Lagrangian submanifolds with parallel
second fundamental form in Cn and CPn are H-stable.

On the other hand, there is a notion of Sasakian manifolds, which is an odd-dimensional
counterpart to Kähler manifolds. In Sasakian manifolds, we consider Legendrian-minimal (L-
minimal) Legendrian submanifolds which correspond to H-minimal Lagrangian manifolds in
Kähler manifolds. An L-minimal Legendrian submanifold is a critical point of the volume
function under the Legendrian deformation (for more details, see Section 3). In [7], [8],
the authors constructed examples of L-minimal Legendrian submanifolds in odd-dimensional
unit spheres (in [7], such submanifolds are called C-minimal). Moreover, they show that a
certain L-minimal Legendrian submanifold in a Sasakian manifold is related to an H-minimal
Lagrangian submanifold in a Kähler manifold. For example, the cone over a Legendrian
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submanifold in the unit sphere is an H-minimal Lagrangian submanifold in Cn if and only
if its link is L-minimal ([7], [8]). Another correspondence is shown in the Hopf fibration
π : S2n+1(1) → CPn, that is, a Legendrian submanifold L in S2n+1(1) obtained as the lift of
a Lagrangian submanifold L̄ in CPn is L-minimal if and only if L̄ is H-minimal.

It is natural to ask whether an L-minimal Legendrian submanifold is stable under Legen-
drian deformations. The case of minimal Legendrian submanifolds was studied in [12]. In the
present paper, we derive the second variational formula for L-minimal Legendrian submani-
folds in Sasakian manifolds, and study their stability.

THEOREM 1.1. Let ι : Ln → M2n+1 be a compact L-minimal Legendrian immersion
into a Sasakian manifold (M2n+1, φ, ξ, η, g), and let {ιt }−ε≤t≤ε be a Legendrian deformation
of Ln with ι0 = ι, where we assume that the variational vector field V = f ξ + VH is normal
to ι. When L has a boundary, we also assume that the deformation fixes the boundary. Then
we have

(1)

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (L)) =
∫

L

{
1

4
|�f |2 − 2|VH|2 − Ric(VH)

− 2g(B(φVH, φVH),H) + g(VH,H)2
}
dvL ,

where � is the Laplace-Beltrami operator acting on C∞(L), Ric is the Ricci tensor of M2n+1,
B is the second fundamental form of ι, and H is the mean curvature vector of ι.

We call an L-minimal Legendrian submanifold Legendrian-stable (L-stable) if the sec-
ond variation is non-negative for any Legendrian deformation. Applying Theorem 1.1, we
firstly investigate the L-stability of L-minimal Legendrian curves in the Sasakian space forms
S3(1),R3(−3) and SL(2,R), and determine the L-stability of these curves. In particular, we
show that there exist L-stable L-minimal Legendiran closed curves in SL(2,R).

Moreover, we apply Theorem 1.1 to investigate the L-stability of L-minimal Legendrian
submanifolds in the odd-dimensional unit sphere S2n+1(1). Recall that there are some H-
stable H-minimal Lagrangian submanifolds in CPn. In contrast to this fact, we prove the
following L-instability theorem:

THEOREM 1.2. All closed L-minimal Legendrian submanifolds in S2n+1(1) are L-
unstable.

In Section 2, we prepare notation, and review properties of Sasakian manifolds and Leg-
endrian submanifolds. In Section 3, we define the notion of L-minimal Legendrian subman-
ifolds. Then, in Section 4, we give a proof of Theorem 1.1. In the last section, we investi-
gate the stability of some examples of L-minimal Legendrian submanifolds in Sasakian space
forms, and give a proof of Theorem 1.2. We also discuss the existence of L-minimal Legen-
drian submanifolds in R2n+1(−3).

2. Preliminaries. A (2n + 1)-dimensional contact manifold (M2n+1, η) is called a
Sasakian manifold ([5]) if it admits a (1, 1)-tensor φ, a characteristic vector field ξ and an
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associated metric g satisfying

φ2 = −Id + η ⊗ ξ , η(ξ) = 1 , φξ = 0 , η ◦ φ = 0 ,

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) , η(X) = g(X, ξ) , dη(X, Y ) = g(X, φY ) ,

(∇̄Xφ)Y = g(X, Y )ξ − η(Y )X ,

for any vector fields X,Y on M , where ∇̄ denotes the Levi-Civita connection with respect to g .
The last condition is called the normal condition, which corresponds to the Kähler condition
on Kähler manifolds. We note that an odd-dimensional Riemannian manifold (M2n+1, g)

admits a Sasakian structure if and only if the Riemannian cone C(M) = M × R+ over M

admits a Kähler structure ([6]).
Sasakian manifolds also satisfy

(∇̄Xξ) = −φX ,(2)

and have the curvature properties

(3) R̄(X, ξ)ξ = X − η(X)ξ ,

(4) R̄(X, Y )ξ = η(Y )X − η(X)Y ,

(5) R̄(ξ,X)Y = (∇̄Xφ)Y ,

(6) g(R̄(φX, φY )φZ, φW) = g(R̄(X, Y )Z,W) , if X,Y,Z,W ⊥ ξ ,

where R̄ denotes the curvature tensor of M with respect to ∇̄.
A Sasakian manifold (M2n+1, φ, ξ, η, g) is called η-Einstein if the Ricci tensor is given

by

Ric = ag + (2n − a)η ⊗ η

for some function a ∈ C∞(M). We remark that if n > 1, then a must be constant ([5]).
A Sasakian manifold M2n+1 is called a Sasakian space form if it has constant φ-sectional
curvature c, i.e.,

K(Xp, φXp) ≡ c , for Xp ∈ ξ⊥ , p ∈ M ,

where K(Xp, φXp) is the sectional curvature of the horizontal subspace spanned by
{Xp, φXp} ⊂ TpM . A Sasakian space form is also η-Einstein with a = {n(c + 3)+ c − 1}/2.
We denote the Sasakian space form by M2n+1(c). Basic examples of Sasakian space forms
are the odd-dimensional Euclidean space R2n+1(−3), and the unit sphere S2n+1(1) with the
standard Sasakian structure ([5]).

Let Ln be an n-dimensional compact manifold with or without boundary, and ι : Ln →
M2n+1 an isometric immersion. Then Ln is called Legendrian if ι∗η = 0. This condition
implies that ι(Ln) is an integral submanifold tangent to the distribution H := Ker η = ξ⊥
with the maximal dimension n. In the following, we may identify Ln with ι(Ln). In [13], it is
shown that a Legendrian immersion ι satisfies the following.

(i) Anti-invariant condition: ι∗TpL ⊥ φ(ι∗TpL) for any p ∈ L.
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(ii) The second fundamental form B of ι takes values in Ker η.
The anti-invariant condition implies that the normal bundle NL of ι has the orthogonal

splitting Nι(p)L = Rξι(p) ⊕ φ(ι∗TpL) for any p ∈ L. Under this splitting, we decompose a
normal vector field V ∈ 	(NL) into V = f ξ + VH, where f = g(V , ξ) = η(V ). Also, the
anti-invariant condition implies that there is a natural identification between φ(ι∗TpL) and the
dual space T ∗

p L of TpL given by

φ(ι∗TpL) →̃ T ∗
p L

Vp �→ αV p := −1

2
ι∗(Vp�dηp) = ι∗{g(·, φVp)} .

(7)

Hence we have a natural isomorphism between 	(NL) and C∞(L)⊕Ω1(L) (see also Lemma
3.2 in [12]):

Φ : 	(NL) → C∞(L) ⊕ Ω1(L) ,

Φ(V ) = (η(V ), αV ) .

Moreover, we have

g(V ,W) = η(V )η(W) + g∗(αV , αW )(8)

for any V,W ∈ 	(NL), where αV = − 1
2 ι∗(V �dη) and g∗ is the metric on Ω1(L) induced

from ι∗g .
In the following we omit ι. We denote by ∇ and ∇⊥ the connection induced from ∇̄ on

T L and NL, respectively, and denote by ∇ the induced connection on T ∗L.

LEMMA 2.1. For V = f ξ + VH ∈ 	(NL) and X ∈ 	(T L), we have

Φ(∇⊥
XV ) = (Xf − αV (X),∇XαV − f αφX) .

PROOF. By (2) and (7), the first component becomes

η(∇⊥
XV ) = g(∇⊥

XV, ξ) = g(∇̄XV, ξ)

= ∇̄Xg(V , ξ) − g(V , ∇̄Xξ) = X(η(V )) − g(V ,−φX)

= X(η(V )) − αV (X) .

Next we calculate the second component. For any Y ∈ 	(T L), from (7) and the normal
condition, we have

α∇⊥
X V (Y ) = −g(∇⊥

XV, φY )

= −g(∇̄XV, φY )

= −∇̄Xg(V , φY ) + g(V , ∇̄X(φY ))

= ∇X(αV (Y )) + g(V , (∇̄Xφ)(Y ) + φ(∇̄XY ))

= (∇XαV )(Y ) + αV (∇̄XY ) + g(V , g(X, Y )ξ − η(Y )X) − αV (∇̄XY )

= (∇XαV )(Y ) + η(V )g(φX, φY )

= (∇XαV )(Y ) − η(V )αφX(Y ) ,
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and hence we obtain the lemma. �

For a normal vector field V ∈ 	(NL), we define the Laplacian of V by

∇2V (p) =
n∑

i=1

∇⊥
∂i

∇⊥
∂i

V (p)

at p ∈ L, where (x1, . . . , xn) is a geodesic normal coordinate at p, and ∂i = ∂
∂xi

(p), 1 ≤ i ≤
n. The Laplacian for 1-forms is defined similarly.

LEMMA 2.2. For V = f ξ + VH ∈ 	(NL), we have

Φ(∇2V ) = (−�f + 2δαV − nf,∇2αV + 2df − αV ) ,

where � = dδ + δd is the Laplace-Beltrami operator acting on C∞(L).

PROOF. By Lemma 2.1, we have

Φ(∇2V ) = Φ

( n∑
i=1

∇⊥
∂i

∇⊥
∂i

V

)

=
( n∑

i=1

{∂i(η(∇⊥
∂i

V )) − α∇⊥
∂i

V (∂i)},
n∑

i=1

{∇∂i (α∇⊥
∂i

V ) − η(∇⊥
∂i

V )αφ∂i }
)

=
( n∑

i=1

{∂i(∂i(η(V )) − αV (∂i)) − (∇∂i αV − η(V )αφ∂i )(∂i)} ,

n∑
i=1

{∇∂i (∇∂i αV − η(V )αφ∂i ) − (∂i(η(V )) − αV (∂i))αφ∂i }
)

=
( n∑

i=1

{∂i∂i(η(V )) − 2∂i(αV (∂i)) − η(V )dxi(∂i)} ,

n∑
i=1

{∇∂i∇∂i αV + 2∂i(η(V ))dxi + η(V )∇∂i (dxi) − αV (∂i)dxi}
)

= ( − �(η(V )) + 2δαV − nη(V ),∇2αV + 2d(η(V )) − αV

)
,

where we put αφ∂i = −dxi (i = 1, . . . , n), the dual basis of ∂i (i = 1, . . . , n). �

3. L-minimal Legendrian submanifolds.

DEFINITION 3.1 ([12]). Let (M2n+1, φ, ξ, η, g) be a Sasakian manifold, and ι : Ln →
M2n+1 a Legendrian immersion. A smooth family {ιt }−ε≤t≤ε of immersions of ι into M is
called a Legendrian deformation if ιt is a Legendrian immersion for each t , and ι0 = ι. If Ln

has boundary, we assume that the deformation {ιt } fixes the boundary.

Let V := d
dt

|t=0ιt be the variational vector field of {ιt } along L, and denote by V ⊥ the
normal component of V .
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PROPOSITION 3.2. A deformation {ιt } of L is a Legendrian deformation if and only if
the variational vector field V satisfies

αV ⊥ := −1

2
ι∗(V ⊥�dη) = 1

2
d(η(V ⊥)) ,(9)

or equivalently,

V ⊥ = f ξ − 1

2
φ∇f

for some function f ∈ C∞(L).

PROOF. By Cartan’s formula, we have

ι∗(LV η) = d(η(V )) + ι∗(V �dη) = d(η(V ⊥)) + ι∗(V ⊥�dη) ,

where L denotes the Lie derivative. This implies that

{ιt } is a Legendrian deformation. ⇔ ιt
∗η = ι∗η = 0 for each t

⇔ ι∗(LV η) = 0

⇔ d(η(V ⊥)) = −ι∗(V ⊥�dη) = 2αV ⊥ .

Moreover, by the isomorphism Φ : 	(NL) → C∞(L)⊕Ω1(L) and (7), we have the identity
V ⊥ = f ξ − 1

2φ∇f with f = η(V ⊥). �

DEFINITION 3.3 ([12]). A variational vector field V is called a Legendrian vector field
if it satisfies the condition (9).

REMARK 3.4. Definition 3.1 shows that a Legendrian deformation corresponds to a
Lagrangian deformation in the case of Lagrangian submanifolds in Kähler manifolds. How-
ever, Proposition 3.2 shows that a Legendrian deformation corresponds to a Hamiltonian de-
formation, in the sense that αV ⊥ is an exact 1-form (see [10]).

DEFINITION 3.5 ([8]). Let ι : Ln → M2n+1 be a Legendrian immersion into a
Sasakian manifold. Then ι is called Legendrian minimal (denote L-minimal) if

d

dt

⏐⏐⏐⏐
t=0

Vol(ιt (L)) = 0

holds for all Legendrian deformations {ιt }.
The Euler-Lagrange equation under Legendrian deformations is given as follows.

THEOREM 3.6 ([8]). ι is L-minimal if and only if

δαH = 0 , or equivalently, div φH = 0 ,

where H is the mean curvature vector of ι, and δ is the codifferential operator on Ω1(L).
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4. Second variational formula. In this section, we derive the second variational for-
mula under the Legendrian deformation, which leads to the proof of Theorem 1.1.

We start from the general second variational formula. Namely, let Ln be an n-dimen-
sional compact manifold with or without boundary immersed in a Riemannian manifold M

by ι : Ln → M , and let ιt : Ln × (−ε, ε) → M be a deformation of ι with fixed boundary.
Then we have

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (L))

=
∫

L

{ n∑
i=1

|(∇̄∂iV )⊥|2 +
n∑

i=1

g(R̄(∂i , V )∂i, V ) − g(∇̄V V,H)(10)

−
n∑

i,j=1

g(∇̄∂j V , ∂i)g(∇̄∂i V , ∂j ) +
n∑

i.j=1

g(∇̄∂i V , ∂i)g(∇̄∂j V , ∂j )

}
dvL ,

where {∂1, . . . , ∂n} denotes a geodesic normal frame at a point of Ln, V is the variational
vector field of {ιt } at t = 0, and H is the mean curvature vector of ι. A proof of (10) is given
in [14].

Now, we assume the following:

• (M2n+1, φ, ξ, η, g) is a Sasakian manifold, and ι : Ln → M2n+1 is a compact Leg-
endrian immersion.

• A deformation {ιt } of L is a Legendrian deformation (i.e., the normal component of
V is a Legendrian vector field) with fixed boundary.

• ι : Ln → M2n+1 is L-minimal, i.e., δαH = 0.

Since the normal direction of the variational vector field is essential to consider the first
and second variations, we may assume that V is normal to ι. We obtain (1) from the general
formula (10). The following calculation is due to [14], and seems to be the simplest proof of
the second variational formula for Hamiltonian minimal Lagrangian submanifolds in Kähler
manifolds.

The first term in (10) is rewritten as

n∑
i=1

|(∇̄∂i V )⊥|2 =
n∑

i=1

g((∇̄∂i V )⊥, (∇̄∂i V )⊥)

=
n∑

i=1

{∂i(g(V , (∇̄∂i V )⊥) − g(V , ∇̄∂i (∇̄∂iV )⊥)}

= −1

2
�|V |2 − g(V ,∇2V ) .

Integrating this, we have from the Gauss theorem,

the first term in (10) = −
∫

L

g(∇2V, V )dvL .(11)
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Next we calculate the fourth and fifth terms in (10). Because

g(∇̄∂i V , ∂j ) = ∂i(g(V , ∂j )) − g(V , ∇̄∂i ∂j )

= −g(V , (∇̄∂i ∂j )
⊥) (since V ⊥ ∂i)

= −g(V ,B(∂i , ∂j )) ,

we have

the fourth and fifth terms in (10) = −
n∑

i,j=1

g(V ,B(∂i , ∂j ))
2 + g(V ,H)2 .(12)

The third term in (10) is calculated as follows:

LEMMA 4.1. Suppose ι : Ln → M2n+1 is a compact L-minimal Legendrian immer-
sion into a Sasakian manifold. If V denotes a normal Legendrian vector field along ι, then we
have ∫

L

g(∇̄V V,H)dvL =
∫

L

g(B(φV, φV ),H)dvL .(13)

PROOF. First recall that the (0,3)-tensor S on L defined by

S(X, Y,Z) = g(φB(X, Y ), Z)(14)

is symmetric over all three variables by the normal condition (see [11], [12]). Hence we obtain

g(∇̄V V,H) − g(B(φV, φV ),H) = g(φ(∇̄V V ), φH) − g(φB(φH, φV ), φV )

= g(∇̄V φV, φH) − g(φ(∇̄φH φV ), φV )

= {∇̄V g(φV, φH) − g(φV, ∇̄V φH)} + g(∇̄φH V, φV )

= ∇̄V (αV (φH)) + αV ([φH,V ])
= 1

2
{∇̄V (df (φH)) + df ([φH,V ])}

= 1

2
{V (φH(f )) + [φH,V ](f )}

= 1

2
φH(Vf )

= 1

2
d(Vf )(φH) ,

where we use the normal condition and αV = 1
2df . Integrating this and using Stokes’ theo-

rem, we have ∫
L

{g(∇̄V V,H) − g(B(φV, φV ),H)}dvL

= 1

2

∫
L

d(Vf )(φH)dvL

= −1

2

∫
L

{(Vf )divφH }dvL = −1

2

∫
L

{(Vf )δαH }dvL .
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Since we assume δαH = 0, we obtain the lemma. �

From (10) through (13), we obtain

d2

dt2

⏐⏐⏐
t=0

Vol(ιt (L)) =
∫

L

{
− g(∇2V, V )+

n∑
i=1

g(R̄(∂i, V)∂i , V)−g(B(φV, φV),H)(15)

−
n∑

i,j=1

g(V,B(∂i , ∂j ))
2 + g(V,H)2

}
dvL ,

and we can prove the next lemma (due to [12, Proposition 4.5]).

LEMMA 4.2. When ι : Ln → M2n+1 is a Legendrian immersion into a Sasakian
manifold, and V = f ξ + VH is a normal vector field along Ln, we have

n∑
i=1

g(R̄(∂i , V )∂i, V ) −
n∑

i,j=1

g(V ,B(∂i , ∂j ))
2

= −Ric(V ) + g(Ric(αV ), αV ) + |VH|2 − g(B(φV, φV),H) + nf 2 ,

where Ric is the Ricci curvature of M , and Ric is the Ricci transformation acting on Ω1(L).

PROOF. Since {∂1, . . . , ∂n} is an orthonormal basis of TpL at p ∈ Ln, {φ∂1, . . . , φ∂n}
is an orthonormal basis of the horizontal space φ(TpL), and thus {φ∂1, . . . , φ∂n, ξ} is an
orthonormal basis of the normal bundle NpL. By the definition of the Ricci curvature, we
have

(16)

− Ric(V , V )

=
n∑

i=1

{g(R̄(∂i, V )∂i , V )} +
n∑

i=1

{g(R̄(φ∂i , V )φ∂i, V )} + g(R̄(ξ, V )ξ, V ) .

Since V = f ξ + VH, the second term in (16) becomes

(17)

n∑
i=1

{g(R̄(φ∂i, V )φ∂i , V )}

=
n∑

i=1

{g(R̄(φ∂i, VH)φ∂i, VH) + 2f g(R̄(φ∂i , ξ)φ∂i , VH)

+ f 2g(R̄(φ∂i, ξ)φ∂i , ξ)} ,

where
n∑

i=1

g(R̄(φ∂i, VH)φ∂i , VH)

=
n∑

i=1

{g(R̄(∂i, φVH)∂i , φVH) (since φ∂i, VH ⊥ ξ)
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=
n∑

i=1

{g(R(∂i , φVH)∂i , φVH) + g(B(∂i , ∂i), B(φVH, φVH))

− g(B(φVH, ∂i), B(∂i , φVH))} (by Gauss equation)

= −Ric(φVH) + g(H,B(φVH, φVH)) −
n∑

i=1

|B(φVH, ∂i)|2

= −g(Ric(αV ), αV ) + g(H,B(φVH, φVH)) −
n∑

i=1

|B(φVH, ∂i )|2 .

Moreover, we have
n∑

i=1

|B(φVH, ∂i)|2 =
n∑

i,j=1

g(B(φVH, ∂i ), φ∂j )
2

=
n∑

i,j=1

g(φB(φVH, ∂i ), ∂j )
2

=
n∑

i,j=1

g(φB(∂j , ∂i), φVH)2

=
n∑

i,j=1

g(B(∂j , ∂i), VH)2 =
n∑

i,j=1

g(B(∂j , ∂i), V )2 ,

where the third equality follows from the symmetric property of (14). On the other hand,

R̄(φ∂i, ξ)φ∂i = −(∇̄φ∂i φ)(φ∂i) (by the curvature property)

= −ξ (by the normal condition)

holds, thus the second and the third terms in (17) become
n∑

i=1

{2f g(R̄(φ∂i , ξ)φ∂i , VH) + f 2g(R̄(φ∂i , ξ)φ∂i , ξ)} = −nf 2 .

Finally, the third term in (16) is rewritten as

g(R̄(ξ, V )ξ, V ) = g(−V + η(V )ξ, V )

= −g(V , V ) + η(V )g(V , ξ)

= −(|VH|2 + f 2) + f 2 = −|VH|2 .

Substitute these into (16), we obtain the lemma. �

The splitting V = f ξ + VH, into the direction of the characteristic vector field and the
horizontal vector field, is a remarkable difference between the case of Legendrian and the case
of Lagrangian. In (15), the third, the fourth and the fifth terms in the integrand have essentially
no effect on the direction of the characteristic vector field, i.e.,

(18) −g(B(φV, φV ),H) = −g(B(φVH, φVH),H) ,
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(19) −
n∑

i,j=1

g(V ,B(∂i , ∂j )) = −
n∑

i,j=1

g(VH, B(∂i , ∂j )) ,

(20) g(V ,H)2 = g(VH,H)2 .

However, the second term in the right-hand side of (15) can be rewritten similarly as (17), and
we have

(21)
n∑

i=1

g(R̄(∂i, V)∂i , V) =
n∑

i=1

g(R̄(∂i , VH)∂i, VH) − nf 2.

Moreover, by (8), (9) and Lemma 2.2, the first term in the integrand of (15) becomes

−
∫

L

g(∇2V, V )dvL = −
∫

L

{g(α∇2V , αV ) + η(∇2V )η(V )}dvL

= −
∫

L

{g(∇2αV + 2df − αV , αV ) + (−�f + 2δαV − nf )f }dvL(22)

=
∫

L

{g(−∇2αV , αV ) − 3g(αV , αV ) + nf 2}dvL .

Now, we prove Theorem 1.1.

PROOF OF THEOREM 1.1. From (15), (18) through (22) and Lemma 4.2, we obtain

d2

dt2

⏐⏐⏐
t=0

Vol(ιt (L)) =
∫

L

[
{g(−∇2αV , αV ) − 3g(αV , αV ) + nf 2}

+
{ n∑

i=1

g(R̄(∂i, VH)∂i, VH) − nf 2
}

− g(B(φVH, φVH),H)

−
n∑

i,j=1

g(VH, B(∂i , ∂j )) + g(VH,H)2
]
dvL

=
∫

L

[
g(−∇2αV , αV ) − 3g(αV , αV )

+{−Ric(VH) + g(Ric(αV ), αV ) + |VH|2 − g(B(φVH, φVH),H)}
−g(B(φVH, φVH),H) + g(VH,H)2]dvL

=
∫

L

{
g(−∇2αV + Ric(αV ), αV ) − 2|VH|2 − Ric(VH)

−2g(B(φVH, φVH),H) + g(VH,H)2}dvL .

It is well known that the Weitzenböck formula implies

−∇2αV + Ric(αV ) = �αV ,

which leads to (1), since αV = 1
2df . �
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REMARK 4.3. 1. Oh first proved the second variational formula for Hamiltonian
minimal Lagrangian submanifolds in Kähler manifolds under Hamiltonian deformations
([11]). We note that the difference between the second variational formula of L-minimal
Legendrian submanifolds and that of H-minimal Lagrangian submanifolds is only the term
−2|VH|2. This term has essentially arisen from the direction of the characteristic vector field
of the variational vector field V .

2. The second variational formula for the case of minimal Legendrian submanifolds
(the case of H ≡ 0) has been already given in [12]. We generalized his formula in Theorem
1.1.

Finally, we define the notion of Legendrian stability for L-minimal Legendrian sub-
manifolds:

DEFINITION 4.4. An L-minimal Legendrian submanifold Ln in a Sasakian manifold
M2n+1 is called Legendrian stable (abbreviated L-stable) if

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (L)) ≥ 0

for all Legendrian deformations {ιt } of L.

5. Examples and applications. We apply Theorem 1.1 to investigate the stability of
some explicit examples of L-minimal Legendrian submanifolds in Sasakian space forms.

5.1. The stability of L-minimal Legendrian curves in Sasakian space forms. Let
γ be a compact Legendrian curve in a 3-dimensional Sasakian manifold M3. In this case, it is
easy to prove that the L-minimality condition is equivalent to the condition |H | = h ≡ const
(In fact, h is the geodesic curvature of the curve in the standard sense). We also note that all
of the Legendrian curves in 3-dimensional Sasakian manifolds have constant torsion equal to
1 ([3]).

By Theorem 1.1, we can easily show that the second variational formula for an L-
minimal Legendrian curve in a Sasakian manifold can be rewritten as

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (γ )) = 1

4

∫
γ

{|�f |2 − (2 + h2)f �f − Ric(∇f )
}
dvγ(23)

since VH = − 1
2φ∇f . Moreover, it is easily shown that all 3-dimensional Sasakian manifolds

M3 are η-Einstein (i.e., Ric = ag + (2 − a)η ⊗ η). More precisely, the function a is given by

a(p) = K(ep, φep) + 1 , for p ∈ M ,(24)

where ep is a unit horizontal vector. In this case, K(ep, φep) is nothing but the sectional
curvature of the horizontal subspace Hp. Hence, we have from (23),

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (γ )) = 1

4

∫
γ

{|�f |2 − (a + 2 + h2)f�f
}
dvγ ,(25)

where the function a ∈ C∞(γ ) is the restriction of (24).
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By (24), we deduce that a 3-dimensional Sasakian manifold is a Sasakian space form
with constant φ-sectional curvature c if and only if a = c + 1 ≡ const. Hence, for L-minimal
Legendrian curves in 3-dimentional Sasakian space forms, we have the following:

COROLLARY 5.1. Let γ be a compact L-minimal Legendrian curve in a Sasakian
space form M3(c). Then γ is L-stable if and only if

λ1 ≥ c + 3 + h2 ,

where h2 = |H |2 and λ1 is the first eigenvalue of the Laplace-Beltrami operator � acting
on C∞(γ )(If γ has boundary, we restrict to smooth functions on γ which vanish on the
boundary).

PROOF. Since M3(c) is a Sasakian space form, we derive from (25) that

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (γ )) = 1

4

∫
γ

{|�f |2 − (c + 3 + h2)f�f
}
dvγ .

Let 0 = λ0 < λ1 < · · · < λk < · · · → ∞ be the eigenvalues of the Laplace-Beltrami operator
� acting on C∞(γ ), and f = f0 +∑∞

i=1 fi the spectral decomposition of f ∈ C∞(γ ). Then
we have

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (γ )) = 1

4

∞∑
i=1

λi

{
λi − (c + 3 + h2)

} ∫
γ

fi
2dvγ .

Thus, d2

dt2

⏐⏐
t=0Vol(ιt (γ )) ≥ 0 holds if and only if λ1 − (c + 3 + h2) ≥ 0. �

REMARK 5.2. If Ln has boundary, the above proof should be done with the restriction
to functions which vanish on the boundary. Since a Legendrian variational vector field is
written as V = f ξ − 1

2φ∇f , this restriction corresponds to the boundary condition V |∂L = 0.

EXAMPLE 5.3. The 3-dimensional unit sphere S3 is a Sasakian space form with c = 1
(for more details, see Subsection 5.2 below). It is already known that all the closed L-minimal
Legendrian curves in S3(1) are given as

γ (s) = 1√
p + q

(√
qe

√−1(
√

p/q)s,
√−1

√
pe−√−1(

√
q/p)s

)
, s ∈ [0, 2π

√
pq] ,(26)

where (p, q) is a pair of relatively prime positive numbers ([8], [14]). They are torus knots of
type (p, q), and in the case of (p, q) = (1, 1), it is minimal. It is easy to see that the mean
curvature of (26) is given by h = |H | = |q − p|/√pq . Since s is the arc length parameter,
the first eigenvalue of � of a closed curve is given by λ1 = 4π2/l2 where l is the length of the
closed curve. Hence, the first eigenvalue of � of (26) is λ1 = 1/pq . Since p, q are positive
integers, we have

λ1 = 1

pq
< 1 + 3 + (q − p)2

pq
= (p + q)2

pq
.

Thus, by Corollary 5.1, we conclude that all the closed L-minimal Legendrian curves in S3(1)

are L-unstable.
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We note that the projection of the curve (26) by the Hopf fibration π : S3(1) → CP 1 �
S2 is a closed curve with constant curvature, and hence a closed circle in S2 (i.e., H-minimal
Lagrangian closed curve). These curves are all H-stable.

EXAMPLE 5.4. The 3-dimensional Euclidean space R3 with the standard Sasakian
strucure is a Sasakian space form with constant φ-sectional curvature c = −3 (see [5], or
Lemma 5.9 below). By Corollary 5.1, minimal Legendrian curves (i.e., |H | = h = 0, namely,
these curves are geodesic) in R3(−3) are all L-stable. In general, all the minimal Legendrian
submanifolds in R2n+1(−3) are L-stable (see [12]). To consider the case h �= 0, we recall that
the L-minimality condition implies h ≡ const. A Legendrian curve in R3(−3) with positive
constant curvature h is of the form.

γ (s) = x0 +
(

2

h
cos hs,

2

h
sin hs,− 2

h
s + 1

h2
sin 2hs + 2y0

h
cos hs

)
,(27)

where x0 = (x0, y0, z0) and s is the arc-length parameter (see [2]). Since Legendrian curves
in 3-dimensional Sasakian manifolds have constant torsion, these curves are helices. These
curves are not periodic and so non-compact. If we cut the curve with length l, namely, if the
domain of s is the closed interval [0, l], by Corollary 5.1, we can easily prove that the above
curve is L-stable if and only if 0 < h ≤ π/l.

EXAMPLE 5.5. Consider the 2×2 real special linear group SL(2,R)={A∈GL(2,R);
detA = 1}. We choose a global coordinate (x, y, θ) ∈ R×R+×S1 of SL(2,R) by the unique
decomposition

A =
(

1 x

0 1

)(√
y 0

0 1/
√

y

)(
cos θ sin θ

− sin θ cos θ

)
for A ∈ SL(2,R). We define the contact metric structure on SL(2,R) by

g =
(

dx

2y

)2

+
(

dy

2y

)2

+
(

dx

2y
+ dθ

)2

, η = dx

2y
+ dθ , ξ = ∂

∂θ
,

(cf. [4]) and the (1, 1)-tensor φ by the matrix

φ =
⎛
⎝ 0 1 0

−1 0 0
0 −1/2y 0

⎞
⎠ .

Then, (SL(2,R), φ, ξ, η, g) is a Sasakian space form with the φ-sectional curvature c = −7.
SL(2,R) has a compact connected subgroup SO(2), and the homogeneous space SL(2,R)/

SO(2) is diffeomorphic to the upper half-plane H 2. By the metric induced from SL(2,R),
H 2 has constant Gauss curvature −4, and the projection π : SL(2,R) → H 2 is a Riemannian
submersion. Let γ (s) = (x(s), y(s), θ(s)) be a smooth curve in SL(2,R) with arc-length
parameter. Then γ is Legendrian if and only if

θ̇ = − ẋ

2y
.(28)
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The Legendrian curve with constant curvature h in SL(2,R) is obtained by the horizontal lift
of the curve γ̄ = (x(s), y(s)) in H 2 with constant curvature h. If h > 2, the curve γ̄ is a
closed circle. More precisely, it is given by

(x(s), y(s)) =
(

r sin μ(s) + x0, r

(
h

2
− cos μ(s)

))
,(29)

where r ∈ R+ is a positive constant (cf. [4]), and the smooth function μ : R → R satisfies
the equation

μ̇(s) = h − 2 cosμ(s) = 2y(s)

r
,(30)

or more explicitly,

tan
μ(s)

2
=

√
h − 2

h + 2
tan

(√
h2 − 4

2
s

)
(31)

with μ(0) = 0. Here, we note that

sin μ(s) =
√

h2 − 4 sin(
√

h2 − 4s)

h + 2 cos(
√

h2 − 4s)
, cos μ(s) = 2 + h cos(

√
h2 − 4s)

h + 2 cos(
√

h2 − 4s)
.(32)

By (29) and (30), the Legendrian condition (28) of the horizontal lift γ of γ̄ is rewritten as

θ̇ (s) = − cos μ(s) = μ̇(s)

2
− h

2
.

Thus θ(s) is given by

θ(s) = μ(s)

2
− h

2
s(33)

with θ(0) = 0. Hence, the horizontal lift of a closed circle in H 2 with constant curvature h is
given by (29) and (33). We note that such a curve is contained in a flat torus in SL(2,R) with
constant mean curvature 2h.

We consider the periodicity of these curves. From (32), (x(s), y(s)) is periodic with the
period 2π/

√
h2 − 4. Thus the L-minimal Legendrian curve given by (29) and (33) is periodic

if and only if there exist a positive integer m ∈ Z+ such that, for any s ∈ R,

θ

(
s + 2mπ√

h2 − 4

)
≡ θ(s) (mod 2π) .

By (33), this is equivalent to

2hmπ√
h2 − 4

≡ μ

(
s + 2mπ√

h2 − 4

)
− μ(s) (mod 2π) .(34)

However, by (31) or (32), the right-hand side of (34) is equal to 0. Hence, the periodicity
condition is equivalent to

h = 2√
1 − (m/k)2

(35)
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for some relatively positive integers m, k ∈ Z+ with m/k < 1. Thus there are infinitely many
closed L-minimal Legendrian curves in SL(2,R) whose curvature is given by (35).

Next, we consider the L-stability of closed L-minimal Legendrian curves in SL(2,R).
Since the length of a closed L-minimal Legendrian curve given by (29) and (33) with (35) is
l = 2mπ/

√
h2 − 4 = √

k2 − m2π , and since s is an arc-length parameter, the first eigenvalue
of � of the curve is λ1 = 4π2/l2 = 4/(k2 − m2). Then we have

λ1 = 4

k2 − m2
≥ −7 + 3 + 4

1 − (m/k)2
.

This inequality is equivalent to 1 ≥ m2. Since m is a positive integer, this inequality holds if
and only if m = 1. Thus, by Corollary 5.1, we conlude that the closed L-minimal Legendrian
curve in SL(2,R) is L-stable if and only if its curvature is equal to h = 2/

√
1 − (1/k)2 for a

positive integer k > 1.

5.2. Legendrian instability theorem in the unit sphere. In the previous section, we
show that every closed L-minimal Legendrian curve in S3(1) is L-unstable. In this section,
we generalize this fact, and give a proof of Theorem 1.2.

Let S2n+1(1) be the unit sphere in the complex Euclidean space Cn+1, and
i : S2n+1(1) ↪→ Cn+1 the natural embedding. Since Cn+1 has the standard Hermitian struc-
ture (J, 〈, 〉), where J is the complex structure and 〈 , 〉 is the standard inner product, S2n+1(1)

inherits the standard contact metric structure. More precisely, we choose the unit outer normal
vector on S2n+1(1), that is, the position vector �x ∈ S2n+1(1), and we define the character-
istic vector field on S2n+1(1) by ξ := −J �x. The contact 1-form on S2n+1(1) is given by
η := 〈i∗·, ξ〉. The (1,1)-tensor φ on S2n+1(1) is defined by the relation J = φ + η ⊗ �x. We
denote by g the induced metric on S2n+1(1), then (S2n+1(1), φ, ξ, η, g) is a contact metric
manifold (see [5]). It is well known that this contact metric structure gives a Sasakian structure
on S2n+1(1), and it is a Sasakian space form with constant φ-sectional curvature c = 1.

Let ι : Nm → S2n+1(1) ⊂ Cn+1 � R2n+2 be an immersion of a smooth m-dimensional
manifold Nm into the unit sphere. For a constant vector a ∈ R2n+2, define the smooth func-
tion f̃a on R2n+2 by f̃a(x) := 〈a, x〉. Put f̄a := i∗f̃a ∈ C∞(S2n+1) and fa := ι∗fa ∈
C∞(N). We note that ∇̄ f̄a(x) = a − 〈a, x〉x, i.e., the projection of the constant vector a to
the tangent space of S2n+1(1) at x.

LEMMA 5.6. We have

�fa = mfa − 〈a,H 〉 ,(36)

where H is the mean curvature vector of ι.

PROOF. Choose the geodesic normal coordinates {∂1, . . . , ∂m} at p ∈ N . Then we have

−�fa(p) =
m∑

i=1

(∂i∂ifa)(p)
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=
m∑

i=1

(∇̃∂i ∇̃∂i 〈a, �x〉)(p)

=
m∑

i=1

(∇̃∂i 〈a, ∂i〉)(p) (since a is parallel)

=
m∑

i=1

〈a, ∇̃∂i ∂i〉(p)

=
m∑

i=1

〈a,B(∂i , ∂i) − 〈∂i , ∂i〉�x〉(p)

= 〈a,Hp〉 − mfa(p) . �

REMARK 5.7. If H ≡ 0, the above lemma is well known, that is, the function fa is an
eigenfunction of the Laplacian � acting on C∞(N) with the eigenvalue m = dimN .

PROOF OF THEOREM 1.2. Assume that ι : Ln → S2n+1(1) is an L-minimal Legen-
drian immersion of a compact manifold L without boundary. We show that the immersion ι

is L-unstable. Define the Legendrian vector filed along ι by Va := faξ − 1
2φ∇fa , where the

function fa is given as above. Since the Ricci tensor of S2n+1(1) is given by Ric = 2ng , the
second variational formula becomes

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (L))

= 1

4

∫
L

{|�fa|2 − 2(n + 1)f�fa − 2g(B(∇fa,∇fa),H) + g(φ∇fa,H)2}dvL .

Substituting �fa = nfa − 〈a,H 〉 in this equation, we get

(37)

d2

dt2

⏐⏐⏐⏐
t=0

Vol(ιt (L)) = 1

4

∫
L

{ − n(n + 2)f 2
a + 〈a,H 〉2 + 〈φ∇fa,H 〉2

− 2〈B(∇fa,∇fa),H 〉 + 2fa〈a,H 〉}dvL .

Since fa = 〈a, �x〉|L, and ∇fa = (∇̄ fa)
� = a� where � means the projection to the tangent

space of L, the right-hand side of (37) defines a quadric form on R2n+2. We denote this
quadric form on R2n+2 by

Q̃(a) := 1

4

∫
L

Qp(a)dvL, for a ∈ R2n+2 ,

where for each p ∈ L, set

Qp(a) := −n(n + 2)f 2
a + 〈a,H 〉2 + 〈φ∇fa,H 〉2

−2〈B(∇fa,∇fa),H 〉 + 2fa〈a,H 〉 .

The trace of Qp (and Q̃) is independent of the choice of orthonormal basis of R2n+2. Take
the orthonormal basis on R2n+2 as {e1, . . . , en, φe1, . . . , φen, ξ, �x}, where x = ι(p) and
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{e1, . . . , en} is an orthonormal basis on ι∗(TpL). Then we have

tr Qp = −n(n + 2)|�x|4 +
n∑

i=1

{〈φei,H 〉2 + 〈φei,H 〉2 − 2〈B(ei, ei ),H 〉}
= −n(n + 2) + 2|H |2 − 2|H |2
= −n(n + 2) ,

and hence we have

tr Q̃ = −1

4
n(n + 2)Vol(L) < 0 .

This implies that the L-minimal Legendrian immersion ι is L-unstable. �

REMARK 5.8. In [12], a different proof of the L-instability theorem is given under the
stronger assumption of compact minimal Legendrian submanifolds in S2n+1(1). Here we
used the averaging method of the second variations due to Lawson-Simons ([9]).

5.3. On the existence of L-minimal Legendrian submanifolds in R2n+1(−3). The
curve (27) is contained in the cylinder in R3(−3) defined by

N2
(

1

h

)
:=

{
(x, y, z) ∈ R3 ; (x − x0)

2 + (y − y0)
2 = 4

h2

}
,

and has constant curvature. By [3, Theorem 4] (see also [2, Theorem 4.2]), such curves are
characterized to be of 1-type. However, by [2, Theorem 4.1], an integral submanifold in
R2n+1(−3) is 1-type if and only if it is minimal in a cylinder. Consequently, a Legendrian
curve in R3(−3) lying in a cylinder is L-minimal if and only if it is minimal in a cylinder
(we note that all non-minimal L-minimal Legendrian curves in R3(−3) are given by (27),
and hence these lie in cylinders). We generalize this situation to Legendrian submanifold in
R2n+1(−3).

LEMMA 5.9. Let Ln be a Legendrian submanifold in R2n+1(−3). Assume that Ln lies
in the cylinder

N2n(r) := {x ∈ R2n+1; g(x − x0, x − x0) − η(x − x0)
2 = r2}

=
{
(x1, . . . , xn, y1, . . . , yn, z) ∈ R2n+1;

n∑
i=1

(xi − xi
0)

2 + (yi − yi
0)

2 = 4r2
}
,

where x0 := (x1
0 , . . . , xn

0 , y1
0 , . . . , yn

0 , z0) is a constant vector in R2n+1 and r is constant.
Then, for each p ∈ Ln, we have

div φH(p) = −
n∑

i=1

g(∇̄ei H
′, φei) = −

n∑
i=1

g(∇̃ei H
′, φei) ,(38)

where H and H ′ are the mean curvature vector of Ln in R2n+1(−3) and in N2n(r), respec-
tively, {e1, . . . , en} is an orthonormal basis of TpL, and ∇̃ is the Levi-Civita connection on
the cylinder N2n(r).
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PROOF. Recall that an odd-dimensional Euclidean space R2n+1 admits the standard
Sasakian structure (cf. [2] or [5]), i.e.,

η = 1

2

(
dz −

n∑
i=1

yidxi

)
, g = η ⊗ η + 1

4

n∑
i=1

((dxi)2 + (dyi)2) , ξ = 2
∂

∂z
,

where (x1, . . . , xn, y1, . . . , yn, z) is the standard coordinate of R2n+1, and the (1,1)-tensor φ

is given by the matrix

φ =
⎛
⎝ 0 δij 0

−δij 0 0
0 yj 0

⎞
⎠

Then Sasakian manifold (R2n+1, φ, ξ, η, g) has constant φ-sectional curvature c = −3.
Let Ln be a Lengendrian submanifold in R2n+1(−3) which is contained in a cylinder

N2n(r). Let H be the mean curvature vector of Ln in R2n+1(−3), and let H ′ be the mean
curvature vector of Ln in N2n(r). By [2], we have

Hx = H ′
x + n

r2 φ2(x − x0) ,(39)

where x ∈ Ln ⊂ R2n+1 denotes the position vector of Ln. We note that φ2(x − x0) is normal
to N2n(r). Let {∂1, . . . , ∂n} be the geodesic normal coordinates of Ln at a point of Ln. Since
∇̄∂i (φ∂i) = ξ holds at the point by the normal condition, we have

divφH =
n∑

i=1

∂i(g(φH, ∂i)) = −
n∑

i=1

∇̄∂i (g(H, φ∂i))

= −
n∑

i=1

{
g(∇̄∂i H, φ∂i) + g(H, ξ)

} = −
n∑

i=1

g(∇̄∂i H, φ∂i) (since H ⊥ ξ)(40)

= −
n∑

i=1

{
g(∇̄∂i H

′, φ∂i) + n

r2 g(∇̄∂i φ
2(x − x0), φ∂i)

}
,

where we have

(41)
g(∇̄∂i φ

2(x − x0), φ∂i) = −g(∇̄∂i (x − x0), φ∂i) + g(∇̄∂i {η(x − x0)ξ}, φ∂i)

= −g(∇̄∂i (x − x0), φ∂i) − η(x − x0) .

By [2, Lemma 3.1], since ∂i is tangent to Ln, we have

∇̄∂i x = ∂i − η(x)φ∂i + (∂iη(x) + g(x, φ∂i))ξ ,

∇̄∂i x0 = −η(x0)φ∂i + (∂iη(x0) + g(x0, φ∂i))ξ ,

and hence we obtain

∇̄∂i (x − x0) = ∂i − η(x − x0)φ∂i + (∂iη(x − x0) + g(x − x0, φ∂i))ξ .

Substituting this into (41), we have

g(∇̄∂i φ
2(x − x0), φ∂i) = 0 for i = 1, . . . , n .(42)
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On the other hand, the mean curvature H ′ is a vector contained in the subspace spanned
by {φ∂1, . . . , φ∂n} in T R2n+1(−3) because H ′ is normal to Ln and η(H ′) = η(H) = 0. By
(44), and since the vector φ2(x − x0) is normal to N2n(r), we have

g(∇̄∂i H
′, φ2(x − x0)) = ∇̄∂ig(H ′, φ2(x − x0)) − g(H ′, ∇̄∂i φ

2(x − x0)) = 0 .

This means

∇̄∂i H
′ = ∇̃∂i H

′ for i = 1, . . . , n ,(43)

where ∇̃ is the Levi-Civita connection on the cylinder N2n(r).
By (40), (42) and (43), we have

divφH = −
n∑

i=1

g(∇̄∂i H
′, φ∂i) = −

n∑
i=1

g(∇̃∂i H
′, φ∂i) . �

From Lemma 5.9, we get the following proposition:

PROPOSITION 5.10. Let Ln be a Legendrian submanifold in R2n+1(−3) which lies
in a cylinder N2n(r). If Ln has parallel mean curvature in N2n(r), then Ln is L-minimal in
R2n+1(−3).

PROOF. Since the mean curvature H ′ is parallel in N2n(r), i.e., ∇̃⊥H ′ = 0, ∇̃ei H
′ is

tangent to Ln for each i = 1, . . . , n. By Lemma 5.9, we have divφH = 0, and hence Ln is
L-minimal. �

EXAMPLE 5.11. Define an embedding ι : Rn → R2n+1(−3) by

(s1, . . . , sn)

�→
(

r1 cos
s1

r1
, . . . , rn cos

sn

rn
, r1 sin

s1

r1
, . . . , rn sin

sn

rn
,

n∑
i=1

(
− ri

2
si + ri

2

4
sin

2si

ri

))
,

where r1, . . . , rn are positive constants. This embedding is Legendrian, and lies in a cylinder
N2n(r) with x0 = 0, 4r2 = r1

2 + · · · + rn
2. This is a generalization of (27), and is the

universal covering of the standard torus T n = S1(r1) × · · · × S1(rn). By the same calculation
as in [2, Example 4.7], the mean curvature vector H is given by

H = −
n∑

i=1

4

ri
φ

(
∂

∂si

)
.

From this, we can easily show that ι is L-minimal. By (39), it is easy to check that the mean
curvature vector H ′ of ι in the cylinder is given by

H ′ =
n∑

i=1

(
− 4

ri
+ n

r2
ri

)
φ

(
∂

∂si

)
.

Hence, H ′ is parallel in the cylinder if and only if r1 = · · · = rn, namely, it is minimal in the
cylinder.
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