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Abstract. Jenike’s radial solution, widely used in the design of materials-handling equipment,
is a similarity solution of steady-state continuum equations for the flow under gravity of granular
material through an infinite, right-circular cone. In this paper we study how the geometry of the
hopper influences this solution. Using perturbation theory, we compute a first-order correction to
the (steady-state) velocity resulting from a small change in hopper geometry, either distortion of the
cross section or tilting away from vertical. Unlike for the Jenike solution, all three components of
the correction velocity are nonzero; i.e., there is secondary circulation in the perturbed flow.
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1. Introduction. In manufacturing industries, raw materials are stored in gran-
ular form in a silo, and when needed, they are expected to flow out of the silo under
gravity through a hopper. Problems in the discharge process are frequent and expen-
sive; see, e.g., [8]. As demonstrated by a Rand Corporation study [9], these problems
are symptomatic of our poor understanding of the behavior of granular materials.1

Jenike’s radial solution is a central component of silo design. Despite its impor-
tance, this solution is subject to many severe restrictions:

1. Granular material is modeled as a continuum, with an ad hoc constitutive law.
2. The flow is assumed to be steady.
3. The flow domain, a mathematical idealization, is an infinite cone, given in

spherical polar coordinates by the formula

{(r, θ, φ) : 0 < r < ∞, 0 ≤ θ < θw} (θw = constant).

4. Only similarity solutions are considered.
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1The study compared the design output and the actual output of a total of 60 manufacturing
plants in various industries, 22 that were based primarily on liquids-processing technology and 38 on
solids-processing technology. On average, the liquids-processing plants produced at 84% of design
capacity while the solids-processing plants produced at only 63% of design capacity. To quote Merrow
[9], “In economic terms, the difference between 63% of design and 84% is very large. It implies a
capital cost per unit of output about one-third higher for the solids-processing plants, on the basis of
poor performance alone. In addition, poor performance is inevitably associated with higher operating
and maintenance costs per unit of product.” Moreover, the standard deviation of the solids-processing
data set was much greater, indicative of our difficulties in predicting the behavior of granular solids.
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In this paper we relax restrictions 3 and 4 partly. Specifically, we generalize the
domain to an infinite pyramidal hopper described by the inequality

0 ≤ θ < θw + ε cosmφ,(1.1)

where ε is a small parameter and m is a positive integer. Assuming a perturbation
series

v(0) + εv(1) + · · ·
for the flow velocity in the domain (1.1), where v(0) is Jenike’s solution, we derive
a linear PDE for the first-order correction v(1). The r-dependence of v(1) still has
similarity form, and the φ-dependence may be handled by separation of variables. In
this way we reduce solving the PDE for v(1) to solving a two-point boundary problem
on the interval 0 < θ < θw.

In Jenike’s solution, only the radial component v
(0)
r of the velocity is nonzero. By

contrast, all three components of the correction velocity v(1) are nonzero. In other
words, distortion of the conical domain leads to secondary circulation. For example,
in Figure 5.1 below, the flow in the θ, φ-directions is shown for a circular hopper that
is tilted slightly to the right, and in Figure 5.2, for a slightly distorted vertical hopper.

Circulation was previously observed by Williams and Rege in discrete element
simulations of granular systems [11], [13]. While a connection between such time-
dependent, discrete simulations and the steady-state continuum theory below is un-
clear, the similarities are uncanny. Both find a secondary circulation in essentially
two-dimensional granular systems undergoing a uniform compression.

The outline of the paper is as follows. In section 2, the governing equations are
recalled together with Jenike’s construction of similarity solutions in conical domains.
For nonaxisymmetric domains of the type (1.1), the problem is then linearized about
Jenike’s solution in section 3. The resulting system is discretized in section 4. Nu-
merical results and discussion are offered in section 5.

2. The model.

2.1. Governing equations and boundary conditions. The unknowns are
the 3-component velocity vector v, the 3× 3 symmetric stress tensor T , and a scalar
plasticity coefficient λ. (The density ρ is a constant.) In total, there are 3 + 6 + 1 =
10 unknown functions. In writing the equations for these variables, we need the
strain rate tensor V = −1/2(∇v +∇vT ) and the deviatoric part of the stress tensor
dev T = T − 1

3 (trT ) I. Note the sign convention: V measures the compression rate of
the material; analogously, positive eigenvalues of T correspond to compressive stresses.
This sign convention reflects the fact that granular materials disintegrate under tensile
stresses.

Following [12], we require that these variables satisfy

∇ · T = ρ g,(2.1)

V = λ dev T,(2.2)

|dev T |2 = 2s2(trT /3)2,(2.3)

where g is the (vector) acceleration of gravity, | · | denotes the Frobenius norm

|T |2 =

3∑
i,j=1

T 2
ij = trT 2
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(the latter equality only for symmetric tensors), and s = sin δ, with δ being the an-
gle of internal friction of the material under consideration (see [10]). Equation (2.1)
expresses force balance; i.e., Newton’s second law with inertia neglected because the
flow is assumed slow; it is equivalent to three scalar equations. Equations (2.2) and
(2.3) are constitutive laws, the alignment condition and the von Mises yield condi-
tion, respectively; they are equivalent to six and to one scalar equations, respectively.
Thus (2.1)–(2.3) is a determined system, ten equations for ten unknowns. Since (2.3)
contains no derivatives, this system has a differential-algebraic character. Taking the
trace of (2.2), we see that div v = −trV = 0; thus, incompressibility is part of the
constitutive assumptions. Incidentally, for a solution to be physical, the function λ
in (2.2) must satisfy λ ≥ 0 everywhere; otherwise, friction would be adding energy
to the system rather than dissipating it. In fact, we want λ to be strictly positive
since one of the assumptions underlying the derivation of (2.1)–(2.3) is that material
is actually deforming.

We seek solutions of (2.1)–(2.3) in a pyramidal domain, expressed in spherical
polar coordinates as

Ω = {(r, θ, φ) : 0 ≤ θ < C(φ)},(2.4)

where C is a given smooth 2π-periodic function. Such a domain represents a mathe-
matical idealization of a converging hopper, in general, a nonaxisymmetric one.

On the boundary ∂Ω = {(r, C(φ), φ)}, wall impenetrability imposes one boundary
condition on the velocity; i.e.,

vN = 0,(2.5)

where vN is the normal velocity. Two additional boundary conditions come from
Coulomb’s law of sliding friction. The surface traction τ—i.e., the force exerted by
the wall on the material—is given by

τi =

3∑
j=1

TijNj ,

where N is the unit interior normal to ∂Ω. If the vector τ has normal component τN
and tangential component τT = τ − τNN , then we require that

τT = −µw τN (v/|v|),(2.6)

where µw is the coefficient of friction between the wall and the material. Note the
following: (i) If T is positive definite (i.e., if all stresses are compressive), then τN > 0.
(ii) While τN is a scalar, τT is effectively a two-component vector; thus, (2.6) is
equivalent to two scalar equations. (iii) Because of (2.5), the velocity v is tangential
to ∂Ω; we are assuming that v �= 0 at the boundary.

2.2. Jenike’s similarity solution. Suppose that the domain (2.4) is axisym-
metric; i.e., suppose

Ω = {(r, θ, φ) : 0 ≤ θ < θw},(2.7)

where θw is a constant. In this case Jenike [7] found that (2.1)–(2.3) have solutions
that are independent of φ and have a similarity dependence on r,

v(0)(r, θ) = r−2 v̂(0)(θ), T (0)(r, θ) = r T̂ (0)(θ).(2.8)
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(Here and below, a hat above a variable indicates a function that depends on θ alone.)

Moreover, only the radial component of velocity is nonzero; i.e., v
(0)
θ = v

(0)
φ = 0.

Similarly, T
(0)
rφ = T

(0)
θφ = 0. Indeed, all components of T can be expressed in terms of

two scalar variables, the so-called Sokolovskii variables [10]: the mean stress p(0) =
trT (0) /3 and an angle ψ; specifically,

dev T (0) = s p(0)

 − 2√
3
cos 2ψ − sin 2ψ 0

− sin 2ψ 1√
3
cos 2ψ 0

0 0 1√
3
cos 2ψ

 ,(2.9)

where p(0) = rp̂(0) and the function ψ, like p̂(0), depends only on θ.
The boundary conditions (2.5), (2.6) may be written more explicitly when Ω is

axisymmetric. Equation (2.5) reduces to

vθ = 0.(2.10)

Let us decompose the vector equation (2.6) into a direction and a magnitude. Re-
garding the direction, the vectors τT and v are parallel if

Trθvφ − Tθφvr = 0.(2.11)

Jenike’s solution satisfies both (2.10) and (2.11) trivially. The two sides of (2.6) have
equal magnitude if

Trθ + µwTθθ = 0.(2.12)

We briefly summarize the construction of Jenike’s solution, referring to [12] for
more details. The ansatz (2.9) arranges that (2.3) holds automatically. On substi-
tution into (2.1), we obtain a first-order 2 × 2 system of ODEs for p̂(0) and ψ. This
system has a regular singular point at θ = 0, and one boundary condition comes from
requiring that the solution be regular there; the other boundary condition comes from
(2.12). Thus the stresses are determined as the solution of a two-point boundary-value
problem. (In axial symmetry, the stress equations decouple from the velocity.) Once

the stresses are known, (2.2) reduces to a linear first-order ODE for v̂
(0)
r . The veloc-

ity is determined only up to a multiplicative constant, but the normalization of the
velocity will scale out of the calculations below.

Incidentally, for Jenike’s solution the plasticity coefficient λ in (2.2), which cancels

out in the derivation of the equation for v̂
(0)
r , has the form

λ(0)(r, θ) = r−4λ̂(0)(θ).

Using (2.2), the function λ̂(0) may be determined from v̂
(0)
r .

3. Linearized analysis for a nearly axisymmetric domain.

3.1. Derivation of linearized differential equations. Equations (2.1)–(2.3),
a 10× 10 nonlinear DAE system that is elliptic in the sense of Agmon, Douglis, and
Nirenberg [1], present formidable mathematical and numerical challenges. In this
paper, we consider a simplified problem that prepares the way for computations with
the full problem on a general domain.
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Suppose the function C specifying the boundary of Ω in (2.4) has the expansion

C(φ) = θw + ε cos(mφ) +O(ε2),(3.1)

where m is a positive integer. For example, a slightly tilted (circular) cone admits
such a representation with m = 1, where ε measures the angle of tilt; likewise for a
(vertical) pyramidal hopper having a slightly elliptical cross section, with m = 2.

An expansion of the solution

v = v(0) + εv(1) +O(ε2), T = T (0) + εT (1) +O(ε2)(3.2)

is sought, where v(0), T (0) are equal to Jenike’s radial solution; see (2.8). Substituting
(3.2) into (2.1)–(2.3), we derive the equations for the first-order perturbation

∇ · T (1) = 0,(3.3)

V (1) = λ(1) devT (0) + λ(0)devT (1),(3.4)

tr(devT (0) devT (1)) = 2 s2 p(0)p(1),(3.5)

where p(i) = trT (i)/3, i = 0, 1, are the mean stresses.
The correction velocity v(1) has the same r-dependence as the Jenike solution

(although all three components of v(1) may be nonzero), and its φ-dependence can
be obtained through separation of variables. Indeed, suppose each component of v(1)

has the form

v
(1)
j = r−2 v̂

(1)
j (θ) trigmφ,(3.6)

where trigmφ denotes either cosmφ or sinmφ. In order to satisfy the appropriately

modified version of the boundary condition (2.10) on the perturbed domain, v
(1)
θ will

have to be in phase with (3.1); i.e., we need

v
(1)
θ = r−2 v̂

(1)
θ (θ) cosmφ.

It is readily seen that if

v(1)
r = r−2 v̂(1)

r (θ) cosmφ and v
(1)
φ = r−2 v̂

(1)
φ (θ) sinmφ,

then all terms in

∇ · v(1) = ∂rv
(1)
r + 2r−1v(1)

r + r−1∂θv
(1)
θ + r−1 cot θv

(1)
θ + r−1 csc θ∂φv

(1)
φ(3.7)

are proportional to r−3 cosmφ; i.e., variables separate in the equation ∇ · v = 0.
Tables 3.1–3.3 help systematize the elimination of φ-dependence in (3.3)–(3.5)

with separation of variables. The appropriate r- and φ-dependencies for the scalar
p(1), for the vector v(1), and for the tensor T (1) are indicated in Table 3.1. (Note
that symmetric 3× 3 tensors are represented as vectors in R6, the components being
enumerated in the order shown.) In Table 3.2 we record, for the reader’s convenience,
the expressions in spherical coordinates for four differential operators that occur in
these equations.

The main point, which makes separation of variables work in this problem, is that
the θ-dependent part of each of these linear operators is given by

∇̂p = (g1∂θ + g0)p̂,(3.8a)

∇̂ · v = (dT1 ∂θ + dT0 )v̂,(3.8b)

V̂ = −(G1∂θ +G0)v̂,(3.8c)

∇̂ · T = (D1∂θ +D0)T̂ ,(3.8d)



588 PIERRE A. GREMAUD, JOHN V. MATTHEWS, DAVID G. SCHAEFFER

Table 3.1
The r- and φ-dependence of scalars, vectors, and tensors in separation of variables.

Scalars : p = r p̂(θ) cosmφ

Vectors : v = 1
r2

[
v̂r(θ) cosmφ
v̂θ(θ) cosmφ
v̂φ(θ) sinmφ

]
Tensors : T = r


T̂rr(θ) cosmφ

T̂rθ(θ) cosmφ

T̂θθ(θ) cosmφ

T̂rφ(θ) sinmφ

T̂θφ(θ) sinmφ

T̂φφ(θ) cosmφ



Table 3.2
Differential operators in spherical coordinates.

∇p = [ ∂rp, r−1∂θp, r−1 csc θ∂φp ]
T

∇ · v = ∂rvr + 2r−1vr + r−1∂θvθ + r−1 cot θvθ + r−1 csc θ∂φvφ

V =


Vrr

Vrθ

Vθθ

Vrφ

Vθφ

Vφφ

 = −


∂rvr

1
2

(
r−1∂θvr − r−1vθ + ∂rvθ

)
r−1 (vr + ∂θvθ)

1
2

(
r−1 csc θ ∂φvr − r−1vφ + ∂rvφ

)
1
2
r−1
(
∂θvφ − cot θ vφ + csc θ∂φvθ

)
r−1
(
vr + cot θ vθ + csc θ ∂φvφ

)


∇ · T =

[
∂rTrr + r−1 csc θ ∂φTrφ + r−1∂θTrθ + r−1(2Trr − Tφφ − Tθθ + Trθ cot θ)

∂rTrθ + r−1 csc θ ∂φTθφ + r−1∂θTθθ + r−1
(
3Trθ + (Tθθ − Tφφ) cot θ

)
∂rTrφ + r−1 csc θ ∂φTφφ + r−1∂θTθφ + r−1(3Trφ + 2Tθφ cot θ)

]

where g1, g0, . . . , D0 are the matrices given in Table 3.3.
The calculation needed to verify (3.8b) was described above; the other equations

may be verified similarly. Incidentally, (3.8a) may be derived by substituting T = pI
in (3.8d), and (3.8b) may be derived by taking the trace of (3.8c).

With this notation, (3.3)–(3.5) reduces to a system of ODEs in θ,

(D1∂θ +D0)T̂
(1) = 0,(3.9)

−(G1∂θ +G0)v̂
(1) = λ̂(1) devT̂ (0) + λ̂(0)devT̂ (1),(3.10)

tr(devT̂ (0) devT̂ (1)) = 2 s2 p̂(0)p̂(1).(3.11)

Recalling the representation of symmetric tensors as 6-component vectors, we observe
that the left-hand side of (3.11) may be rewritten as an inner product

tr
(
devT̂ (0) devT̂ (1)

)
= devT̂ (0)TM devT̂ (1),

where M is the 6× 6 matrix

M = diag(1, 2, 1, 2, 2, 1);

thus we may rewrite (3.11) as

devT̂ (0)TMdevT̂ (1) = 2 s2 p̂(0)p̂(1).(3.12)
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Table 3.3
Matrices in (3.8).

g1 =
[

0 1 0
]T

g0 =
[

1 0 m
sin θ

]T
d1 =

[
0 1 0

]T
d0 =

[
0 cot θ m

sin θ

]T

G1 =


0 0 0

1/2 0 0
0 1 0
0 0 0
0 0 1/2
0 0 0

 G0 =


−2 0 0
0 −3/2 0
1 0 0

− m
2 sin θ

0 −3/2

0 − m
2 sin θ

− cot θ
2

1 cot θ m
sin θ


D1 =

[
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]
D0 =

[
3 cot θ −1 m

sin θ
0 −1

0 4 cot θ 0 m
sin θ

− cot θ
0 0 0 4 2 cot θ − m

sin θ

]

Let us show that the deviatoric stresses in (3.9), (3.10), (3.12) can be eliminated
from these equations to obtain

(D1∂θ +D0)

(
− 1

λ̂(0)
(G1∂θ +G0)v̂

(1) − λ̂(1)

(λ̂(0))2
V̂ (0)

)
+ (g1∂θ + g0)p̂

(1) = 0,(3.13)

(dT1 ∂θ + dT0 )v̂
(1) = 0,(3.14)

where in (3.13)

λ̂(1) = − 1

2s2

1

(p̂(0))2λ̂(0)
V̂ (0)TM(G1∂θ +G0)v̂

(1) − λ̂(0)

p̂(0)
p̂(1).(3.15)

Equation (3.14) follows on taking the trace of (3.10). Next, we rewrite (3.10) as

devT̂ (1) = − 1

λ̂(0)
(G1∂θ +G0)v̂

(1) − λ̂(1)

(λ̂(0))2
V̂ (0),(3.16)

where we have eliminated devT̂ (0) using the relation V̂ (0) = λ̂(0)devT̂ (0)—effectively,
(2.2) for Jenike’s solution. Recalling that T̂ (1) = devT̂ (1) + p̂(1)I, we substitute (3.16)
into (3.9) to derive (3.13). Similarly, (3.15) follows on substituting (3.16) into (3.12)
and rearranging.

As a final simplification, we substitute (3.15) into (3.13), obtaining the linear,
homogeneous system of ODEs

−(A2∂θθ +A1∂θ +A0)v̂
(1) + (b1∂θ + b0)p̂

(1) = 0,(3.17)

(dT1 ∂θ + dT0 )v̂
(1) = 0,(3.18)

where, with the definition

P = I − 1

2s2(p̂(0))2(λ̂(0))2
V̂ (0)V̂ (0)TM,
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the coefficient matrices are given by

A2 =
1

λ̂(0)
D1PG1,

A1 =
1

λ̂(0)
(D0PG1 +D1PG0) +D1∂θ

(
1

λ̂(0)
PG1

)
,

A0 =
1

λ̂(0)
D0PG0 +D1∂θ

(
1

λ̂(0)
PG0

)
,

b1 = g1 +D1
V̂ (0)

p̂(0)λ̂(0)
,

b0 = g0 + (D1∂θ +D0)
V̂ (0)

p̂(0)λ̂(0)
.

These matrices depend on θ and in fact several are singular as θ → 0. In Corollary 4.2
below, we show that this system has a six-dimensional solution space.

The combination V̂ (0)/(p̂(0)λ̂(0)), which occurs in various places in the above for-
mulas, admits a convenient representation; i.e., combining (2.2) and (2.9), we deduce
that

1

p̂(0)λ̂(0)
V̂ (0) = s



− 2√
3
cos 2ψ

− sin 2ψ
1√
3
cos 2ψ

0
0

1√
3
cos 2ψ


.(3.19)

The following supplementary information will be needed in section 4.
Lemma 3.1. Under the reflection θ �→ −θ, the functions in separation of variables

have the parities

p̂(−θ) = (−1)mp̂(θ),(3.20a)

v̂(1)
r (−θ) = (−1)mv̂(1)

r (θ),(3.20b)

v̂
(1)
θ (−θ) = (−1)m+1v̂

(1)
θ (θ),(3.20c)

v̂
(1)
φ (−θ) = (−1)m+1v̂

(1)
φ (θ).(3.20d)

Proof. The reflection θ �→ −θ and the rotation φ �→ φ+ π are different represen-
tations of the same mapping. Therefore, since p is a scalar,

p̂(−θ) cosmφ = p̂(θ) cosm(φ+ π) = (−1)mp̂(θ) cosmφ,

which proves (3.20a). Equation (3.20b) follows from the same argument since vr
transforms as a scalar under changes in the angular coordinates. Rather than analyze
the parities of vθ and vφ, we prefer an indirect argument. Since ∇ · v(1) is a scalar,
∇ · v(1) has parity (−1)m under the reflection θ �→ −θ, and on inspecting (3.7), we
deduce (3.20c), (3.20d).

Incidentally, although we shall not need that information below, we remark that
under this reflection T̂rr, T̂θθ, T̂θφ, and T̂φφ have parity (−1)m, while T̂rθ and T̂φr

have parity (−1)m+1.
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Table 3.4
Leading orders in the expansions at θ = 0 of the coefficient matrices of (3.17)–(3.18).

A2(θ) =

[
1
2

0 0

0 5
6

0

0 0 1
2

]
+O(θ)

A1(θ) = θ−1

[
1
2

0 0

0 5
6

m
3

0 −m
3

1
2

]
+O(1)

A0(θ) = θ−2

 −m2

2
0 0

0 −m2

2
− 5

6
− 4m

3

0 − 4m
3

− 5m2

6
− 1

2

+O(θ−1)

b1(θ) = (1 + s/
√
3)
[

0 1 0
]T

+O(θ)

b0(θ) = θ−1(1 + s/
√
3)
[

0 0 −m
]T

+O(1)

d1(θ) =
[

0 1 0
]T

(exactly)

d0(θ) = θ−1
[

0 1 m
]T

+O(1)

3.2. Boundary conditions at the centerline. Equations (3.17), (3.18) have
a regular singular point at θ = 0. The leading orders of the coefficient matrices in
these equations are given in Table 3.4. This information may be determined without
knowing the Jenike solution explicitly since, using the fact that ψ(0) = 0, we deduce
from (3.19) that

V̂ (0)

p̂(0)λ̂(0)
(0) =

s√
3

[ −2 0 1 0 0 1
]T

.

According to the method of Frobenius [3], equations (3.17), (3.18) admit solutions
of the form

v̂(1)(θ) = θνF (θ), p̂(1)(θ) = θν−1f(θ),(3.21)

where F (θ) and f(θ) are analytic near θ = 0. Suppose the exponent ν is real; if 1 ≤ ν,
such a solution is continuous; if ν < 0, it is singular; and if 0 ≤ ν < 1, it is continuous,
provided f(0) = 0.

Proposition 3.2. There are exactly three linearly independent solutions of
(3.17), (3.18) of the form (3.21) that are continuous at θ = 0.

Proof. Substitution of (3.21) into (3.17), (3.18) gives an indicial equation with
roots

ν = ±(m+ 1),±m,±(m− 1).(3.22)

If m ≥ 2, three of the roots of (3.22) are negative and three are positive. The three
solutions associated with the positive indices are linearly independent and continuous.
(We remark that since the positive roots differ by integers, in principle these solutions
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might contain log terms. This would not affect their continuity. Moreover, using
Maple we have verified that no such log terms arise. See section 5.2 for more details
about the Maple code.)

If m = 1, there are four nonnegative roots of (3.22), including zero which is a
double root. Because of a log term, the double root zero contributes at most one
continuous solution. Again using Maple we have eliminated the various alternative
possibilities to show that zero and the two positive roots (3.22) contribute exactly
three linearly independent continuous solutions and these do not contain any log
terms.

Incidentally, since the roots of the indicial equation are integers and since no log
terms arise, the continuous solutions of the lemma are actually analytic near θ = 0.

Note that there are six roots (3.22) of the indicial equation. Therefore (3.17),
(3.18) has a six-dimensional solution space. (We also prove this by a different ar-
gument in Corollary 4.2.) Thus, according to the proposition, the condition that
solutions be regular at θ = 0 is equivalent to three boundary conditions. Therefore,
regularity at θ = 0 plus the three boundary conditions (2.5), (2.6) will provide a
complete set of boundary conditions.

3.3. Boundary conditions at the hopper wall. We derive the perturbed
version of (2.5) in some detail; similar issues arise for (2.6), and we treat the latter
equation more succinctly. The calculations are greatly simplified by the fact that we
may neglect any quantity that is O(ε2). To exploit this simplification efficiently, we
temporarily use the notation F ∼ G to mean that F = G+O(ε2).

Including a prefactor of r2 to remove all r-dependence from the equation, we may
rewrite (2.5) as

r2v(r, θw + ε cosmφ, φ) ·N = 0.(3.23)

Because of the perturbation, (3.23) differs from (2.10) in three respects:
– the velocity v contains an additional term, v ∼ v(0) + εv(1);
– the velocity is evaluated at a location shifted by ε cosmφ;
– the direction of the normal N is changed.

Regarding the first two points, we observe that

r2v(r, θw + ε cosmφ, φ) ∼ v̂(0)(θw) + ε cosmφ∂θv̂
(0)(θw) + ε trigmφ v̂(1)(θw),

where trigmφ equals cosmφ or sinmφ, depending on the component of v̂(1). Regard-
ing the third point, ∂Ω is the zero set of the function θ − θw − ε cosmφ. Taking the
gradient of this function, we conclude that the (inward) normal is

N ∼
[
0 −1 −ε sinmφ

sin θw

]T
.

Modulo an O(ε2)-error, N has unit length. Substituting the previous two equations
into (3.23), we deduce that

−r2v(r, θw + ε cosmφ, φ) ·N ∼ v̂
(0)
θ (θw) + ε cosmφ

(
∂θv̂

(0)
θ (θw) + v̂

(1)
θ (θw)

)
+ ε

sinmφ

sin θw
v̂
(0)
φ (θw).

However, since v
(0)
θ and v

(0)
φ vanish identically for Jenike’s solution, the velocity bound-

ary condition for the perturbed problem reduces to

v̂
(1)
θ (θw) = 0.(3.24)
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We turn to the stress boundary condition (2.6). As regards the scalar τN in (2.6),

we observe that, since T
(0)
rφ and T

(0)
θφ vanish for Jenike’s solution,

τN =

3∑
i,j=1

TijNiNj ∼ T
(0)
θθ + εT

(1)
θθ .(3.25)

The vectors τT and vT in (2.6) lie in a two-dimensional subspace tangent to ∂Ω. Note
that the unperturbed tangent space is spanned by the r and φ coordinate directions.
Even allowing for the perturbation, the two sides of (2.6) will be equal iff their r- and
φ-components are equal; in symbols, iff[

τTr

τTφ

]
= −µwτN

|v|
[

vr
vφ

]
.

This equality will hold iff (i) the two sides of the equation are parallel vectors and
(ii) the first components of the two sides are equal; again, in symbols, iff

τTrvφ − τTφvr = 0 and(3.26)

τTr + µwτN (vr/|v|) = 0.(3.27)

Regarding v, it is clear that[
vr
vφ

]
∼
[

v
(0)
r

0

]
+ ε

[
v
(1)
r

v
(1)
φ

]
.(3.28)

Regarding τT = τ − τNN , we claim that[
τTr

τTφ

]
∼ −

[
T

(0)
rθ

0

]
− ε

[
T

(1)
rθ

T
(1)
θφ

]
.(3.29)

Verifying this claim is straightforward except that, in analyzing the second component,

one must invoke the fact that Jenike’s solution satisfies T
(0)
θθ = T

(0)
φφ . On substituting

(3.28) and (3.29) into (3.26), we obtain the equation

ε
(
T

(0)
rθ v

(1)
φ − v(0)

r T
(1)
θφ

)
= 0 at θ = θw + ε cosmφ.

The difference between evaluating this expression at θ = θw and at the perturbed lo-
cation is O(ε2). Removing the r-dependence (proportional to r) and the φ-dependence
(proportional to sinmφ) from this equation, we obtain the first stress boundary con-
dition for the perturbed problem:(

T̂
(0)
rθ v̂

(1)
φ − v̂(0)

r T̂
(1)
θφ

)
= 0 at θ = θw.(3.30)

Regarding (3.27), we claim that

|v| =
√

v2
r + v2

θ + v2
φ ∼ |vr|.

Indeed, it is clear from (3.28) that the contribution of vφ to |v| is O(ε2), and by (3.24)
the contribution of vθ to |v| is O(ε4). Thus, vr/|v| ∼ −1. Substituting (3.25) and
(3.29) into (3.27), we obtain the condition

(T
(0)
rθ + εT

(1)
rθ ) + µw(T

(0)
θθ + εT

(1)
θθ ) ∼ 0 at θ = θw + ε cosmφ.
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By (2.12), T
(0)
rθ + µwT

(0)
θθ vanishes at θ = θw, but at the perturbed location these

terms make an O(ε)-contribution. Allowing for this contribution and eliminating the
r- and φ-dependence, we derive the second stress boundary condition for the perturbed
problem:

T̂
(1)
rθ + µwT̂

(1)
θθ = −∂θ

(
T̂

(0)
rθ + µwT̂

(0)
θθ

)
at θ = θw.(3.31)

We have put the inhomogeneous term, which does not involve the perturbation T (1),
on the right side of the equation. (By contrast, (3.30) and (3.24) are homogeneous.)

It is noteworthy that the perturbed boundary conditions (3.24), (3.30), (3.31)
resemble (2.10), (2.11), (2.12) rather closely.

4. Numerical approximation of the two-point boundary-value problem.
The coefficients in (3.17), (3.18) depend on the zeroth-order solution discussed in
section 2.2. This solution can be found numerically without difficulty; see, e.g., [6],
where a shooting method is used, or [10]. We will consider the zeroth-order solution
as given, and we will focus on the corrections v̂(1) and p̂(1).

To simplify the notation before discretization, we set

w = v̂(1), z =
d

dθ
v̂(1), and q = p(1)

and rewrite equations (3.17), (3.18) as a first-order system I 0 0
0 −A2 b1
0 0 0

 w′

z′

q′

+

 0 −I 0
−A0 −A1 b0
dT0 dT1 0

 w
z
q

 =

 0
0
0

 ,(4.1)

where the coefficient matrices are the same as above. System (4.1) is completed by
the three boundary conditions (3.24), (3.30), (3.31).

The above system (4.1) is differential-algebraic; in the next lemma, we show it
has index one. (The meaning of this term is defined in the proof, or see [4].) The
approximation of solutions of the initial-value problem for such low-index DAEs is
relatively well understood; see, for instance, [4] for convergence results. Moreover,
some results for the initial-value problem may be extended to boundary-value prob-
lems; see [5]. These considerations provide a theoretical justification for our using the
midpoint rule to solve (4.1) numerically.

Lemma 4.1. Assuming downward flow, i.e., vr(θ) < 0 for any θ, the first-order
system is differential-algebraic of index one.

Proof. We need to show that by differentiating some of the components of (4.1) at
most once, the algebraic character of the system can be eliminated, leaving a purely
differential equation. Let us differentiate only the last component of (4.1),

dT0 w + dT1 z = 0.(4.2)

The resulting system may be written as I 0 0
0 −A2 b1
0 dT1 0

 w′

z′

q′

+

 linear
zeroth-order

terms

 = 0.(4.3)

We claim the coefficient matrix in (4.3) is nonsingular. Then, multiplying (4.3) by
the inverse of this matrix, we obtain a purely differential equation.
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To prove the claim, it suffices to show that

B =

[
+λ̂(0)A2 b1

dT1 0

]
(4.4)

is nonsingular, where, without changing invertibility, we have inserted a factor of−λ̂(0)

in the upper left, which simplifies the calculation. Let us introduce the notation W
for the column vector on the right-hand side of (3.19), so that V̂ (0)/(p̂(0)λ̂(0)) = sW .
Then from the definitions following (3.17), (3.18), we have b1 = g1+sD1W. Similarly,

regarding A2, since MG1 = DT
1 , we have λ̂(0)A2 = D1G1 − 1

2 (D1W )(D1W )T . But

D1W =
[
− sin 2ψ 1√

3
cos 2ψ 0

]T
.

Hence matrix (4.4) equals

B =


1
2 − 1

2 sin
2 2ψ ∗ ∗ −s sin 2ψ

1
2
√

3
cos 2ψ sin 2ψ ∗ ∗ 1 + s√

3
cos 2ψ

0 0 1
2 0

0 1 0 0

 ,

where ∗ indicates elements that do not affect the invertibility of B. It is readily
calculated that

detB = −1

4

(
cos2 2ψ +

s√
3
cos 2ψ

)
.

As shown on p. 43 of [12], the assumption that v
(0)
r < 0 implies that |ψ(θ)| < π/4,

and the claim follows.

Corollary 4.2. The solution space of (4.1) has dimension six.

Proof. The solution space of (4.3), which is seven-dimensional, may be param-

eterized by initial values
[

w(θ0) z(θ0) q(θ0)
]T

. Since (4.3) was obtained from
(4.1) by differentiating (4.2), we conclude that for a solution of (4.3),

dT0 w(θ) + dT1 z(θ) ≡ 0 iff dT0 w(θ0) + dT1 z(θ0) = 0.

Thus the solution space of (4.1) may be identified with the set of solutions of (4.3)
whose initial conditions satisfy the scalar equation (4.2).

The boundary-value problem (4.1), (3.24), (3.30), (3.31) is discretized using a
symmetric implicit Runge–Kutta method [2], [4]. Since the solutions are expected
to behave smoothly with respect to θ, the simplest of those methods, namely the
midpoint rule, is chosen. In spite of being only second-order accurate, this choice is
shown to be adequate below. The interval (0, θw) is divided into N subintervals of
size ∆θ = θw/N , defining a uniform mesh with nodes θi = i∆θ, i = 0, 1, . . . , N . At
each grid point θi there are seven unknowns,

U i = [wi
1 wi

2 wi
3 zi1 zi2 zi3 qi]T .

Since there are N+1 grid points, there are 7(N+1) unknowns in total. The midpoint
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Table 4.1
Numerical boundary conditions at θ = 0.

m = 1 w0
1 = 0 w0

2 + w0
3 = 0 z03 = 0 q0 = 0

m ≥ 2 w0
1 = 0 w0

2 = 0 w0
3 = 0 q0 = 0

rule for the ODE (4.1) is applied on each interval [θi−1, θi], i = 1, . . . , N , leading to
7N equations for the 7(N + 1) unknowns.

Seven additional equations are needed to close the system, and these are provided
by the boundary conditions. At θ = θw, the three conditions (3.24), (3.30), (3.31) are
imposed, and at θ = 0, the four numerical boundary conditions listed in Table 4.1 are
imposed. The latter boundary conditions may be justified as follows. According to
(3.21), (3.22), as θ → 0,

w ∼ θν , q ∼ θν−1,

where ν ≥ m− 1. Thus w(0) = 0 if m ≥ 2, and q(0) = 0 if m ≥ 3. In fact, if m = 2,
direct calculation of the Frobenius solution (3.21) shows that q(0) = 0 remains true
in this case, too. If m = 1, we refer to Lemma 3.1: by parity, w1, q, and z3 = dw3/dθ
all vanish at θ = 0. The fourth boundary condition in Table 4.1 follows from the last
equation in (4.1) in the limit θ → 0.

The resulting 7(N + 1)× 7(N + 1) system has the following structure:
S1 R1

S2 R2

. . .
. . .

SN RN

B0 Bw




U0

U1

...

UN−1

UN

 =


0

0
...

0

Q

 .(4.5)

The last row of the above system corresponds to the implementation of the boundary
conditions; the 7 × 7 matrices B0 and Bw contain the coefficients entering in the
formula from Table 4.1 and (3.24), (3.30), (3.31), respectively, while Q corresponds
to the nonhomogeneous part of the boundary condition (3.31).

5. Numerical results.

5.1. Secondary circulation. We claim that, for solutions of (4.1), secondary
circulation—i.e., flow tangential to the spherical cap {r = const}—may be described
in terms of the stream function

Ψ =
1

mr
sin θ sinmφw2(θ).

In other words, we must show that

v
(1)
θ =

1

r sin θ
∂φΨ,(5.1a)

v
(1)
φ = −1

r
∂θΨ.(5.1b)

Since v
(1)
θ = r−2w2(θ) cosmφ, equation (5.1a) follows by direct differentiation. On
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Fig. 5.1. Stream function showing secondary flow in a tilted hopper (m = 1, θw = 30◦,
δ = 30◦, angle of wall friction = 14◦), i.e., µw = tan 14◦. By symmetry, only half of the hopper is
represented.
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Fig. 5.2. Stream function showing secondary flow in an “elliptical” hopper (m = 2, θw = 30◦,
δ = 30◦, angle of wall friction = 14◦).

the other hand, since v
(1)
r = r−2w1(θ) cosmφ, we have (∂r + 2r−1)vr = 0, so by (3.7)

(∂θ + cot θ)w2(θ) cosmφ+ csc θ w3(θ) ∂φ(sinmφ) = 0,

from which (5.1b) follows. Figures 5.1 and 5.2 show plots of the level lines of Ψ, which
equal the projection of the streamlines onto a spherical cap {r = const}. Figure 5.1
corresponds to a tilted hopper (m = 1), while Figure 5.2 corresponds to an “ellip-
tical” hopper (m = 2). The grains do not move along radial lines but follow more
complicated and fully three-dimensional trajectories.

The sign of the main circulation changes when µw increases. The corresponding
transition is independent of the value of m, but is a property of the radial solution
itself. Specifically, the circulation vanishes when the boundary condition for the cor-

rection terms (3.31) is homogeneous, i.e., ∂θT̂
(0)
rθ +µw∂θT̂

(0)
θθ = 0 at θ = θw. The range

of θw in Figure 5.3 is limited by the mass-flow limit—exceeding this limit leads to
flows with rigid regions, to which the present model does not apply. The range of µw
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Fig. 5.3. Critical values leading to sign changes of the circulation (internal friction δ = 30◦).
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Fig. 5.4. Influence of the geometry on the mean stress corrections (θw = 30◦, δ = 30◦, angle of
wall friction = 14◦); upper left: m = 1, upper right: m = 2, lower left: m = 3, lower right: m = 4.

is limited by the condition that µw < sin δ = 1/2; here the upper bound corresponds
to a fully rough wall [7].

The effects of the geometry on the mean stress corrections are illustrated in Fig-
ure 5.4.

5.2. Checks on the computation. For comparison with the above numerical
solution, the method of Frobenius was applied directly to the system (3.17), (3.18)
using Maple. Given Jenike’s radial field, a linear system for the coefficients of the
series solution is readily formed and solved, yielding a solution with three free param-
eters, corresponding to the three linearly independent solutions in Proposition 3.2.
Subsequently, the three boundary conditions (3.24), (3.30), (3.31) provide the needed
relations to determine the solution to the full boundary-value problem.
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Fig. 5.5. Comparison of v
(1)
θ

from the purely numerical method of section 4 and from the
Frobenius method of section 5.2. (Using m = 1, θw = 10◦, δ = 30◦, and µw = 0.3.)

Two methods of obtaining the radial field were employed. Under the assumption
that θ2

w and µw/θw are both small and of the same order, a series representation of the
Jenike field was computed within Maple itself. Under the less restrictive assumption
that only θw be small (say 10◦), numerical solutions were computed in MATLAB,
fitted to polynomials, and then imported into Maple. In both cases, the resulting
polynomials were then used to compute the first-order correction. The corrections
to the stress and velocity obtained through this symbolic approach agree extremely
well with the results of the purely numerical method of sections 4 and 5: for the
representative values m = 1, θw = 10◦, δ = 30◦, and µw = 0.3, the corrections
obtained by the two different methods have a relative difference of less than 1%; see
Figure 5.5.
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