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Abstract In this work, we present the Raman peak 

positions of the quaternary pure selenide compound 

Cu2ZnSnSe4 (CZTSe) and related secondary phases that 

were grown and studied under the same conditions. A vast 

discussion about the position of the X-ray diffraction 

(XRD) reflections of these compounds is presented. It is 

known that by using XRD only, CZTSe can be identified 

but nothing can be said about the presence of some sec- 

ondary phases. Thin films of CZTSe, Cu2SnSe3, ZnSe, 

SnSe, SnSe2, MoSe2 and a-Se were grown, which allowed 

their investigation by Raman spectroscopy (RS). Here we 

present all the Raman spectra of these phases and discuss 

the similarities with the spectra of CZTSe. The effective 

analysis depth for the common back-scattering geometry 

commonly used in RS measurements, as well as the laser 
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penetration depth for photoluminescence (PL) were esti- 

mated for different wavelength values. The observed 

asymmetric PL band on a CZTSe film is compatible with 

the presence of CZTSe single-phase and is discussed in the 

scope of the fluctuating potentials’ model. The estimated 

bandgap energy is close to the values obtained from 

absorption measurements. In general, the phase identifica- 

tion of CZTSe benefits from the contributions of RS and 

PL along with the XRD discussion. 

 

 
Introduction 

 
Cu2ZnSnSe4 (CZTSe) is a quaternary semiconductor used 

as the absorber layer in thin film solar cells. Together with 

Cu2ZnSnS4 (CZTS), these materials are interesting because 

they replace the rare and expensive elements used in 

Cu(In,Ga)Se2(CIGS), such as In and Ga, with inexpensive 

and abundant ones, Sn and Zn. The most efficient solar cell 

made with Cu2ZnSn(S,Se)4 (CZTSSe) was prepared by 

Wang et al. [1] and reached a power conversion efficiency 

of 12.6 %. For the single-chalcogenide materials, the 

records are 8.4 % for CZTS [2] and 9.7 % for CZTSe [3]. 

In addition to small solar cell devices, CZTS mini-modules 

are also being researched and an efficiency of 9.2 % was 

demonstrated [4]. Despite this very encouraging proof of 

concept, the future industrialization process still has open 

questions such as material and cell performance stability 

that need to be further investigated by the research com- 

munity. In spite of this race for high values of power 

conversion efficiency, several growth methods are being 

researched for thin films [5–12] and nano-particles [13– 

25]. These techniques are being researched in order to find 

new approaches that might further increase efficiency in 

the future. 
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The mentioned efficiency values prove that these 

materials can be used to make solar cells but it should be 

noticed that most of their physical properties are still lar- 

gely unknown, and a deeper understanding of the materi- 

als’ properties is still needed. For this investigation, it is 

mandatory to grow single-phase materials and to be able to 

perform a correct identification of the crystalline phase. As 

a matter of fact, phase identification is a major problem 

when working with this compound. The standard technique 

for this purpose, X-ray diffraction (XRD), is insufficient to 

resolve the various phases that may form. In XRD, 

resolving CZTSe from unwanted secondary phases such as 

ZnSe is difficult because of the overlap of the main dif- 

fraction peaks. A solution for this problem is to use Raman 

spectroscopy (RS) complemented by photoluminescence 

(PL) commonly used to overcome the XRD limitation [26– 

31]. In this paper, we study with RS the most common 

secondary/unwanted phases that might appear during the 

growth of pure Selenide quaternary compound CZTSe 

which, to the best of our knowledge, is done for the first 

time in the same work. Thus, we avoid the constraints of 

comparing the results from several works in the literature 

obtained with different experimental conditions. The 

samples were prepared in a two-step approach, which is the 

most used technique to grow CZTSe-based devices. All 

samples were measured under the same conditions. In 

addition, we study the Raman’s and PL effective analysis 

depth and, by PL, the electronic level structure of the 

CZTSe phase and the non-radiative recombination chan- 

nels of single-phase layers. Together, these analyses con- 

firm that single-phase material growth has occurred and 

provide insight into several important fundamental 

properties. 

 
Literature review of XRD 

 
A common way to prepare CZTSe is to anneal/selenize 

precursor layers and this approach is commonly described 

as a two-step process. During the selenization, the ther- 

modynamic conditions, such as pressure, temperature and 

Se atmosphere, can be varied to such an extent that the 

elements in the sample will be able to form binary, ternary 

and quaternary phases [32–40]. Other growth methods 

follow similar thermodynamic conditions so they also have 

to deal with unwanted secondary phases [18, 41, 42]. 

Ideally, one wants to prepare single-phase CZTSe films but 

if some of those secondary phases are still present after the 

deposition, then the performance of the resulting solar cells 

may be degraded. Secondary phases may harm device 

performance by forming recombination centres [43, 44], 

areas where no photocurrent is created, (dead areas) [45] or 

shunt paths [46]. In Table 1, we present several structural 

parameters, collected from the literature, for CZTSe and 

different related phases that may be present during the 

formation process of CZTSe [41, 47–51]. CZTSe, cubic- 

ZnSe, cubic-Cu2SnSe3 (CTSe) and cubic-Cu2Se have a 

very similar structure and a very similar unit cell size. 

Given that CZTSe has a tetragonal based structure, most of 

its reflections occur in the same angular position as the 

reflections of the above mentioned phases [52]. This is due 

to several reasons: (1) all structures derive from the same 

family, the cubic one; (2) the lattice parameters are very 

close, for instance when comparing the lattice parameter a 

of CZTSe with the ones of cubic-CTSe and cubic-ZnSe 

[53], differences of 0.004 and 0.02 Å  are found, respec- 

tively, and (3) Cuþ and Zn2þ are neighbours in the periodic 

table and have a very similar atomic scattering factor [54] 

to which is proportional the measured intensity in an X-ray 

diffraction experiment. From all phases mentioned in Table 

1, CuSe, SnSe and SnSe2 can be resolved from CZTSe 

using XRD since they have quite different structures and 

cell parameters. There are other phases like, for instance, 

monoclinic CTSe [55–57],  which may form during the 

growth of CZTSe but since they have very different crys- 

talline structures they can be identified in XRD, however, 

there are not many reports that show them as secondary 

phases during the growth of CZTSe. By looking at Table 2 

it is evident that the problem of  similar structures  and 

lattice parameters for CZTSe, ZnSe and CTSe is reflected 

in the small difference between the XRD peak positions. 

Note that on Table 2, we only show the CZTSe peaks that 

overlap with the selected secondary phases. It also shows 

the angular differences between the position of the 

unwanted phases and the position of CZTSe. For ZnSe, the 

largest difference is 0.15° and, in this case, the CZTSe peak 

is located at 72.48° whereas the ZnSe peak is situated at 

72.63°, but the intensities of these peaks are too low for 

differences to be seen clearly [53]. Usual system resolu- 

tions for standard h–2h measurements are close to these 

angular differences. With broad peaks, this distinction is 

even harder to be detected. For the cubic-CTSe, the biggest 

difference is 0.16°. 

In spite of the fact that all the cubic-ZnSe and cubic- 

CTSe diffraction peaks are extremely close and/or super- 

imposed with those of CZTSe, the latter possesses addi- 

tional peaks that do not match with the ones from these 

unwanted phases. Such examples are the peaks at 15.61° 

and 17.42°, and the three combinations of double peaks 

located around 53°, 65° and 72°. Usually, the intensity of 

the double peaks close to 650 and 720 are low and therefore 

the peaks located at 53:390 and 53:530 can be used to 

evaluate the presence or absence of CZTSe [47]. Using 

these peaks, one can then say whether CZTSe is present. 

However, just based on XRD measurements, nothing can 



 

 
 

 

Table 1  Structural and optical information of CZTSe and related phases 
 

Compound CZTSe ZnSe CTSe Cu2Se CuSe SnSe SnSe2 

Structure Tetragonal Cubic Cubic Cubic Hexagonal Orthorhombic Hexagonal 

a (Å ) 5.6882 5.669 5.684 5.763 3.984 4.46 3.8108 

b (Å ) – – – – – 11.57 – 

c (Å ) 11.3378 – – – 17.288 4.19 6.141 

Cell volume (Å 3) 366.8 182.17 183.64 191.4 237.64 216.21 77.23 

Egap (eV) 1.05 (D) 2.6 (D) 0.74–0.84 (D) 2.2 (D) 2.2 (D) 1.26 (D) 1.7 (D) 

      0.90 (I) 0.92 (I) 

 Refs. [61, 62] Ref. [67] Refs. [68–70] Refs. [71, 72] Ref. [71] Ref. [73, 74] Ref. [74, 75] 

The structural information was retrieved from literature [53]. The type of the band edge structure is denoted by D and I for direct and indirect 

bandgap semiconductors, respectively. The references for the values of the bandgap energies are mentioned in the last line of the table 

 

Table 2  Positions of the XRD peaks for CZTSe that might overlap with other phases: ZnSe and CTSe 
 

CZTSe angle (0) Planes ZnSe angle (0) Planes Difference to CZTSe (0) CTSe angle (0) Planes Difference to CZTSe (0) 

27.16 112 27.22 111 -0.06 27.15 111 0.01 

45.12 204 45.20 220 -0.08 45.07 220 0.05 

53.39 312 – – – – – – 

53.53 116 53.57 311 -0.04 53.41 311 0.12 

65.59 400 – – – – – – 

65.84 008 65.84 400 0.00 65.64 440 0.20 

72.36 332 – – – – – – 

72.48 316 72.63 331 -0.15 72.41 331 0.07 

83.19 424 – – – – – – 

83.35 406 83.46 422 -0.11 83.19 422 0.16 

The angular values are estimated for a X-ray incident wavelength of 1.54060 Å and were measured for powder reference samples. The angular 

differences with respect to the CZTSe-related reflections [53] are presented 

 

be said regarding the presence of the other two phases. If 

the unique peaks of CZTSe are not present, then one cannot 

immediately say that CZTSe is not present because the 

crystalline quality of the material could be poor which 

would cause a broadening of the diffraction peaks. 

Some literature uses only XRD to evaluate the presence 

of secondary phases, and so the authors believe that some 

of the presented properties, supposedly belonging to 

CZTSe, may be, in reality, related to unwanted phases. 

Such an example is the bandgap energy, for which reported 

values ranging from 1.0 to 1.5 eV are found in the literature 

[58–60]. This property of CZTSe was the object of a debate 

for some time until Salomé et al. and Ahn et al. have 

confirmed the bandgap energy to be 1.05 eV [61–63], by 

analysing the absorption coefficient and by performing PL 

measurements. As a reference, the bandgap energies for 

CZTSe and other secondary phases are presented in Table 

1. Until the optimal growth conditions are established, one 

needs to have as much information as possible on how to 

identify these unwanted phases. A solution would be to 

perform very detailed h–2h measurements and to perform 

Rietveld  analyses  [64–66]  in  order  to  deconvolute  the 

superimposed peaks, however, this kind of analysis is 

complex to perform. A possible way is the use of RS 

complemented by PL. 

 

 
Experimental section 

 
All samples studied in this work were prepared using a 

growth method based on selenization of metallic precursors 

described in detail elsewhere [73]. The precursors were 

deposited using DC-magnetron sputtering on soda lime 

glass (SLG) [47, 74, 76], and the selenization pressures and 

temperatures were tuned for each compound according to 

our own experience and the literature data presented in 

Table 1. Mo, Cu, Zn and Sn metallic precursors were 

sputtered from targets with purity of 3N for Mo, 5N for Cu 

and 4N for Zn and Sn. Mo is the metal used for back 

contact in standard thin film solar cells [77]. The deposition 

was done at room temperature with a substrate-to-sample 

distance of 10 cm, with a power density of 0.16 Wcm-2 

and a working pressure of 2 x 10-3 mbar. The thicknesses 

and deposition rates were monitored using a quartz crystal 



 

 

Intellemetrics IL 150. The selenization was done in a 

separate chamber with a base pressure of 1 x 10-5 mbar. 

Se was evaporated at 250 0C. CZTSe, Cu2-xSe, MoSe2 and 

CTSe were prepared at 540 0C and 1 mbar. ZnSe was 

formed at 350 0C and 1 mbar. SnSe was formed at 570 0C 

and 500 mbar, SnSe2 at 300 0C and 600 mbar, a-Se at 

470 0C and 600 mbar. Se8 was formed by heating a glass 

substrate coated with graphene to 530 0C and exposed to Se 

vapours under vacuum, more details on this growth method 

will be published elsewhere. Argon was used to increase 

the pressure from the chambers’ base pressure to the 

growth pressure of the compounds. The films had a 

thickness between 500 and 1500 nm. Chemical composi- 

tion of the precursors was analysed using an ICP-MS 

Thermo X Series. The crystalline structure was studied by 

the XRD with a PHILIPS PW 3710 diffractometer using 

the Cu-Ka  line (1.54060 Å ). RS was performed using a 

Jobin-Yvon T64000 RS system with an Olympus micro- 

scope equipped with a 100x magnification lens in the 

back-scattering configuration. The excitation source was an 

Arþ ion laser operating at the wavelength of 488 nm, with 

excitation power of 1–5  mW  and  spot  diameter  of 

'"" 0.7 lm. RS measurements were made in room temper- 

ature conditions without intentional cooling or heating. The 

PL measurements were carried out using a Bruker IFS 66v 

Fourier transform infrared (FTIR) spectrometer equipped 

with a Ge diode detector cooled at the liquid nitrogen 

temperature. The samples were inserted in a nitrogen gas 

flow cryostat which allowed the change in temperature in 

the range 70–300 K. The excitation source was a 514.5 nm 

laser line focused on the sample in a spot of '"" 200 lm 

diameter. The power of the laser was measured at the front 

of the cryostat window. For PL measurements, the samples 

were grown on Mo-coated SLG, which was done in order 

to make the measurements on CZTSe with the same 

properties as the CZTSe that is used for solar cells. 

 

 
Results and discussion 

 
Raman scattering 

 
The use of RS for phase identification requires reference 

samples and for that it is needed to grow single-phase 

samples that allow the correct identification of their Raman 

peaks. In this work, we perform a comprehensive RS 

investigation of the most common secondary phases that 

could be present during the growth of CZTSe. In Fig. 1, we 

present RS spectra for several phases: CZTSe, CTSe, ZnSe, 

SnSe, SnSe2, a-Se, MoSe2. For the Cu2-xSe phase, no 

spectrum is presented due to the fact that with different x 

contents the main peak shifts from 260 to 270 cm-1  and 

growing phases with different x values is complex [71, 72]. 

The assignment of the peaks to each phase was confirmed 

through a bibliographical survey, as shown in Table 3, and 

the identification of the phases was obtained after the 

comparison with XRD measurements for all samples. 

According to the analyses, all studied compounds are sin- 

gle-phase and the only compound where there might be a 

secondary phase is amorphous Se (a-Se), since there is a 

broad peak located at 237 cm-1 which could be associated 

with trigonal Se8 [78]. We grew the most likely secondary 

phases that might appear during the growth of CZTSe, but, 

in addition to all phases presented in Table 3, there is the 

possibility that other Se-related phases, stable at room 

temperature, could be formed. Such phases are monoclinic 

CTSe, hexagonal Sen, a-monoclinic Se8, c-monoclinic Se8, 

rhombohedric Se6, among others [78]. None of these 

phases were ever detected in our various deposition con- 

ditions or ever reported in the literature as secondary 

phases of CZTSe. Consequently, we have not considered 

them in our analysis. 

A careful analysis of Table 3 shows that with RS, one 

can always tell if CZTSe is present since it has three very 

well distinguishable peaks at 174 (A symmetry), 195 (A 

symmetry), 233 cm-1  (B symmetry) [88–90], as seen in 

that Table and Fig. 1a. Using peak fit methodology, one 

should be able to find more peaks in the RS spectra of 

CZTSe,  but  for  the  main  purpose  of  this  work,  phase 

identification, such step is not necessary. At this point, it is 

worth mentioning that, for the CZTS system, it is quite 

hard to distinguish CZTS from ZnS for two reasons: (1) the 

main Raman peaks of both compounds are quite close [91, 

92];  (2)  ultra-violet  light  is  required  as  the  excitation 

wavelength in order to create resonant conditions [27]. On 

the other hand, in the case of ZnSe, its Raman signal is 

strong  and  the  main  ZnSe  peak  is  located  at  250 cm-1 

which is quite distant than the CZTSe’s peaks, making the 

identification possible. Several publications have showed 

the appearance of ZnSe along with the CZTSe peaks [47, 

93]. This shows that this technique is more useful for the 

identification of secondary phases in CZTSe than in CZTS. 

A phase that might be difficult to identify is cubic-CTSe, 

since the XRD peaks overlap with some of the peaks of 

CZTSe, and in Raman its main peak is found at 180 cm-1, 

right  between the  two main  peaks of  CZTSe,  174  and 

195 cm-1. The identification of CTSe will depend on the 

crystalline quality which is reflected on the full width at 

half maximum of the peaks and in the relative amounts of 

the two phases. With the exception of CTSe, all of the other 

phases shown here, when present in a solid mixture with 

CZTSe, should be resolved by RS. 

We must note that values presented in Table 3 are the 

ones measured in this work. The establishment of a clear 



 

 
 

   
 

   
 

Fig. 1  RS spectra for different reference compounds. The excitation laser wavelength was 488 nm. The Raman shift for the dominant peaks in 

each spectrum are identified 

 

Table 3  Experimental Raman frequency for several Se-based com- 

pounds, as shown in Fig. 1 

measurement  is  the  identification  of  crystalline  phases. 

Thus, the positions of the Raman peaks measured by dif- 

Compound   Structure Raman shift 

ðcm-1Þ 

Supporting 

references 

ferent research groups can differ by more than 1 cm-1. For 

instance, the main peak of CZTSe, is presented here at 
195 cm-1, but it has been seen at the range 194–197 cm-1

 

CZTSe Kesterite/ 
stannite 

174, 195, 233 [47, 62, 79–81] 
[47, 62, 79, 80]. In addition to this, it has been theoretically 

Cu2SnSe3 Cubic 180, 200, 236, 252   [55, 79] 

ZnSe Zinc blende 206, 250 [82] 

predicted that comparing CZTSe with the kesterite struc- 

ture  to  the  stannite  one  should  have  differences  in  the 

SnSe Orthorhombic 33, 71, 108, 130, 

150 

[74, 83] peaks’ positions in the range 2–4 cm-1  [90]. It can be said 

that for CZTS, Valakh et al. [99] were able to determine if 

SnSe2 Hexagonal 119, 185 [74, 84, 85] 

a-Se Amorphous 255 [78] 

MoSe2 Hexagonal 245, 284 [86] 

a disordered kesterite structure coexists with a kesterite 

structure using Raman by deconvolution of CZTS peaks 

into separate peaks associated with the kesterite and stan- 

Cu2-xSe Cubic/ 

hexagonal 

91, 260–270 [87] nite structures but so far, this analysis has not been per- 

formed for CZTSe. 

Se8 Trigonal 143, 237 [78] 
 

 

 

 
reference just based on the literature for all crystalline 

phases is difficult due to several effects [94]: (1) the 

positions of the Raman peaks in a particular spectrum 

should be compared always with the value of a particular 

phonon mode of a reference sample, in our case, the value 

of 521.0 cm-1 for the position of the Raman peak corre- 

sponding to the TO phonon mode in a Si bulk crystal; in the 

literature, the value of this phonon is not unique [95] which 

can lead to different calibrations; (2) intrinsic properties of 

the samples such as strain [96], grain size [97, 98], tem- 

perature at what the measurements are made [81] and 

crystal quality will shift accordingly the Raman peaks and 

(3) the local temperature will also shift the peak; the 

evaluation of this temperature requires the measurement of 

the Raman peaks in Stokes and anti-Stokes regions which 

is  not  commonly  performed  if  the  objective  of  the 

 
Estimation of Raman’s effective analysis 

depth in CZTSe 

 
A central question in the use of RS for phase identification 

is the origin of the Raman signal due to a finite penetration 

depth of the laser radiation, which is dependent on the 

wavelength used. For this discussion, the knowledge of the 

absorption coefficient (a) is fundamental. Several reports 

on the CZTSe coefficient of absorption can be found in the 

literature with very different values [58, 100, 101]. We 

believe that some of these reports have been influenced by 

secondary phases and therefore, instead of taking values 

from the literature, we decided to measure the absorption 

coefficient of a sample prepared by us, for which all 

measurements shown in this work confirmed to be single- 

phase CZTSe. The thickness is 1500 nm with ½Cu]=ð½Zn] þ 

½Sn]Þ ¼ 0:9 and ½Zn]=½Sn] ¼ 1:1. The sample was grown 

directly    on    SLG    to    allow    the    measurement    of 

(h) (f) (g) (e) 

(d) (b) (c) (a) 



 

(a) 

 

Fig. 2  a Absorption coefficient 

for CZTSe thin films grown on 

SLG. Bandgap energy 

estimation for CZTSe  b using 

Tauc’s method ðhmaÞ2 
versus 

hm; c using a2 versus hm. The red 

lines are the extrapolation for 

the estimation of the bandgap 

energy (Color figure online) 

 
 

 
 

 

 

  

 

 

 

 
 

 

 
transmittance. The absorption coefficient is calculated from 

transmittance (T) and reflectance (R) measurements using 

Eq. 1 [102]: 

Table 4  Estimated values for the Raman’s effective analysis depth 

and  laser  penetration  depth  for  PL  measurements  with  different 

excitation in CZTSe   
 

1    

2
-ð1 - RÞ

2 
þ 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 
ð1 - RÞ

4 
þ 4T2R2 

a ¼ -  ln ; ð1Þ 
d   

4 
2TR2

 5
 

Wavelength 

(nm) 

Absorption 

coefficient 

(cm-1) 

Raman effective 

analysis depth 

(nm) 

Laser penetration 

depth for PL 

(nm) 

 488 47287 106 212 

where d is the thickness of the sample. For a direct bandgap 514 46331 108 216 

semiconductor, Eq. 2 holds [102]: 633 45727 109 218 

a ¼ Aðhm - EgapÞ
1=2

; ð2Þ 
785 

1035 

38253 

22828 

131 

219 

262 

438 

where A is a constant, h is the Plank’s constant, m is the 

radiation frequency and Egap is the bandgap energy. The 

absorption coefficient is shown in Fig. 2a and is higher 

than 4:5 x 104 cm-1 for wavelength values  lower  than 

600 nm. One can estimate the bandgap energy using the 

conventional Tauc’s method, which is based on the linear 

fit of ðhm · aÞ
2 

versus hm, [103] or by using a linear fit of a2 

versus hm [102]. The two methods are presented in Fig. 2b, 

c, respectively, and give bandgap energy values of 1.08 and 

1.05 eV. For both, the estimated error is 0.08 eV and comes 

mostly from the energy region where the fit is done. The 

second method is intrinsically easier to be implemented 

since the region of interest, i.e. the band edge, is more 

clearly identified. Also, that method provides values closer 

to the ones in the literature [62]. 

Having estimated the absorption coefficient, one can 

now calculate the Raman effective analysis depth (da) for 

different excitation. For the back-scattering configuration 

[28], which is the most common setup, da � 1=ð2aÞ, where 

2 comes from the fact that the measured light has to pen- 

etrate the material, scatter and return to the surface. In 

essence, this value is a rough estimation of the thickness 

 
 

 

 

 
that one probes when performing RS on CZTSe films. The 

estimated values for the Raman effective analysis depth are 

shown in Table 4 and the effect of the wavelength in the 

scrutinized depth of the CZTS layer is schematically 

illustrated in Fig. 3. The numbers presented in the Table 

reveal what is, perhaps, the biggest limitation of this 

technique: for all of the excitation wavelengths shown and 

which are commonly accessible, the maximum thickness 

that one can probe is less than 200 nm. Higher excitation 

wavelength values would increase the thickness being 

probed but it makes the technique harder to be used due to 

the complexity of focusing, capturing the Raman signal in 

the infrared and the lower efficiency of RS too far from 

resonance conditions. In order to compensate for the small 

value of probing thickness, one could remove material 

from the surface by etching, sputtering [104] or other 

methods and performs the analysis at different depths, but 

this approach requires complex procedures or dedicated 

tools. Other possible solutions could be changing the focus 

(c) 

(b) 



 

 

Fig. 3  Scheme of the Raman 

and PL’s effective analysis 

depths for the laser wavelengths 

of 488, 514 and 1035 nm (Color 

figure online) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4  a PL spectrum of CTZSe 

at 70 K. The low-energy side of 

the broad band was fitted with 

Eq. 4. b and c show the 

dependence on the temperature 

of the peak energy and PL 

intensity, respectively. In b, a 

linear fit was performed in order 

to describe the average shift of 

the data. In c, the experimental 

points were fitted with Eq. 3 

(Color figure online) 

 

 
 

 

   
 

 
 

 

 

 
point of the excitation laser [105] or perform the mea- 

surement in the cross section or from the back part of the 

film [106]. Increasing the intensity of the excitation laser 

would make more photons to arrive at deeper thicknesses 

but the limitation is still there since absorption follows an 

exponential behaviour and most of the signal would still be 

from the top part of the layer. Some of the mentioned 

techniques have already been applied to CZTS [93, 107], 

but are still to be used with CZTSe. 

Photoluminescence studies 

 
PL evaluates the electronic level structure of the crystalline 

phase present in the sample and gives additional contri- 

butions to the discussion of occurrence of secondary pha- 

ses, namely if the estimation  of the bandgap energy is 

possible. Comparatively to RS, PL investigates a layer with 

double the thickness for the same wavelength (see Table 

4), thus giving information from a greater depth in the 

(b) (c) 

(a) 



 

 

sample [108]. Figure 4a depicts the PL spectrum measured 

at 70 K for the sample in which XRD and RS identified the 

presence of just the CZTSe phase. The emission is a broad 

asymmetric band in the range '"" 0.75–1.10 eV and centred 

at  '"" 0.94 eV. This shape of the emission was reported 
previously in chalcogenide semiconductors [109, 110] and 

the PL, contributing to the asymmetric shape of the emis- 

sion. In fact, the intensity of the emission in the low-energy 

side (ILEðhmÞ) of the emission follows the density of states 

of the valence band tail. The case of band-impurity type 

transitions, is given by [112]: 

CZTSe  mono-grains  [111],  and  it  is  characteristic  of 

electronic  transitions  occurring  in  semiconductors  with 

1    

ILEðhmÞ / 
c
 

  

exp  - 
ðEg - EI - hmÞ

2
!
 

 

2 c2 
; ð4Þ 

high concentrations of ionized defects. These defects form 

random clusters of donors or acceptors which then lead to 

electrostatic potential fluctuations and are responsible for 

the appearance of densities of states’ tails of the valence 

and conduction bands in the bandgap [112]. 

In order to discuss the origin of the radiative transitions 

observed in the sample, we studied the temperature 

dependence of the PL intensity. In spite of the low signal- 

to-noise ratio of the observed emission, as the temperature 

is increased from 70 to 288 K, we observed a red shift of 

6.2 meV according to the linear fit to the experimental 

points shown in Fig. 4b. This shift is compatible with the 

potential fluctuations model mentioned previously [112, 

113]. On the other hand, as the temperature was raised, we 

observed a decrease in the integrated PL intensity as a 

consequence of the thermal activation of non-radiative de- 

excitation channels. The experimental points in Fig. 4c are 

described by the equation for the temperature dependence 

of the PL intensity [114]: 

r 
E1 

\l-1 

where Eg is the band gap energy of the doped semicon- 

ductor, EI is the binding energy of the hole to the acceptor 

level and c describes the root mean square depth of the 

potential wells in the valence band. The fit of Eq. 4 to the 

range 0:80\E\0:91 eV of the low-energy side of the 

emission band is shown in Fig. 4a and gives the values of 

Eg - EI ¼ 0:973 ± 0:012 eV and c ¼ 0:088 ± 0:004 eV. In 

the literature, values in the range of 18–25 meV have been 

found for c in CZTSe and in the range of 55–65 meV in 

CZTSSe (with different ½S]=½Se] ratios) [80, 111, 115]. At 

this point, we must note that other dependencies of the 

intensity on the photon energy and c, corresponding to 

different types of radiative transitions involving charge 

carriers on the tails of both bands, the bands itself or 

acceptor states were tested, but no other acceptable fit was 

obtained due to the absence of physical meaning for the 

fitted parameters. Thus, we assume that the observed band 

corresponds to radiative recombinations of an electron in 

the conduction band and a hole in acceptor states influ- 

enced by the tail states of the valence band. Our results are 

IðTÞ ¼ I0  1 þ c1 exp  - 
kT

 
; ð3Þ in accordance with previous reports that pointed to the 

existence of fluctuating potentials in kesterites and chal- 

where I0 is the PL intensity at 0 K, c1 is a parameter pro- 

portional to the ratio between the degeneracy of an hypo- 

thetical discrete high energy level and the radiative one, 

and E1 is the energy difference between the two energy 

levels. Eq. 3 describes the thermal activation of a non- 

radiative recombination channel involving this discrete 

excited energy level. The fit is shown in Fig. 4c and the 

fitting parameters are I0 ¼ 0:00045 ± 0:00003, c1 ¼ 4 ± 1 

and E1 ¼ 29 ± 6 meV. This activation energy is lower than 

the energy needed to remove the carrier to the corre- 

sponding band [114]. Additionally, the low signal-to-noise 

ratio of the observed emission hindered the investigation of 

the excitation power dependence because the emission was 

measured with an excitation power of several tens of mW 

and with these high values of intensity, the temperature of 

the sample increases considerably. 

In spite of the occurrence of potential wells on both 

bands, it is often the case that due to the difference of the 

effective masses of both charge carriers, the wells in the 

valence band are able to bind holes whereas the wells in the 

conduction bands do not bind electrons. Thus, the density 

of states of the valence band tail has a higher influence on 

copirites [109, 110, 115–118]. Electrical measurements 

should be performed in order to discuss further the 

potential fluctuations model. 

The bandgap energy can be estimated taking into 

account the activation energy obtained from the fit of Eq. 4 

in Fig. 4c or from the spectroscopic energy (0.946 eV) of 

the maximum of intensity of the band. In the first case, Eg 

can be extracted if we know the binding energy of the hole 

to the radiative state, Eg ¼ EI þ 0:973 eV. In the second 

case, assuming a band-impurity transition, the difference 

from the bandgap energy to the spectroscopic energy cor- 

responds  to  the   sum   of   EI   with   the   value   of   c, 

Eg - EI ¼ hm þ c. In theory, we can calculate the binding 

energy of the hole from the dependence on the temperature 

of the PL intensity [114]. However, in our case, the only 

non-radiative de-excitation channel identified corresponds 

to the release of the hole to an excited discrete level and not 

to the valence band. Thus, the binding energy of the hole 

should be higher than the  obtained  activation  energy 

(29 ± 6 meV) for that channel. In spite of that, the latter 

value allows us to calculate a lower limit for the bandgap 

energy: Eg ¼ 1:002 and Eg ¼ 1:063 eV from the fit of 



 

 

Eq. 4 and from the spectroscopic energy, respectively. Both 

values are compatible with our estimates based on the 

absorption coefficient. 

Our PL results show that just one emission band was 

observed and that band is compatible with the presence of 

just a single crystalline phase, the CZTSe one, in the scru- 

tinized layer of the sample. From the list of secondary 

phases in Table 1, we see that for CTSe and SnSe phases, the 

bandgap energies are near the one of CZTSe which will 

locate the related PL approximately in the same spectro- 

scopic region as for CZTSe. No evidence was obtained from 

our PL results for the presence of any other phases, which is 

in accordance with the results from the comparison of XRD 

with RS. Other reports in the literature [111, 119] show PL 

emissions with several bands  which are created by  the 

influence of secondary phases, so it can be said that PL is an 

experimental technique that gives an important contribution 

to the discussion of the crystalline phases. 

 

 
Conclusions 

 
In summary, we report a set of results that help identifying 

the presence of secondary phases in CZTSe thin films. We 

highlight the importance of using RS and PL as comple- 

mentary phase-identification methods to XRD. 

In the presented literature survey, we explained in detail 

why XRD can be used to identify the presence of CZTSe 

but not for the identification of all secondary phases, such 

as ZnSe or CTSe. Several unwanted compounds that might 

form during the growth of CZTSe were individually grown 

and studied using RS. All the compounds were grown 

using a two-step approach based on sputtering and seleni- 

zation which is widely use for the growth of kesterites. All 

of the samples were characterized under the same condi- 

tions. The studied phases were CZTSe, ZnSe, CTSe, SnSe, 

SnSe2, a-Se, MoSe2 and Cu2-xSe. We presented the 

spectrum of each phase and summarized all the identified 

peaks. The possible uncertainties about comparing peak 

positions were reduced due to the growth and character- 

ization having been done in the same conditions. None of 

the phases have peaks which are superimposed upon the 

ones of CZTSe. 

To further understand how useful RS can be, we have 

estimated the effective Raman analysis depth and con- 

cluded that what is effectively probed is the top 200 nm of 

the layer. The effective PL probing depth, also estimated, is 

twice the RS analysis depth for the same wavelength. The 

PL measurements revealed an asymmetric band compatible 

with the CZTSe phase and confirmed the value for the 

bandgap energy estimated from absorption measurements. 

The nature of the radiative and non-radiative recombina- 

tion transitions was discussed considering the fluctuating 

potentials’ model. Transitions of the type band-impurity 

were identified. The value of c ¼ 0:088 ± 0:004 eV was 

obtained for the root mean square depth of the potentials’ 
wells in the valence band. 
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