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Abstract A strong mountain wave, observed over Central Europe on 12 January 2016, is simulated in

2D under two fixed background wind conditions representing opposite tidal phases. The aim of the

simulation is to investigate the breaking of the mountain wave and subsequent generation of nonprimary

waves in the upper atmosphere. The model results show that the mountain wave first breaks as it

approaches a mesospheric critical level creating turbulence on horizontal scales of 8–30 km. These

turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from

reaching the thermosphere by the tidal winds, which act like a filter. Initial secondary waves that can reach

the thermosphere range from 60 to 120 km in horizontal scale and are influenced by the scales of the

horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and

horizontal wavelength scales. Large-scale nonprimary waves dominate over the whole duration of the

simulation with horizontal scales of 107–300 km and periods of 11–22 minutes. The thermosphere winds

heavily influence the time-averaged spatial distribution of wave forcing in the thermosphere, which peaks

at 150 km altitude and occurs both westward and eastward of the source in the 2 UT background

simulation and primarily eastward of the source in the 7 UT background simulation. The forcing

amplitude is ∼2× that of the primary mountain wave breaking and dissipation. This suggests that

nonprimary waves play a significant role in gravity waves dynamics and improved understanding of the

thermospheric winds is crucial to understanding their forcing distribution.

1. Introduction

Gravity waves (GWs) play an important role in the transport of energy and momentum from the lower to

the middle and upper atmosphere (e.g., Fritts & Alexander, 2003; Garcia & Solomon, 1985; Holton, 1982;

Lindzen, 1981; Vadas et al., 2014; Yiğit &Medvedev, 2015). Through dissipationmechanisms such as viscos-

ity, critical level filtering, and wave breaking, waves can deposit their energy and momentum into the mean

state causing localized forcing of themeanwinds andheating/cooling of the atmosphere (Fritts &Alexander,

2003; Heale et al., 2018, 2014; Hickey et al., 2011; Holton, 1983; Holton & Alexander, 2000; Lund & Fritts,

2012; McFarlane, 1987; Vadas, 2007; Vadas et al., 2003; Vadas & Fritts, 2005). The influence of gravity wave

forcing contributes to atmospheric phenomena such as the quasi-biennial oscillation (QBO) (Alexander &

Holton, 1997; Baldwin et al., 2001; Dunkerton, 1997; Ern et al., 2014; Piani et al., 2000), the summer branch

of the Brewer-Dobson circulation (Alexander & Rosenlof, 2003; Stephan et al., 2016), and the cold summer

mesopause (Alexander & Rosenlof, 1996; Garcia & Solomon, 1985; Holton & Alexander, 2000).

One important source of gravity wave generation is via flow over topography (also known as orographic

or mountain waves) (Bacmeister, 1993; Dörnbrack et al., 1999; Durran & Klemp, 1987; McFarlane, 1987;

McLandress et al., 2012; Nastrom & Fritts, 1992; Smith, 1979). The lifting of surface level winds as it flows

over the terrain leads to the generation of quasi-stationarywaves (approximately zero relative groundperiod)

that propagate upwards into the atmosphere (Nappo, 2002). Hotspots for suchwaves exist overmountainous

regions of the world such as the South American Andes, the European alps and Scandinavian mountains,
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New Zealand, and Antarctica (Hoffmann et al., 2013) where the flow near the mountain tops are approx-

imately perpendicular to the mountain range. A unique feature of these mountain waves is that they can

only exist in the presence of a mean background wind. If the mountain wave encounters a region of zero

wind, the layer acts as a critical level and filters the wave into the mean flow (Booker & Bretherton, 1967).

In the summertime, winds switch between eastward and westward directions in the middle atmosphere;

thus, mountain waves tend to get filtered in the stratosphere. However, in the wintertime, the winds do not

typically reverse sign until the mesosphere, and thus, mountain waves can propagate up to these altitudes

and obtain larger amplitudes before being filtered. As such, mountain waves tend to dominate in the win-

tertime (Hoffmann et al., 2013). As themountain wave approaches the critical level, it is refracted to smaller

vertical scale. The smaller vertical scale, at large amplitudes, lead to large vertical gradients in the wind and

temperature structure of the wave, which can cause the mountain wave to break. The wave breaking creates

turbulence and generates secondary acoustic-gravity waves (Bacmeister & Schoeberl, 1989; Bossert et al.,

2017; Ehard et al., 2016; Heale et al., 2017; Satomura & Sato, 1999; Smith et al., 2013; Vadas et al., 2018).

Secondary gravity waves are categorized by twomechanisms: linear and nonlinear generation (furthermore

referred to as nonprimarywaves since the dissipation and newwave generation process can happenmultiple

times). The linear mechanism arises as a primary wave dissipates as a whole. The dissipation exerts a body

force on the mean flow at packet scale, which generates a spectra of nonprimary waves with larger scales

and longer periods than the primary wave. The theory for these waves is described in Vadas et al. (2003,

2018) and such waves have been identified over Antarctica via identifying characteristic fishbone patterns

in lidar data and simulation results. In contrast, the nonlinear mechanism is associated wave breaking and

the cascade to smaller scales (e.g., Achatz, 2007; Andreassen et al., 1994; Bacmeister & Schoeberl, 1989;

Dörnbrack, 1998; Franke & Robinson, 1999; Fritts et al., 2009; Horinouchi et al., 2002; Lund & Fritts, 2012;

Satomura & Sato, 1999; Snively & Pasko, 2003). The theory being that breaking produces localized forcing

at the turbulent scales and periods, which generate nonprimary gravity waves (Chun & Kim, 2008; Kim &

Chun, 2008; Song et al., 2003; Zhou et al., 2002). As such, these nonprimary waves are expected to have

scales and periods that are smaller than those of the primary breaking wave. There is debate, however, over

the dominance and importance of each mechanism.

TheDEEPWAVE campaign (e.g., Fritts et al., 2016) used coordinated observations andmodeling to study the

propagation of mountain waves over New Zealand from the ground to the thermosphere (e.g., Bramberger

et al., 2017; Bossert et al., 2015; Eckermann et al., 2016; Kaifler et al., 2017; Smith et al., 2016). The campaign

found that there was often a multiscale wave environment in the mesosphere within the phases of a larger

scale mountain wave (Bossert et al., 2015). Further studies suggested that the mountain wave would break

in the mesosphere, generating quasi-stationary eddy structures and propagating nonprimary waves. Obser-

vation techniques, such as airglow imaging, make it difficult to identify the difference between the turbulent

and nonprimary wave structures because it measures integrated values over a layer. However, turbulent and

wave structures were identified in height-dependent lidar data (Bossert et al., 2017; Heale et al., 2017). The

campaign revealed that mesospheric activity and wave breaking was present on days where surface wind

forcing was small. If the surface wind forcing was too large, the mountain wave would break in the strato-

sphere, due to having a large amplitude, and would dissipate before reaching the mesosphere (Ehard et al.,

2017; Fritts et al., 2018; Kaifler et al., 2015). Despite significant advancement, very little is still known about

the spectra and importance of nonprimary waves in the upper atmosphere. Most general circulationmodels

(GCMs) are hydrostatic and only resolve inertia gravity waves that have long periods and act in an incom-

pressible manner. Smaller wavelength, shorter period acoustic gravity waves (AGWs), which can require

compressible effects, have to be parameterized in these models (Kim et al., 2003). Nonprimary waves can

repopulate parts of the phase speed spectrum that have encountered a critical level below. Thus, we could

miss important physics that cannot be described by tropospheric sources. Therefore, their study remains an

important topic in advancing our understanding of the effects of GWs on the atmosphere as a whole.

In this paper, we use the time-dependent, fully nonlinear, high-resolution numerical model, known as

MAGIC (Model for Acoustic and Gravity wave Interactions in a Compressible atmosphere) (Snively, 2013;

Snively & Pasko, 2008; Zettergren & Snively, 2015) to simulate a mountain wave from the ground to 300-km

altitude, in 2D. The simulation is based upon a mountain wave observed over Central Europe on 12 Jan-

uary 2016. In particular, we focus on the nonlinearity, wave breaking, and nonprimary wave generation of

the mountain wave in the mesosphere and thermosphere regions of the atmosphere assuming two different

solar tidal phases.We aim to elucidate the couplingmechanisms and spectra of nonprimarywaves generated
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Figure 1. Observations and mesoscale modeling of a mountain wave over Europe on 12 January 2016 for (a) and (b) the AIRS and IFS temperature data at
z = 36-km altitude and (c) and (d) a zonal slice of T' along the red line in the stratosphere.

by the breaking mountain wave. The paper is structured as follows: Section 2 presents the observations and

mesoscale modeling of the mountain wave, section 3 presents the numerical model and simulation setup,

section 4 presents the results of the simulations, and section 5 serves as summary and conclusions.

2. ObservedMountainWave

A strong mountain wave was observed by the Atmospheric Infrared Sounder (AIRS) instrument (Aumann

et al., 2003) over Central Europe on 12 January 2016. A high-resolution temperature retrieval for this case

was obtained using the approach ofHoffmann andAlexander (2009). TheAIRS retrieval results at z = 36 km

are displayed in Figure 1a and show thewave predominately over the European alps between 5◦-10◦ east and

40◦-50◦ north with a horizontal wavelength of ∼230 km. A temperature cross-section, along the red line in

Figure 1a, is shown in Figure 1c. The retrieval yielded awave amplitude of 25K in the stratosphere and lower

mesosphere and a vertical wavelength of ∼20 km. One hourly operational analyses and short-term fore-

casts of the European Centre for Medium-Range Weather Forecasting (ECMWF) provided mesoscale and

large-scalemodeling results of the event. The integrated forecast system (IFS) of theECMWF is a globalNWP

model solving the hydrostatic primitive equations. The horizontal resolution of the IFS cycle used for this

study is about 9 km (Hólm et al., 2016; Malardel & Wedi, 2016). Ehard et al. (2018) analyzed ground-based

lidarmeasurements fromDecember 2015 and showed that the IFS data give reliable gravitywave amplitudes

up to about 40- to 50-km altitude. During the same period, the phase and location ofmountainwave-induced

polar stratospheric clouds above Svalbard was very well simulated (Dörnbrack et al., 2017).
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Temperature perturbations calculated in a similar manner as for AIRS observations found the presence of a

mountain wave with similar amplitudes and wavelengths to the AIRS observation (Figures 1c and 1d). Both

showed large temperature enhancements associated with the presence of the stratospheric jet stream to the

north of the mountain wave over the United Kingdom and Scandinavia. The IFS data suggest the jet stream

causes a refraction of the mountain wave phases from the north-south to the east-west direction, since the

horizontal wind is larger north of the wave event. The observation and modeling results, however, do not

capture the significant wave nonlinearity and breaking that would be expected from such a strong wave in

the Mesosphere and Lower Thermosphere (MLT) region. Therefore, the MAGIC model is used to simulate

themountain wave, along the red line (at 47◦ N), from the ground up to 300-km altitude in order to examine

the breaking processes and nonprimary wave generation associated with this mountain wave event in the

upper atmosphere.

3. Numerical Model

The numerical model, used for the simulations, is a 2D version of the time-dependent, high-resolution

numerical model, known as MAGIC (Snively, 2013; Snively & Pasko, 2008; Zettergren & Snively, 2015). The

numerical model solves the nonlinear, fully compressible Euler equations, with gravity as a balanced source

term, and Navier Stokes viscosity (Snively, 2013; Snively & Pasko, 2008). This is done using an adaptation of

the Clawpack routines (www.clawpack.org), which solve a hyperbolic system of equations using a finite vol-

ume approach (LeVeque, 2002; LeVeque & Berger, 2004). The model decomposes flux differences between

cell boundaries into characteristic “f-waves” (Bale et al., 2002), each of which propagate at characteristic

speeds. The model accounts for dissipation due to molecular viscosity and thermal conduction and solves

for these using a time-split method.

3.1. Wave Forcing and Simulation Domain

The mountain wave is excited using the simplified source used in Heale et al. (2017), which represents the

wave as a vertical body forcing with a fixed horizontal phase. Tests were run using a topographic source,

but low frequency modes with long horizontal wavelengths were generated that interfered with the side

boundary and did not contribute to the solution in the upper atmosphere (our region of interest). Therefore,

the simplified source was used. The vertical body forcing is specified as follows:

F(x, z, t) = A · � · cos[k(x − xc)] · exp

[

−
(z − zc)

2

2�2
z

−
(x − xc)

2

2�2
x

−
(t − tc)

2

2�2t

]

, (1)

where A = 0.1m/s2, � is the density, k is the horizontal wavenumber (2�/230 km), zc = 10 km, �z = 3 km,

xc = 1, 500 km, �x = 230 km, tc = 6 hr, and �t = 1.5 hr. The vertical half-width is chosen to be large enough to

generate a coherent gravity wave and not so large that the ambient atmospheric conditions vary too rapidly

over that scale. The temporal half-width is chosen to ramp the wave up slowly enough that the forcing does

not produce large transients. The horizontal wavelength was chosen from the wavelength measured in the

AIRS image (230 km). It is noted that IFS applies a sponge layer that artificially decreases amplitudes above

∼40-km altitude. In addition, the AIRS retrieval algorithm uses a series of weighting functions at different

altitudes (Hoffmann & Alexander, 2009), which also underestimate amplitudes, especially above ∼50 km

and for waves with short vertical wavelengths. As such, the forcing amplitude was chosen to best match the

AIRS and IFS amplitudes in the stratosphere at 40 km where we have more confidence in their accuracy.

The simulation domain was chosen to represent a zonal slice at a latitude of 47◦ north, corresponding to

the strongest portion of the wave in Figure 1. The horizontal domain is 3,000 km in zonal extent with a

horizontal resolution of 1 km. The vertical domain ranges from the ground to 300-km altitude with 250-m

resolution. The simulation was run for 9 hr, with frames output every 2.5 min. The side and top boundary

conditions are open, the bottomboundary is closed (reflective), and a sponge layer is applied to the top 30 km

of the domain.

3.2. Background Atmosphere

The simulation requires a fixed background ambient atmosphere for the excited mountain wave to propa-

gate through. However, the tidal phase would change significantly over the 9-hr period of the simulation.

Therefore, two simulations are run with opposing tidal phases to ascertain some of the differences that

would arise from the changing tide that is not captured in the model. The two simulations are named the

2 UT and 7 UT simulations as these represent the times at which the background atmospheric profile was

chosen. The atmospheric background zonal winds and temperatures are obtained from the IFS atmospheric
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Figure 2. (a) Zonal wind profiles used as background atmospheric conditions for the 2 UT and 7 UT simulations and (b) the Collm Meteor Radar data (m/s) for
12 January 2016.

states for z = 0–60 km altitude. The meteor radar at Collm, Germany (51.30◦ N, 13.02◦ E) (Jacobi, 2012;

Stober et al., 2017), was used to represent the winds between 70 and 100 km and captures the tidal phases

(Stober et al., 2018), and the HWM07 model (Drob et al., 2008) was used for the winds above 100 km and

between 60 and 70 km. The temperature and densities were taken from NRLMSISE-00 model (Picone et al.,

2002). The zonal wind profiles for the 2 UT and 7 UT simulations are shown in Figure 2a, with the Collm

meteor radar (MR) winds shown in Figure 2b.

Figure 2a indicates that the lower atmospheric winds (0–60 km) show little variation between 2 and 7 UT

but have opposing tidal phases between 70- and 100-km altitude (westward at 2 UT and eastward at 7 UT).

The eastward tide in the 7 UT simulation has a larger magnitude than the westward tide at 2 UT by ∼20

m/s. The thermospheric winds are also significantly different at 2 and 7 UT with the winds predominantly

eastward at 2 UT (peaking at 210-km altitude) and westward at 7 UT (peaking at 160-km altitude).

4. Effects of AtmosphericWind and Temperature onWaves

In order to understand the discussion in the results section, a brief description of the effects of winds and

temperature structure on waves is presented here. Horizontal winds and temperature structure that vary in

altitude refract a wave by changing the vertical wavelength. If the wind increases in the direction of wave

propagation, then the wave's vertical wavelength is decreased and the wave's trajectory becomes more hor-

izontal; a positive temperature gradient with altitude will have the same effect. If the wind increases in the

opposite direction of the wave propagation, the vertical wavelength is increased and the wave's trajectory

becomes more vertical; a negative temperature gradient with altitude will have the same effect. If the wind

is in the same direction as the wave and increases to the point where its magnitude matches the horizontal

phase speed of a wave, the vertical wavelength approaches zero and the wave is absorbed into themean flow

(a critical level). Often times, if thewave is of sufficient amplitude, the refraction to small vertical scales leads

to large vertical shears in the wave itself, which can cause the wave to break as it approaches a critical level.

If the winds and temperature structures vary such that the wave's intrinsic frequency becomes equal to the

local buoyancy frequency, then the wave will undergo partial or total reflection. The region above the reflec-

tion layer is known as an evanescent region (region where the buoyancy period exceeds the wave period),

where the wave solution decays exponentially with altitude. However, with sufficient amplitude, the wave

can tunnel through the evanescent layer and continue propagating above the upper edge of the layer. In the

context of these simulations, the strong tidal winds can act as a critical or evanescent layer for certain wave

modes, depending upon the wave parameters and their direction of propagation. Therefore, the tidal phase

shown in Figure 2b has the ability to control the spectrum of waves that can propagate into the upper regions

of the thermosphere.
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Figure 3. Comparison of the zonal-altitude slices for the (a) IFS, (b) MAGIC, and (c) AIRS temperature perturbations in the stratosphere (K).

5. Results
5.1. Comparison with AIRS and IFS

Figure 3 shows a comparison of the zonal-altitude slice at 47◦ north in the AIRS observation, MAGIC simu-

lation, and the IFS. TheMAGICmodel (Figure 3b), evenwith the simplified source, captures the amplitudes

and vertical phase structure of the mountain wave well when compared with Figures 3a and 3c . As pre-

viously noted, the MAGIC amplitudes were chosen so that they match well with IFS and AIRS at 40-km

altitude. Above this altitude, the IFS and AIRS results may underestimate the true amplitude of the wave

due to sponge layer damping and larger uncertainties in the retrieval algorithms, respectively. However,

tests with MAGIC suggest that the wave is already close to saturation at the amplitude shown in Figure 3b.

Increasing the amplitude of the forcing even more will lead to increased linearities and harmonic genera-

tion but will not impact the primary wave amplitudes much. Making this comparison gives us confidence

(1) in using the simplified source and (2) that the results in the MLT are a fair representation of the actual

dynamics that would occur in 2D. Note that amplitudes and breaking dynamics would be different in 3D

and will be examined in a future paper.

5.2. Wave Evolution

Figure 4 shows the temperature perturbation field, for both the 2 UT (a-c) and 7 UT (d-f) simulations, at

t = 5.83, 6.6, and 7.5 hr into the simulation . At t = 5.83 hr (panels a and d), the mountain wave can be seen

clearly in the lower and middle atmosphere but does not propagate above the red dotted line, which rep-

resents the lowest altitude that the zonal wind crosses zero. The point where the zonal wind (represented

by the blue line in Figure 4) crosses zero is a critical level for mountain waves (since a stationary mountain

wave possesses a zero ground-relative phase speed). As the mountain wave approaches the critical level,

the decreasing wind causes the vertical wavelength of the wave to decrease in tandem. The decreased ver-

tical wavelength leads to larger vertical gradients in the wave fields, which can cause a wave to break as it

approaches the critical level. Since the lowest critical level exists at 80 km for the 2 UT simulation and 73

km in the 7 UT simulation, the mountain wave can propagate higher before it is likely to break in the 2 UT

case. It also means that the horizontal phase structure is different at the altitude the wave breaks in the 2

and 7 UT cases.

At t = 6.6 hr (Figures 4b and 4e), the mountain wave breaks into smaller structure above ∼60 km as it

approaches the critical level (indicated by the red dotted line) and the vertical gradients in the wave become

large enough to cause instability. Due to the phase progression between the different breaking altitudes in the

2 and 7UT simulations, themountainwave breaks along twowavefronts in the 2UT simulation (Figures 4b),

and threewave fronts in the 7UT simulation (Figures 4e). The breaking ismost prominent in thewarmphase

of the wave as instability conditions are more likely to be met here (see Heale et al., 2017 for more details).

Nonstationary nonprimary waves are present above ∼100-km altitude in both Figures 4b and 4e (see the

supporting information for themovie), generated by the breaking of themountainwave. In Figures 4b, there

are two very distinct packets of nonprimary waves at 368◦ and 372◦ longitude that are propagating eastward.

In Figures 4e, there is one, broader, region of nonprimary waves spanning ∼368◦-371◦, which propagate in

both eastward and westward directions. The strong wind associated with the tide at 90-km altitude can act

to critical level filter waves propagating in the direction of the wind (or lead to significantly slower wave
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Figure 4. Temperature perturbation field at t = 5.83, 6.6, and 7.5 hr for the (a,b,c) 2 UT simulation and (d,e,f) 7 UT simulation. The horizontal red dotted line
represents the lowest critical level the mountain wave encounters and the blue line represents the structure of the zonal wind.

modes) and can cause reflection and evanescence of waves propagating against the wind (leading to rapidly

decaying vertical aligned phase fronts). Either way, the amplitudes are diminished in this region as a result.

Thus, the tidal wind acts as a filter, controlling which nonprimary waves can propagate from the breaking

region to the thermosphere as noted previously by Becker and Vadas (2018). It is noted, however, that the

wind is time invariant in these simulations and that hard critical levels and turning point levels become

more transient when time dependence is included (e.g., Broutman & Young, 1986; Eckermann, 1997; Heale

& Snively, 2015; Senf & Achatz, 2011).
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Figure 5. Blocking diagram showing the wavelength-period combinations for AGWs, which are freely propagating, critical level filtered, or evanescent at 90-km
altitude where the tidal wind is strongest. The 2 UT simulation blocking diagram is shown on the left and the 7 UT on the right.

At t = 7.5 hr (Figures 4c and 4f), nonprimary waves, at a range of scales, are dominant in the thermosphere

(above 100 km) with amplitudes of up to 250 K. The initial nonprimary waves, seen in Figures 4b and 4e,

undergo further breaking and turbulence particularly at ∼130-km altitude leading to further wave genera-

tion. Vadas and Becker (2019) show a similar scenario in their GCM simulations of mountain wave breaking

over the Andes. They find that primary mountain waves breaking between 60 and 80 km that generates sec-

ondary waves that are then dissipated around 110-km altitude generate a further body force and produce

tertiary waves. However, the scales are very different in their study. In this study, we use the generic term

nonprimary to refer to any wave that is not the primary mountain wave so we do not have to keep count

of the level of wave generation (secondary, tertiary, etc.). The differences in thermospheric wind in the 2

and 7 UT simulations cause noticeable differences in the nonprimary wave dynamics in this region. In the

2 UT simulation (Figures 4c), waves propagate both eastward and westward, with the eastward propagating

waves prone to breaking, while the westward propagating waves propagate more freely. In the 7 UT sim-

ulation (Figures 4f), westward propagating waves are severely filtered or damped by the strong westward

wind, leaving the eastward propagating waves to possess the largest amplitudes. This shows the importance

of understanding the nature of the thermospheric wind in determining the propagation and dissipation of

nonprimary waves in this region. Please see the supporting information for movies showing the evolution

of the two wave fields.

5.3. Tidal Filtering

Figure 5 shows a diagramof the horizontalwavelength and period combinations ofAGWs thatwill be critical

level filtered, evanescent, or freely propagating at 90-km altitude where the tidal wind is at its maximum

amplitude. The primary mountain wave breaking occurs below this altitude and the non-primary waves are

dominant above. The tidal wind then acts as a filter to allow certainmodes to propagate from themesosphere

up into the thermosphere. For the 2 UT simulation, the tidal wind peaks at a westward amplitude of 65 m/s

while it peaks at an eastward amplitude of 85m/s for the 7UT simulation. Thus,waveswith horizontal phase

speeds less than these respective winds will be critical level filtered (for waves propagating in the direction

of the wind). For waves propagating against the wind, all wavelengths shorter than ∼40 km are likely to be

evanescent. It can be seen from Figure 5 that there are a broader range of waves that can freely propagate

against the tide than with it and that a broader range of scales can propagate in the 2 UT case than the 7

UT case.

5.4. Association Between Initial Wave Breaking, Wave Forcing, and NonprimaryWaves

In this subsection, we explore the connection between the breaking scales of the wave, the localized forcing

created by momentum deposition associated with the breaking, and the generation of nonprimary waves.

In particular, we look at the onset of breaking and the initial nonprimary waves that are created. In order

to analyze the localized forcing, we calculate the horizontal and vertical forcing as defined in Zhou et al.
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Figure 6. The temperature perturbation (K) (b,c), horizontal forcing term (Fu(m∕s2)) (e,f), and vertical forcing term (Fw(m∕s2)) (i,j) at t = 6.58 and 6.75 hr for
the 2 UT simulation. The left hand panel shows a wavelet transform of (a) the temperature at z = 120 km, highlighting the propagating nonprimary wave
scales, (d) the horizontal forcing scales averaged from 60 to 80 km, and (h) the vertical forcing scales averaged from 60 to 80 km.

(2002) and also used in Chun and Kim (2008).
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�z
(�0[w

′2 − w′]). (3)

It is noted, however, that Chun and Kim (2008) states “these terms do not solely represent the momentum

due to breaking of the primary waves. Rather, it represents simply a nonlinear forcing for the linear gravity

waves. The magnitude of the nonlinear forcing is directly related to the magnitude of the perturbations that

represents waves, thus they are not completely separable.”

Figures 6 and 7 show the temperature perturbations at t = 6.58 and 6.75 hr and the corresponding horizontal

and vertical forcing at each of those times for the 2 UT and 7 UT simulations, respectively. AMorlet wavelet

transform (Torrence & Compo, 1998) is used to examine the spatial spectrum of the temperature at z =

120 km in panel a (representing the initial nonprimary waves) and of the horizontal and vertical forcing

from 60- to 80-km altitude in panels d and h (the spectrum is averaged over this altitude and represents the

primary wave breaking region).

Figures 6b and 6c show that wave breaking occurs between 60- and 80-km altitude and ismost visible within

thewarm fronts of thewave in the 2UT simulation. The horizontal scales of the turbulent eddies in Figure 6b

HEALE ET AL. 9 of 18



Journal of Geophysical Research: Atmospheres 10.1029/2019JD031662

Figure 7. The temperature perturbation (K) (b,c), horizontal forcing term (Fu(m∕s2)) (e,f), and vertical forcing term (Fw(m∕s2)) (i,j) at t = 6.58 and 6.75 hr for
the 7 UT simulation. The left hand panel shows a wavelet transform of (a) the temperature at z = 120 km, highlighting the propagating nonprimary wave
scales, (d) the horizontal forcing scales averaged from 60 to 80 km, and (h) the vertical forcing scales averaged from 60 to 80 km.

range from 8 and 15 km and occur along two of the mountain wave phase fronts. Nonprimary waves can

clearly been seen, just above the lowest red dotted line in panels b and c, emanating from the breaking region

at those same eddy scales. However, nonprimarywaves at these scales cannot propagate above the tidal wind

at 90-km altitude due to critical level filtering or reflection (depending upon the propagation direction).

There are two distinct regions of nonprimary waves that propagate (eastward) beyond the tidal winds at

90 km into the thermosphere, which originate fromeach of the two breaking phase fronts (located at x∼1,350

and 1,550 km in Figures 6b and 6c). The most western packet of nonprimary waves (at x = 1, 300–1,400 km

in Figures 6b and 6c) has a dominant horizontal scale of 60 km at 120-km altitude (as labeled in Figure 6a)

and are evanescent while propagating through the tidal wind field but tunnel through this region and can

emerge above leading to both eastward and westward propagating waves. The eastern packet of nonprimary

waves (x = 1, 600–1,700 km in Figures 6b and 6c) have a broader range of horizontal scales from 50 to

180 km, with peak power at 90 km (also labeled Figure 6a).

The second row of Figure 6 shows the horizontal forcing (Fu, panels e and f) and its wavelet spectrum

averaged over 60- to 80-km altitude (panel d). Three dominant horizontal forcing scales arise at 15, 110, and

215 km in panel d. The 15-km horizontal forcing in Figure 6d corresponds to the prominent eddy scales

seen in Figures 6b and 6c and produces nonprimary waves that are filtered by the tide. The 110-km forcing

in Figure 6d corresponds to the horizontal width of one of the breaking phase fronts (labeled in panel e),

while the 215-km scale, in Figure 6d, corresponds to the distance between the two breaking mountain wave

phase fronts (also labeled in panel e). Weak horizontal forcing is also present in the westward winds in the
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thermosphere (for eastward propagating waves), due to evanescent decay of the wave and due to nonlinear

forcing in the regions above 110-km altitude. It is noted that the apparent forcing in the evanescent is not

a body forcing as would occur for wave dissipation by viscosity/conduction or a forcing as produced by

breaking. Rather, the apparent vertical momentum flux divergence is associated with the exponential decay

that occurs in an evanescent region. The 110-km scale forcing, in Figure 6e, leads to the approximate packet

scale of each of the two nonprimary wave regions in panel b and the 215-km scale produces the spacing

between these two nonprimary wave regions.

The third row of Figure 6 shows the vertical forcing (Fw, panels i and j) and its wavelet spectrum averaged

over 60- to 80-km altitude (panel h). The dominant scale of this forcing labeled in panel i, at 8 km, is much

smaller than the horizontal forcing in panel e. This 8-km scale forcing clearly couples to nonprimary gravity

waves (Figure 6b at x = 1, 550 km, z = 80 km); however, these waves cannot propagate above the strong tidal

wind at 90-km altitude. Thewavelet spectra (panel h) also shows power at 40- to 90- (peaking at 60 km), 120-,

and 240-kmhorizontal scales. The 40- to 90-kmhorizontal scale arises from thewidths of the vertical forcing

within one breaking mountain wave front and the larger scales arise from the forcing associated with the

breaking between two mountain wave phase fronts (labeled in panel i). The 60- to 90-km horizontal scales

of vertical forcing in panel i correspond to the dominant nonprimary waves seen propagating at 120-km

altitude in panels b and c. The evidence in this figure, while showing correlation rather than causation,

suggests that the horizontal forcing contributes to packet scales of the nonprimary waves, while the vertical

forcing helps govern the horizontal wavelength of the propagating waves shortly after the onset of breaking.

Figure 7a shows significant nonprimary wave power at horizontal scales between 60 and 120 km. These

scales are similar to those observed in Figure 6a; however, the nonprimary wave regions are not as distinct

and propagate in both eastward and westward directions. As mentioned previously, three phase fronts can

be seen breaking in panel b of the 7 UT case as opposed to two in panel b of the 2 UT case. As with the 2 UT

case, the smallest scales of breaking generate waves that are filtered or reflected by the tidal wind.

In the second row of Figure 7 (horizontal forcing), notable scales of horizontal forcing are seen at 15, 30, 65,

110, and 215 km in panel d. The 15-, 110-, and 215-kmmodes are the same as those seen in the 2 UT case and

are defined by the breaking scales, mountain wave phase front scale, and mountain wave horizontal scale,

respectively. However, the 30- to 65-km scales in panel d are not present in the 2 UT simulation and appear

to arise from a larger overturning region formed between two vertical phases of the wave in the middle of

the domain (labeled in panel b). The 60- to 65-km scale transfers into nonprimary propagating waves that

are dominant at 120-km altitude in panels b and c, while the 30-km mode is filtered.

Figure 7h (vertical forcing) displays prominent scales of 8 and 30 km with a weaker mode at 50–60 km and

a continuum of scales from 100 to 250 km (with relative peaks at 120 and 150 km). The 8- and 30-kmmodes

are filtered or evanescent over the region dominated by the tidal wind at 90-km altitude. The larger scale

modes, particularly at 60 and 120 km, appear to couple efficiently in to propagating nonprimary waves (seen

at z = 120 km in panel c) at these early onset breaking stages and are defined by thewidths of vertical forcing

within one breaking mountain wave phase front.

Since Figures 6 and 7 show the early stages of breaking, and most phase lines can be traced to the source

region, it is suggested that most of the waves seen here are nonprimary waves connected to the initial moun-

tain wave breaking. However, some waves emerge above 100-km altitude, with both westward and eastward

propagation directions, that have no direct phase lines connected to the source region. The presence of

evanescence and tunneling in both the 2UT and 7UT cases complicates the connection between the waves

generated by the breaking of the mountain wave and the propagating nonprimary waves in the upper ther-

mosphere. Thewestward and eastwardwaves could simply be the emergence of “waves” that tunnel through

the evanescent region and continue to propagate according to the local wind and shear as they emerge. How-

ever, it could also be the case that some of the waves are generated by further wave dissipation as described

by Vadas and Becker (2019). In this mechanism, initial nonprimary waves are further dissipated or break

(between 80 and 130 km, peaking at 110 km in their study), which generates body forces that produce further

waves. This mechanism can continuemultiple times producing additional nonprimary waves. It is certainly

the case that the further breaking of nonprimary waves occurs at later times, as seen in Figures 4c and 4f

between 100- and 150-km altitude. It is unclear how much this mechanism contributes to the propagating

nonprimary waves versus those that tunnel through the evanescent layer or from direct propagation.
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Figure 8. Fourier transform of the temperature perturbation for (a-d) the 2 UT simulation and (e-i) the 7 UT simulation at 60-80 (averaged), 100, 130, and 150
km altitude.

5.5. NonprimaryWave Spectra

In the previous subsection, the breaking scales, resulting forces, and coupling to the initial nonprimarywave

scales was examined. In this subsection, the periods and scales of the waves are examined over the entire

duration and domain of the simulation. As such, these spectra contain the mountain wave, and all nonpri-

mary waves. Figure 8 shows the Fourier transform of the temperature perturbation at 60- to 80- (averaged),

100-, 130-, and 150-km altitude for both the 2 UT and 7 UT simulations.

Figures 8a and 8e show the scales and periods of the waves associated with the primary mountain wave

and those generated by its breaking and nonlinearity. With the exception of power at the zeroth order, the

strongest mode is the mountain wave (230 km, 0 period). The small-scale breaking scales (8–30 km) that are

seen below the first red dotted line in Figures 6b and 7b are present in the spectra in Figures 8a and 8e but

are not particularly strong relative to the mountain wave. Waves generated at these scales and periods have

very slow phase speeds (∼10 m/s), which is why they are easily filtered out by the tidal winds and do not

appear in the spectra at 100-, 130-, or 150-km altitude.

In the 2UT simulation, three distinct regions of wave power are observed over the 60- to 80-km altitude

region, in Figure 8a, which are centered at 150 km and 31 min (propagating westward), 125 km and 16 min,

and 91 km and 14.5 min (propagating eastward). At 100-km altitude, in Figure 8b (above the strong tidal

wind phase), there are still three distinct modal regions, but the central wavelength and periods change to

230 km and 23.5 min (westward propagating), 136 km and 16 min, and 83 km and 11.5 min (eastward prop-

agating), respectively. The 136-km and 16-min period dominant mode seen in Figure 8b can be correlated

to a corresponding mode in Figure 8a, at z = 60–80 km (centered at 125 km and 16 min), but it is difficult

to draw any strong conclusions between the relationship of the other regions other than they share similar

periods. The central wavelength and periods change again at both 130 and 150 km, in Figures 8c and 8d,

respectively, but the following general trends are true: The eastward mode has the strongest spectral ampli-

tude, there are two distinctmodal regions eastward and onewestward, the spectra becomesmore bandwidth

limited in wavelength, but more diffuse in period, as the altitude increases. This occurs because the increas-

ing viscositywith altitude preferentially damps smaller scales and “smooths”wavemodes to remove discrete

turbulent-like features. The phase speeds in the thermosphere are in the 150–250 m/s range.

In the 7 UT simulation case, over the 60- to 80-km altitude region (Figure 8e), there is one dominant west-

ward propagating mode (166 km and 31 min) and one dominant eastward propagating mode (230 km,

18.7 min) with two weaker modes present as well (142 km, 17.4 min, westward; and 107 km, 12 min, east-

ward). Unlike in the 2 UT case, the spectral periods at z = 100 (Figure 8f), 130 (Figure 8g), and 150 km

(Figure 8h) correspond fairly well to the spectral periods over 60–80 km (Figure 8e). A strong case could be
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made that the nonprimary wave modes seen in the thermosphere are a direct result of the modes arising

from the breaking and nonlinearity of the mountain wave in the mesosphere.

However, the situation is complicated by the fact that there is more than one level of breaking as can be

seen in Figures 4c and 4f. Therefore, waves in the upper atmosphere could be generated by multiple levels

of breaking and new wave production (Vadas & Becker, 2019). It is difficult to trace the origins of spectral

components in the thermosphere directly to regions in the primary wave vicinity. In addition, the strongest

wave modes at z = 150 km have a horizontal scale larger than the primary wave (300 km) in both the 2

UT and 7 UT simulations. Theory suggests that wave breaking produces scales and periods that are smaller

and faster than the primary wave mode (Kim & Chun, 2008), while packet scale dissipation (for a single

packet) creates body forces that produce waves with larger scales and longer periods than the primary wave

(Vadas et al., 2018). The latter mechanism is better suited to explaining the large wave scales dominant at

150-km altitude; however, the periods are 16 and 22 min, respectively, which are much much shorter than

the quasi-stationary primary mountain wave. Vadas and Becker (2019) a found that the dissipation of inter-

secting wave packets can lead to constructive and destructive forcing that generates waves with horizontal

wavelengths smaller than the initial packet. It is also noted that very localized forcings (in either space or

time) can produce a broad spectra of waves (Heale et al., 2014, 2018), a prominent example of which are

convective forcings from individual thunderstorm plumes (Alexander & Holton, 2004; Beres, 2004; Lane

et al., 2001). Therefore, localized forcings, such as those that arise from the small breaking scales or con-

structive/destructive interference of several wave packets, could credibly produce a broad spectra of waves

with high temporal variability. This result was also found in Vadas and Crowley (2010) and could explain

the relatively short periods of the large scale waves at z = 150 km.

5.6. Spatial Distribution ofWave Forcing

In this subsection, the time-averaged forcing magnitude is analyzed for both the 2 UT and 7 UT cases. The

quantity analyzed is Ft =
√

F2
u
+ F2

w
. where the overline represents the time average over the entire simula-

tion. The time-averaged forcing magnitudes are presented in Figure 9. The first thing to note is that there is

a huge difference between the distribution of wave forcing in the thermosphere in the 2 UT and 7 UT simu-

lations. Second, the strongest forcing arises from nonprimary waves that are currently not accounted for in

GCMs. This suggests that wave forcing in theMLT and thermosphere are likely significantly underestimated

in these models over mountains (Vadas et al., 2019).

In the 2 UT simulation (Figure 9a), the wave forcing is distributed over a fairly broad area in the thermo-

sphere, ranging from 360◦ to 380◦ longitude and 100- to 220-km altitude. There are three distinct regions of

strong forcing, one is westward of the source and peaks at 150-km altitude and 363◦ longitude; the other two

are eastward of the source with peaks at 130- and 150-km altitude and 372◦ and 375◦ longitude. In compari-

son, the 7UT simulation (Figure 9b) only displays a region of strong forcing eastward of the source at 150-km

and 375◦ longitude. This difference can be attributed to the differences in the thermospheric wind in both

simulations. The strong westward thermospheric wind (which peaks at approximately −90m/s at 160-km

altitude) in Figure 9b acts to filter and refract westward propagating waves to smaller vertical scales, which

increases the rate at which they are dissipated. Therefore, the westward propagating waves that are present

in the 2 UT simulation are removed by filtering and dissipation in the 7 UT simulation. This effect is clearly

visible in Figure 4f, the westward nonprimary waves are breaking at ∼130-km altitude where the westward

zonal shear is maximized and are reduced to small scales, which are readily dissipated. The eastward waves

have much larger vertical scale, can propagate to higher altitudes, and as such obtain larger amplitudes

before dissipating. In contrast, the eastward waves in Figure 4c are breaking and have smaller vertical scales

than the westward waves due to the wind shear being eastward above ∼130-km altitude. The differences in

the eastward forcing in the 2 UT and 7 UT simulations can be attributed to the tidal wind phase at 90-km

altitude acting to filter the range of nonprimary waves that can propagate up into the thermosphere. The

phase of the 2 UT simulation tide is westward and of smaller magnitude than in the 7 UT simulation. As

such, a greater range of eastward propagating nonprimary waves can propagate from the mountain wave

breaking region up into the thermosphere in the 2 UT simulation than in the 7 UT simulation where they

are filtered by the strong eastward tide.

Figure 9 shows the importance of the tidal phase and thermospheric wind dynamics in governing the wave

forcing due to nonprimary waves in the thermosphere. While the primary mountain wave also produces
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Figure 9. The time-averaged magnitude of the wave forcing for the (a) 2 UT and the (b) 7 UT simulation.

a wave forcing in both simulations, the time averaged amplitude is half that of the peak forcing due to

nonprimary waves in the thermosphere.

6. Summary and Conclusions

In this study, we simulated a strong, persistent mountain wave observed over northern Europe on 12

January 2016 using the MAGIC model in 2D. Two simulations were run with fixed background zonal wind

structure taken at 2 and 7 UT, respectively, and representing opposing tidal phases. The aim of the study

was to investigate the nature of the mountain wave breaking, dissipation, and nonprimary wave generation

in the mesosphere and thermosphere with different background wind conditions. The simulations showed

breaking of the mountain wave as it approaches a critical level in the mesosphere, which generated a broad

range of nonprimary waves that propagated both eastward and westward. The dominant turbulent hori-

zontal scales produced by the breaking mountain wave were between 8 and 30 km, with larger forcing

scales defined by the approximate width of the each phase of the mountain wave (∼110–150 km) and the
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spacing between horizontal phases (∼215–250 km). The dominant turbulent scales couple directly to hori-

zontal scales of propagating nonprimary waves; however, these waves are critical level filtered (or rendered

evanescent, depending upon direction of propagation) by the strong tidal wind at 90-km altitude and do

not propagate up into the thermosphere. The tidal phase and amplitude acts like a filter and controls the

spectra of nonprimary waves that can propagate up into the thermosphere. It is noted, however, that if the

background winds were time dependent, the amount of critical level filtering and evanescence would likely

be reduced. This will be investigated in future studies. The initial nonprimary waves that propagate up into

the thermosphere (above 100 km) have horizontal scales between 60 and 120 kmwith the wave scales influ-

enced by both the horizontal and vertical forcing scales. Over the course of the simulation, the nonprimary

waves that are most dominant at 150-km altitude have distinct scales at 107, 170–190, and 300 kmwith peri-

ods of 11–12, 14–16, and 16–22min, respectively. The phase speeds range from 140 to 318m/s. It is also noted

that the term nonprimary wave is more appropriate than nonprimary wave, since the waves break more

than once generating a cascade of scales and periods. The time-averaged wave forcing magnitude resulting

from nonprimary wave dissipation and nonlinearity in thermosphere is significant (∼2× the forcing from

the dissipating primary wave) and peaks between 130- and 150-km altitude. The spatial distribution of wave

forcing is heavily influenced by the thermospheric winds. In the 2 UT simulation, wave forcing is strong

both eastward and westward of the source and the distribution is broadly spaced as a result of the weaker

thermospheric winds between 100- and 150-km altitude. In the 7 UT simulation, strong westward winds

and shears lead to filtering, breaking, and dissipation of the westward propagating wind leaving a relatively

localized region of strong forcing eastward of the source. Understanding the thermospheric wind dynamics

will be crucial to determining the forcing generated by nonprimary waves in the upper atmosphere. Non-

primary waves can contribute significantly to the wave forcing of the upper atmosphere and are currently

unaccounted for in the GCM parameterizations. While beyond the scope of this paper, downward propagat-

ing nonprimary waves can also reduce the momentum flux in the mesosphere and stratosphere (Chun &

Kim, 2008). Taking these processes into account will be crucial to producingmore realistic atmospheric forc-

ing predictions from gravity waves in both the middle and upper atmosphere. Further studies will include

the time dependence of the tides and extend these studies to 3D.
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