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INTRODUCTION

Worldwide, an estimated 2.5 million people live 
with spinal cord injury (SCI), with more than 130 000 
new injuries reported annually (Thuret et al. 2006). 
Spinal cord injury (SCI) is one of the most debilitating 
pathologies, leading to huge rehabilitation challenges 
(Campagnolo et al. 2000, Wu and Ren 2009). SCI is 
not only debilitating to the affected individual but also 
drastically impinge on quality of life of an affected 
family. The cost of a SCI is enormous emotionally, 
socially and financially. Treatment, including acute-
care hospitalization and rehabilitation, as well as life-
time medical costs and lost earnings is in the range of 
ten million US dollars (Fehlings and Nguyen 2010). 
The cost of enrollment in a clinical trial is currently 

$50 000 to $100 000 per person in the United States 
and Europe, and the projected cost of phase 2 prelimi-
nary efficacy trials in humans are no less than $5 - 10 
million per candidate drug (Tator 2006).  Despite this 
immense cost, clinically available treatments provide 
modest benefit; therefore current research is aimed at 
developing more effective therapies for spinal cord 
repair and regeneration (Kwon et al. 2004, Baptiste 
and Fehlings 2007, Fehlings and Nguyen 2010, Ali and 
Bahbahani 2010).  SCI research is remarkable for the 
high number of treatment trials in humans but sadly 
till date, in-spite of the huge resources that have been 
expended in research and human trials none has pro-
duced a major improvement in neurological recovery 
or a meaningful increase in function (Tator 2006, 
Simon et al. 2009, Wang et al. 2009, Jablonska et al. 
2010). The complex pathophysiology of SCI, consist-
ing of primary and secondary mechanisms may explain 
the difficulty in finding a suitable therapy (Blesch and 
Tuszynski 2008). The primary (mechanical) injury 
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serves as the nidus from which secondary mechanisms 
of injury extend; which  involves a cascade of vascular, 
cellular and biochemical events (Ray et al. 2002, 
Simon et al. 2009). However, our knowledge of the 
exact apparatus through which primary injury initiates 
secondary injury is not very precise (Simon et al. 
2009). Nevertheless, it is known that the severity of the 
primary injury, in large part, determines a given 
patient’s neurologic grade on admission and conse-
quently is the strongest prognostic indicator. 
Nonetheless, for a large majority of patients with SCI, 
the extent of secondary injury evokes further damage, 
limits restorative processes, and predicts their long-
term morbidity (Dumont et al. 2001). This is due in 
part, to the fact that mild injury elicits fewer inflam-
matory and secondary sequels than the moderate or 
severe types (Kloos et al. 2005, Siegenthaler et al. 
2007). Primary injury to the cord happens unexpect-
edly, and it is associated with inevitable delays; rang-
ing from several hours to days before patients are 
handled in a specialized neurological centre (Guly et 
al. 2008).  Therefore, apart from achieving patient’s 
stabilization, the short and practically vague therapeu-
tic window which intuitively existed for combating or 
reducing the extent of injury in the primary phase 
sequel to a primary injury is essentially obliterated, 
and therefore clinically inaccessible for definitive spe-
cialized care (Liverman et al. 2005, Guly et al. 2008).  
Coupled to this, the exacerbating effect of secondary 
injury mechanisms, which are hallmarks of the sub-
acute phase of SCI, has generally commenced  prior to 
expertise interventions. Therefore, strategies have 
focused mainly on combating the cascading myriad of 
secondary injury mechanisms unleashed soon after a 
cord was traumatized (Dumont et al. 2001, Hall and 
Traystman 2009, Fehlings and Nguyen 2010). Hence, 
comprehension of secondary injury mechanisms and 
their complexities in SCI are invaluable requisite for 
planned therapeutic strategies: to stimulate axonal 
regrowth (regeneration), to arrest the self-perpetuating 
degeneration (neuroprotection), and the generation of 
new neurons and glia that will repopulate the site of 
injury and functionally integrate into the surviving 
neural tissue. 

There are approximately 25 well-established sec-
ondary injury mechanisms in SCI (Tator 1998, Ramer 
et al. 2005). These secondary mechanisms are scat-
tered in bits or in clusters in literature (Bunge et al. 
1993, Profyris et al. 2004, Maier and Schwab 2006, 

Baptiste and Fehlings 2007, Fehlings and Nguyen 
2010). However, articles that provide a comprehensive 
catalog of the secondary injury mechanisms are not 
readily available. Though they are available in bits in 
some articles, nonetheless they describe the various 
aspects of SCI pathogenesis and, are generally not 
open access. This restricted access to relevant litera-
ture puts constraint on researcher from developing 
countries that are very often saddled with some cost of 
running their research. This article endeavors to pro-
vide a check list of the secondary mechanisms in SCI 
in an open access portal, and would be particularly 
useful for starters in spinal cord injury research and for 
researchers that may require this basic at a grasp. 

PHASES OF SPINAL CORD INJURIES

Traumatic SCI results from either endogenous or 
exogenous trauma. Regardless of the cause, the resul-
tant pathology is caused by two separate mechanisms: 
primary injury mechanisms (the initial mechanical 
damage), and secondary injury mechanisms (second-
ary change due to vascular and biochemical effects; 
Ray et al. 2002, Rossignol et al. 2007). The initial 
impact leads to immediate hemorrhage and rapid cell 
death at the impact site, followed by multiple second-
ary injury cascades that cause further tissue loss and 
dysfunction. Primary injury to the spinal cord has four 
morphologic types: impact plus persistent compres-
sion, impact alone with transient compression, distrac-
tion, and laceration or transection. Morphologic injury 
on a cord not only instantly injures or destroys resident 
cells, but also causes delayed damage and death to 
cells that survive the original trauma. The biological 
response to a spinal cord injury is divided into three 
phases (Table I) that follow a distinct but somewhat 
overlapping temporal sequence: acute (seconds to min-
utes after the injury), secondary (minutes to weeks 
after the injury), and chronic (months to years after the 
injury). In the acute phase, primary damage occurs as 
a direct result of trauma when structural thresholds are 
surpassed, leading to immediate physical and bio-
chemical cellular alterations. It begins within seconds 
of the injury, is marked by systemic as well as local 
events (Tator et al. 1998, Hulsebosch 2002). These 
include systemic hypotension, spinal shock, vasos-
pasm, ischemia, plasma membrane compromise, 
derangements in ionic homeostasis, and accumulation 
of neurotransmitters. Diverse groups of cells and mol-
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Table I

Major features of the three phases of spinal cord injury

ACUTE SUB-ACUTE CHRONIC

Systemic hypotension and spinal shock

Vasospasm Vasospasm 

Cell death from direct insult Cell death from direct insult 

Ischemia Ischemia

Oedema Oedema

Derangements in ionic homeostasis  Derangements in ionic homeostasis  

Accumulation of neurotransmitters Glutamatergic excitotoxicity

Plasma membrane compromise Plasma membrane compromise / 
permeability 

Free-radical production

Lipid peroxidation

Nitrous oxide excess 

Conduction block 

Excess noradrenaline

Energy failure and decreased ATP

Immune cells invasion and release of 
cytokines

Inflammatory mediated cell death 

Neurite growth-inhibitory factors 

Central chromatolysis

Vertebral compression / column 
instability

Demyelination of  surviving axons Continued demyelination

Apoptosis Continued apoptosis 

Initiation of central  cavitation Continued central cavitation

Astroglial scar launch Glial scar / syrinx formation

Alteration of ion channels and 
receptors

Regenerative processes, including 
sprouting by  neurons

Altered neurocircuits

Syringomyelia
Upper rectangular shade: events common to acute and secondary phase
Lower rectangular shade: events common secondary phase and chronic phase
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ecules from the nervous, immune, and vascular sys-
tems are involved in each phase. Most participating 
cells reside in the spinal cord, but others are sum-
moned to the site of injury from the circulatory system 
(Liverman et al. 2005). Some acute phase events con-
tinue into the sub-acute phase, and also some sub- 
acute phase events continue into the chronic phase 
(Table I). 

SECONDARY (SUB-ACUTE) PHASE

The secondary mechanism sets in minutes after 
injury and lasts for weeks or months (Tanhoffer et al. 
2007). During this phase the area of trauma distinctly 
enlarges. The secondary phase features a continuation 
of some events from the acute phase - electrolyte 
shifts, oedema, and necrotic cell death - as well as 
novel ones, including the formation of free radicals, 
delayed calcium influx, immune system response or 
and inflammation, and apoptotic cell death (Liverman 
et al. 2005). Some classic secondary injury mechanism 
of the spinal cord that has been identified in this field 
is presented (Table II). A priori, it must be stated that 
these mechanisms are interconnected in a self- propa-
gating cycle that perpetuates each other once initiated 
by trauma. An injurious mechanism may perpetuate 
another or several others, or verse versa forming a 
deleterious network.  A detailed review of individual 
mechanism is not the focus of this article. However, 
the following highlights may be helpful.

IMMUNE SYSTEM MEDIATED CNS INJURY

The immune system reactions to acute SCI are 
broadly cellular and molecular; and are intricately 
interwoven. In an injured cord, the cumulative effect 
of the immune cells (cellular), and regulatory proteins 
(molecular) is inflammation. Inflammation, a key 
event in the secondary injury cascade, occurs immedi-
ately and persists for several weeks or months follow-
ing SCI (Fehlings and Nguyen 2010). The immune 
cells secrete proinflammatory cytokines, including 
interleukin (IL)-1β, interleukin-6, and tumor necrosis 
factor-α (TNF-α), all of which increase the extent of 
inflammation. The inflammatory response is critical 
for the clearance of cellular debris, which can prevent 
the regeneration of surviving neurons. However, over-
activation of the inflammatory response can damage 
healthy tissue and exacerbate the injury. The role of the 

immune system in SCI is generally controversial. 
However, it is plausible that an uncontrolled immune 
system mediates cell death and inhibits axonal growth 
in SCI; and requires an exogenous control to be of net 
benefit (Rossignol et al. 2007). The healthy CNS 
houses the resident microglia, the innate immune cells 
of the CNS.  It is now clear, however, that these cells 
have a wide range of functions that vary with context 
and time (Schwartz et al. 2006). Far back in 1998, 
Rapalino and coauthors reported that effect of blood-
borne monocytes (macrophages) on the injured spinal 
cord is distinct from that of resident microglia. They 
demonstrated that exogenously applied macrophages 
possessing well controlled activities, unlike destruc-
tive microglia, could promote recovery of the com-
pletely transected spinal cord. This finding was 
received with a high degree of skepticism. The nega-
tive view of immune-cell activity in the CNS was sup-
ported by reports of beneficial effects, in both animal 
models and patients, of high-dose steroidal treatment 
at the hyperacute phase of SCI (Young 2002). Rossignol 
and coworkers  (2007) reported that beneficial results 
were reported in research in which SCI was followed 
by experimental depletion of macrophages (Popovich 
et al.1999) or blocking of neutrophil infiltration (Ditor 
et al. 2006). In contrast to these and other studies, and 
in opposition to the generally negative reputation 
ascribed to immune cells in the CNS, the work of 
Schwartz and his colleagues (2006), and by other 
groups over the past decade has brought to light the 
seminal finding that a well controlled innate and adap-
tive immune response is pivotal for repair (Hammarberg 
et al. 2000, Turrin and Rivest 2006, Hendrix and 
Nitsch 2007). Inflammation resulting from SCI attracts 
four major categories of immune cells: neutrophils, 
monocytes, microglia, and T-lymphocytes (Schnell et 
al.1999, Bareyre and Schwab 2003). The neutrophils 
are the first immune cells to arrive at the site of injury. 
They are conscripted from the circulatory system, 
especially by vascular endothelial cells, which up-
regulate and express adhesion molecules on their cell 
membranes to help guide neutrophils to the site of 
injury. Neutrophils in the spinal tissue, removes micro-
bial intruders and tissue debris. Neutrophils also 
release cytokines, proteases, and free radicals, all of 
which activate other inflammatory and glial cells for 
the inflammatory cascade that can ultimately lead to 
neuron injury or death (Liverman et al. 2005). It has 
also been shown that the inhibition of neutrophil adhe-
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Table II

A list of secondary injury mechanisms

SECONDARY INJURY MECHANISMS SOURCE

Apoptosis Liu 1997, Beattie et al. 2000, Casha  et al. 
2001, Paterniti et al. 2009

Astroglial scar launch Allan and Rothwell 2003, Herrmann et al. 
2008, Buss et al. 2009 

Calcium influx in cells Stys et al.1992b , Imaizumi et al. 1997,  
Xiong et al. 2007 

Central cavitation Balentine 1978, Zhang et al. 1997, Fehlings and 
Nguyen 2010

Central chromatolysis Kikukawa et al. 1998, Vranken et al. 2006, 
Callegari et al.  2008

Compression and vertebral column instability Shimada and Tokioka 1995, Wenger et al. 2003, 
Rossignol et al. 2007

Conduction block and spinal shock due to leakage of fast K+ into the 
ECF

Shi and Borgens 2000, Hiersemenzel et al. 2000, 
McTigue 2008

Deficient expression of myelin associated genes after SCI Martini et al. 1995, Grill et al. 1997,  
Rossignol et al. 2007

Demyelination of residual axons and demyelination of subpial rim 
of surviving axons 

Casha et al. 2001, Liverman et al. 2005, 
McTigue 2008

Derangements in ionic homeostasis Whalen et al. 2007, Simon et al. 2009

Energy failure and decreased ATP production Xiong et al. 1999, Domont et al. 2001,  
Peng et al. 2009 

Excessive noradrenaline secretion Tator 1995, Satoe et al. 2001, Lucin et al. 2007  

Fluid accumulation / oedema at the lesion site Tator  and Fehlings 1991, Kaymaz et al. 2005, 
Choo et al. 2007

Glutamatergic excitotoxicity Xu et al. 2005, McTigue 2008 

Hemorrhage Tator and Fehlings 1991, Choo et al. 2007

Immune cells invasion and release of cytokines Hammarberg et al. 2000, Schwartz et al. 2006, 
Hendrix and Nitsch 2007

Inflammation Allan and Rothwell 2003, Fehlings and Nguyen 
2010 

Ischemia / reperfusion-induced endothelial damage Xu et al. 1990, Toaka et al 1998,  
Lee et al. 2003 

Lipid peroxidation / oxidative stress Xiong et al. 2007, Sullivan et al. 2007
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sion to the endothelial cell surface markedly reduces 
the severity of the SCI induced by compressive trauma 
(Taoka et al. 1997).  Soon after the mechanical injury, 
monocytes infiltrate into the spinal co   rd and differ-
entiate into macrophages. Activated resident microglia 
and macrophages also secrete numerous cytokines, 
free radicals, and growth factors, which, in turn, affect 
nearby cells in positive and negative ways (Lindholm 
et al.1992, Schnell et al. 1999, Anderson 2002). The 
growth factors are critical for neuron survival and tis-
sue repair. However, free radicals and pro-inflamma-
tory cytokines contribute to expansion of the lesion, 
worsening the impact of the injury. The role of lym-
phocytes in spinal cord injuries is rather controversial. 
Some argue that one type of lymphocyte (autoreactive 
T-lymphocytes) have destructive properties: according 
to this schema they exacerbate injury to axons and 
induce demyelination, leading to functional loss 
(Popovich and Jones 2003). Others argue that this lym-
phocyte is not pathological but, rather, confers protec-
tion to the myelin-insulated neurons (Schwartz and 
Kipnis 2001, Kipnis et al. 2002). Protection of myelin 
also protects the integrity of the axon that it insulates. 
To summarize, the exacerbating effect of the uncon-
trolled immune system on the injured spinal cord is to 
a large extent both inflammatory and free radical 
mediated. The immune system would only be of net 
benefit if exogenously controlled. 

LIPID PEROXIDATION 

A well characterized pathological process occurring 
early after SCI is the formation of reactive oxygen 
(ROS) and reactive nitrogen species (RNS; Azbill et al. 
1997, Xiong et al. 2007). This is sequel to increased 
intracellular calcium levels, mitochondrial dysfunc-
tion, arachidonic acid breakdown and activation of 
inducible nitric oxide synthase (iNOS; Hall and 
Springer 2004, McTigue 2008). ROS and RNS cause 
lipid peroxidation as well as oxidative and nitrative 
damage to proteins and nucleic acids (Xu et al. 2005). 
Apart from cell membrane lysis; leading to neuronal 
loss, free radicals invoke other types of damage par-
ticularly on the cytoskeleton and organelles. In lipid 
peroxidation, free radicals absorb an electron from a 
lipid molecule, which in turn becomes less stable, thus 
launching a chain reaction that ultimately leads to lysis 
of the membrane and death by necrosis. In addition, 
oxidative damage exacerbates mitochondrial dysfunc-
tion (Sullivan et al. 2007) and contributes to intracel-
lular calcium overload which activates proteases result-
ing in breakdown of cytoskeletal proteins (Xiong et al. 
2007). Thus, the collective damage induced by ROS 
and RNS is widespread and may be central in the etiol-
ogy of cellular death (necrotic and apoptotic) and func-
tional loss after SCI. 

Neurite growth-inhibitory factors e.g., Nogo-A, Rho-A, 
oligodendrocyte myelin glycoprotein (OMgp) myelin- associated 
glycoprotein (MAG), and chondroitin sulfate proteoglycans

Liverman et al. 2005, Rossignol et al. 2007 

Neurogenic shock Sekhon and Fehlings 2001, Guly et al. 2008

Nitrous oxide excess Stagi et al. 2005, Guix et al. 2005,  
Wu et al. 2009 

Oligodendrocytes to secondary apoptotic death Domont et al. 2001, Grossman et al. 2001

Plasma membrane compromise / increases in plasma membrane 
permeability 

Shi et al 2000, LaPlaca et al 2007, Whalen et al 
2007, Simon et al. 2009

Systemic hypotension due to sympathetic loss Guha et al. 1988, Gondim et al. 2004, 
Krassioukov and Claydon  2006

TNF-α production at the site of SCI Yakovlev and Faden 1994, Taoka et al. 1998, 
Pan et al. 2003, Can et al. 2009

Vasospasm and microcirculatory inconsistencies Tator 1995, Tator and Koyanagi 1997,  
Xu et al. 2005
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GLUTAMATE EXCITOTOXICITY

Glutamate, the major excitatory neurotransmitter 
of the central nervous system (CNS) is released 
excessively after injury. Soon after trauma to the 
spinal cord, extracellular glutamate levels rise with-
in and around the injury site (McAdoo et al. 1999), 
and it is known to produce direct damage to the 
cord, and indirect damage from production of reac-
tive oxygen and nitrogen species and from altera-
tions in microcirculatory function and secondary 
ischemia (Dumont et al. 2001). The resultant influx 
of Ca2+ into neurons causes neuronal death by necro-
sis or apoptosis through a process known as excito-
toxic cell death (Xu et al. 2005). Glutamate, how-
ever, must first bind to receptor proteins that also 
act as potassium and calcium gates before influx of 
these ions into the neurons.  Neurons and oligoden-
drocytes are particularly vulnerable to glutamate 
excitotoxicity because they express a full comple-
ment of glutamate receptors. Excitotoxic injury to 
oligodendrocytes and neurons results in demyelina-
tion of axons and loss of neurons around the injury 
site, leading to a drastic reduction or complete halt 
of axonal transmission (conduction block), thereby 
enhancing the disconnect between the brain and 
spinal segments below the level of injury, and thus 
contributing to motor and sensory deficits. 
Consequently, glutamate excitotoxicity markedly 
exacerbate the functional problems encountered 
after SCI. Researchers have studied drugs that block 
glutamate receptors in the hope of preventing excess 
potassium and calcium from entering and destroy-
ing the neuron (Lea and Faden 2003) or inhibiting 
the injurious interaction between excitotoxicity and 
inflammation (Yune et al. 2007). 

APOPTOTIC CELL DEATH

During the acute phase, the mechanical trauma 
to the spinal cord causes cells death instantaneously 
by necrosis, a process of cell inflammation and 
then cell membrane rupture.  Within hours, another 
type of cell death assumes center stage: apoptosis. 
With apoptosis, cells are not inflamed prior to 
death; rather, they condense and break apart into 
small fragments in a programmed pathway that 
requires energy and protein synthesis (Liverman et 
al. 2005). This programmed pathway of neuronal 

death has been implicated in the pathobiology of 
multiple neurologic disorders including SCI 
(Dumont et al. 2001, Paterniti et al. 2009). The 
apoptotic cascade in SCI is activated in neurons, 
oligodendrocytes, microglia, and perhaps, astro-
cytes (Liu et al. 1997, Beattie et al. 2000). A major 
trigger appears to be the injury-induced rush of 
calcium into cells (Happel et al. 1981, Imaizumi et 
al. 1997, Xiong et al. 2007). Calcium influx acti-
vates key enzymes inside the cell - the caspases and 
calpain - that break down proteins in the internal 
cytoskeleton and membrane of the cell, leading to 
cell death (Ray et al. 2003). Yet, apoptosis of corti-
cal motor neurons can occur after the axons centi-
meters away are severed by spinal cord injury, too 
far for the calcium to diffuse (Hains et al. 2003a). It 
is believed that this may be due to a variety of 
insults including cytokines, inflammatory injury, 
free radical damage, and excitotoxicity (Domont et 
al. 2001, Amemiya et al. 2005).

DEMYELINATION OF SURVIVING AXONS  

Sequel to the death of oligodendrocytes trigged by 
glutamate excitotoxicity and exacerbated by a cascade 
that include; apoptosis, free radical assaults, activities 
of pro-inflammatory/inflammatory mediator and 
cytokines, is the demyelination of axons that survive 
the initial trauma. Demyelination is due to loss of oli-
godendrocytes, which are destroyed at the injury epi-
center within hours of the injury and continue to 
undergo apoptosis in rostral and caudal white matter 
for many weeks after SCI (Cash et al. 2001, Grossman 
et al. 2001). This pathological process is particularly 
evident in the sub- acute and chronic phases of SCI 
(Guest et al.2005, Liverman et al. 2005). With the loss 
of myelin, axons are now directly exposed to the dam-
aging effects of free radicals and inflammatory cytok-
ines, leading to neuronal loss via necrosis or/and apop-
tosis. Demyelination leads to conduction delays or/and 
conduction block (McTigue 2008, Hall and Traystman 
2009). Given that axons traversing the injury site are 
the sole remaining connection between the brain and 
caudal spinal neurons, inefficient communication 
through these axons is a significant clinical issue 
(McTigue 2008). Hence demyelination and neuronal 
loss sequel to oligodendrocytes death aggravates the 
damage in a traumatized cord and thus limiting the 
potentials for a cure.
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AXONAL REGENERATION INHIBITORY 
CELLS AND MOLECULES

The inherent limited capacities of regeneration after 
SCI aggravate the initial trauma. Several resident cells 
and a few recruited cells release factors that inhibit 
neuronal regeneration (Table III). By inhibiting regen-
eration, the net effect of degeneration may likely be 
amplified in a traumatized spinal cord. Several cells 
and molecules up or down regulates in SCI. Their 
overall activities are detrimental to the milieu intérieur 
of the spinal cord. 

LOCAL VASCULAR DERANGEMENTS

The contribution of vascular mechanisms, includ-
ing: ischemia / reperfusion, impaired autoregula-
tion, systemic hypotension (neurogenic shock), 
hemorrhage (especially gray matter), and microcir-
culatory derangements in the pathophysiology of 
human SCI is well reviewed by Tator and Koyanagi 
(1997). Traumatized spinal cords show severe hem-
orrhages predominantly in gray matter, leading to 
the hemorrhagic necrosis and subsequent central 
myelomalacia at the site of injury (Sekhon and 
Fehlings 2001). Studies in both the human situation 
and experimentally, confirm that the large arteries 
remain patent but that a major change occurs in the 
local microcirculation (mainly capillaries and 
venules) in the area of the injury. Immediately after 
SCI, a major reduction in blood flow at the lesion 
occurs (Senter and Venes 1978, Fehlings et al. 1989, 
Tator and Fehlings 1991). This ischemia becomes 
progressively worse over the first few hours 
(Fehlings et al. 1989). The precise mechanisms 
behind this ischemia are unclear. Vasospasm sec-
ondary to mechanical damage or a vasoactive 
amine may be partially responsible (Tator and 
Fehlings 1991). Hemorrhages may promote isch-
emia (Wallace et al 1986) or thrombosis may occur 
via platelet aggregation (Nemecek 1978, Torre 
1981). Ischemia has been implicated in the forma-
tion of local cord oedema (Tator and Koyanagi 
1997). The accumulation of fluid in the site of 
injury is injurious to the cord (Kaymaz et al. 2005, 
Choo et al. 2007). Loss of microcirculation, direct 
disruption of small vessels and hemorrhage, failure 
of autoregulation, glutamate-mediated excitotoxic-
ity (Xu et al. 2005) and ischemia particularly is a 

direct linear dose-response association, with the 
severity of the injury becoming progressively worse 
a few hours after SCI. Apart from direct disruptions 
on microcirculation of the cord by trauma, there are 
evidences that ischemia and reperfusion induced 
endothelial damage in vessels of damaged spinal 
segment; and that this damage contributes to the 
exacerbating cascade already at work (Taoka et al. 
1998, Lee et al. 2003).  Ischemia and reperfusion 
induced endothelial damage are mediated through 
free radicals and other toxic byproducts (Cuzzocrea 
et al. 2001). Oxygen- derived free radicals (includ-
ing superoxide, hydroxyl radicals, and nitric oxide 
and other high-energy oxidants (including per-
oxynitrite) are produced during ischemia (Lewen et 
al. 2000, Bao et al. 2005) with a most pronounced 
rise during the early reperfusion period (Zini et al. 
1992, Nagel et al 2008). These highly reactive oxy-
gen and nitrogen species contribute to oxidative 
stress, a pathological mechanism that contributes to 
the secondary injury of spinal cord trauma. Although 
the precise mechanisms of vascular events in SCI 
are still subject of investigation, it is however 
known that endothelial damage occurs early, with 
the formation of craters, adherence of non-cellular 
debris, over-riding of endothelial cell junctions, and 
formations of microglobular (Sekhon and Fehlings 
2001), and that alterations in endothelial cell func-
tion cause an increase in vascular permeability and 
oedema formation (Kaymaz et al. 2005, Benton et 
al. 2008). In summary, oxidative stress resulting 
from compromises in the microcirculation of a 
damaged spinal segment contributes to SCI and is 
intimately related to other mediators of secondary 
injury.

NEUROGENIC SHOCK

Spinal cord injury may result in neurogenic shock. 
Uncontrolled neurogenic shock perpetuates further 
damage on a traumatized cord. Its systemic effects 
include ischemia of the spinal cord and other organs 
(Dumon et al. 2001). Neurogenic shock is manifested by 
the triad of hypotension, bradycardia, and hypothermia 
(Kiss and Tator 1993). It is known that SCI causes 
hypotension due to loss of sympathetic tone and 
decreased peripheral vascular resistance. The resultant 
hypotension is further exacerbated by neurogenic shock; 
and intra-abdominal pathology is more difficult to diag-
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nose in the presence of an SCI (Dumon et al. 2001). 
Bradycardia may occur due to unopposed vagal activity 
in a high cord lesion that disrupts the sympathetic sup-
ply to the heart (Guly et al. 2008). Bradycardia is exac-
erbated by hypoxia and endobronchial suction 
(Piepmeyer et al. 1985). In high cervical injuries, safe-
guarding the integrity of airway is fraught with diffi-
culty; without infrequent respiratory failure. The afore-
said cascade has a cumulative effect of exacerbating 
nervous tissue damage (Guly et al. 2008) and, thus 
worsening the outcome from SCI; both in terms of mor-
tality and morbidity (Sekhon and Fehlings 2001). There 
is no universally accepted definition of neurogenic 
shock. It has being defined as a systolic BP < 100 mm 
Hg and a heart rate <80 BPM in a patient without other 
obvious cause, or as a systolic BP < 90 mm Hg (Guly et 
al. 2008). Ignoring definitions, an essentially silent 
question is whether neurogenic shock is an integral part 
of the secondary injury mechanisms or an epiphenom-
enal event that plausibly precipitate a spinal injury?

PRODUCTION OF TNF-α  
AT THE SITE OF SCI

Tumor necrosis factor-alpha (TNF-α) is one of the 
best characterized cytokines. To date there is no clear 
consensus on the role of endogenous TNF-α in CNS 
acute injury. Studies strongly suggest that the produc-
tion of tumor necrosis factor α (TNF-α) at the site of 
SCI is involved in secondary tissue damage in SCI 
(Yakovlev and Faden 1994, Wang et al. 1996, Taoka et 
al. 1998, Pan et al. 2003, Paterniti et al. 2009). Wang 
and others (1996) showed the presence of TNF-α at the 
sites of traumatic spinal cord lesions but did not detect 
this factor in cerebrospinal fluid or in serum. Earlier, 
Yakovlev and Faden (1994) demonstrated that spinal 
cord impact in rats caused an elevation of TNF-α 
mRNA levels at the site of trauma 30 min after the 
injury; the severity of injury was proportional to the 
level of the TNF-α message. In leukocytopenic rats, 
where the level of TNF-α was not increased at the site 

Table III

Cells and molecules that inhibit axon regeneration

Cell Type Inhibitory Molecule

Activated microglia Arachidonic acid derivatives
Cytokines
Free radicals
Nitric oxide

Astrocyte Brevican (a proteoglycan)
Neurocan (a proteoglycan)
NG2 (a proteoglycan) 
Tenascin

Meningeal cell NG2
Semaphorins

Neutrophils Cytokines
Free radicals
Neutrophils
Proteases

Oligodendrocyte Myelin-associated glycoprotein (MAG)
NI-250 (Nogo-A)
Oligodendrocyte myelin glycoprotein (OMGP)
Tenascin-R

Oligodendrocyte precursor DSD-1 or phosphacan (a proteoglycan)
NG2 (a proteoglycan)
Versican (a proteoglycan)  

SOURCE: Fawcett and Asher 1999, Liverman et al. 2006
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of trauma exhibited a significant reduction in motor 
disturbances, indicates that increased levels of TNF-α 
at the site of injury may be a cause, rather than an 
effect, of the SCI induced by compressive trauma 
(Taoka et al. 1998). Interestingly, contrary to most 
report, there are certain documented evidences of its 
ameliorating potentials in CNS injury (Hurtado et al. 
2002, Pradillo et al. 2005, for review see: Figiel 2008). 
A recent study however, ascribed to it, a dual role; 
depending on the phase of injury: overexpression of 
TNF-α is deleterious in the acute phase, but beneficial 
in the chronic phase in the response to SCI (Chi et al. 
2010). It is now clear that TNF-α receptors mediates 
distinct cellular responses, and there is an increasing 
evidence of considerable overlap of their signaling 
capabilities in mediating biological effects (Declercq 
et al. 1998, Quintana et al. 2005). The differential pat-
terns of localization of TNF-α receptors in neuronal 
and glial cells, their state of activation and the down-
stream effectors, all are thought to play an important 
role in determining whether TNF-α will exert a benefi-
cial or harmful effect on CNS (Fontaine et al. 2002, 
Figiel 2008). Additionally, TNF-α contributes to the 
tissue injury induced by neutrophils by directly acti-
vating them (Klebanoff et al.1986, Genovese et al. 
2005b, Paterniti et al. 2009) as well as by increasing 
the expression of such molecules as E-selectin, which 
cause the activated neutrophils to adhere to the surface 
of the endothelial cells (Mulligan et al.1991, Genovese 
et al. 2005a, b). It has also been shown that the inhibi-
tion of neutrophil adhesion to the endothelial cell sur-
face markedly reduces the severity of the SCI induced 
by compressive trauma (Taoka et al. 1997, Dona et al. 
2003). In addition to the direct damage of TNF-α on 
traumatized cord; these observations indicate that the 
interaction of activated neutrophils with the surface of 
the endothelial cells is important in the secondary tis-
sue damage. 

PLASMA MEMBRANE COMPROMISE / 
DERANGEMENTS IN IONIC HOMEOSTASIS 

One direct result of the mechanical impact in trau-
matic CNS injury is the formation of non-specific 
breaches in the neuronal plasma membrane (Simon et 
al. 2009).  Simon and coauthors also emphasized that 
this phenomenon has been observed in many models 
of neuronal injury and is postulated to be detrimental 
to post-injury outcomes (Shi et al. 2000, Choo et al. 

2007, LaPlaca et al. 2007, Whalen et al. 2007). The 
temporarily or permanently destroyed barrier between 
the cytosol of neuron / glia and the ECF results in 
derangements in ionic and molecules homeostasis. 
This unregulated ionic / molecular flux is detrimental 
to cell function and survival (Simon et al. 2009). 
Sequel to this, surviving cells may experience down-
stream debilitating consequences of plasma membrane 
compromise (Barbee 2005, Farkas and Povlishock 
2007). Compromised cell membrane permeability is 
also associated with protease activation. Protease 
activities are connected with tissue loss and apoptosis 
secondary to acute CNS injury (Farkas et al. 2006, 
Whalen et al. 2007). 

INCREASED CALCIUM INFLUX

Another key element in secondary injury mechanism 
is an excessive intracellular level of Ca+2 ions. Calcium 
influx is triggered by acute injury and continues for hours 
to weeks afterwards (Liverman et al. 2005). Although, 
the initial calcium influx into neuron at the time of injury 
contributes to the acute phase of damage, an additional 
influx of calcium is triggered by the acute injury and 
continues for hours afterwards (Liverman et al. 2005). 
Calcium influx down its concentration gradient could 
result in mitochondrial damage, aberrant enzyme activa-
tion, changes in gene expression, and apoptosis (Simon et 
al. 2009). Once inside, calcium ions not only activate 
caspases and calpains to degrade the local axoplasm, but 
also diffuse and exceed the threshold of calpain activation 
in the immediately adjacent region; which leads to fur-
ther axoplasmic and membrane breakdown and further 
calcium influx (Ray et al. 2003, Beirowski et al. 2005). A 
particularly powerful mode of calcium influx within 
injured axons in white matter involves an initial inward 
leakage of sodium due to the acute injury, which drives 
the sodium-calcium exchanger to import damaging levels 
of calcium; this multistage cascade has been demon-
strated within myelinated axons of the optic nerve (Stys 
et al. 1992b) and the spinal cord (Imaizumi et al. 1997). 
Delayed calcium blocking is a viable therapeutic strategy 
that could reduce the degree of secondary damage to 
spinal cord axons (Liverman et al. 2005).

CENTRAL CHROMATOLYSIS

It is a process that occurs after an injury to the neu-
ron is sustained and or irreparable. It is characterized 
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by tumefaction of cell body and the disappearance of 
Nissl bodies from the central portion of the cell. 
Accompany by a relocation of the nucleus peripherally 
(Callegari et al.  2008). It is an axonal reaction where 
changes appear to reflect reversible changes in cell 
metabolism that include ischemia; these changes are 
interpreted as a state of heightened metabolic activity 
that favors axonal regeneration (Kreutzberg 1996, 
Errando et al. 1999). Chromatolysis and inflammation 
are characteristic of neuronal cells with compromised 
microcirculation. These changes can disrupt commu-
nication in many portions of the central nervous sys-
tem (Guyton and Hall 2006). Chromatolysis also 
causes degeneration of myelin sheaths and neuronal 
death in both the peripheral nerves and the central 
nervous system. These and associated conduction 
block markedly aggravate damage and neurological 
dysfunction in SCI (McTigue 2008).

CENTRAL CAVITATION 

A phenomenon that adds to the complexity of regen-
erative failure is the process of progressive central 
cavitation in which, after days to weeks, a SCI can 
expand in size leading to scar-encapsulated cavity 
many times the size of the initial lesion (Balentine 
1978, Rossignol et al. 2007, Fehlings and Nguyen 
2010). Various studies suggest that this secondary pro-
cess of cavitation is related to ischemia (Balentine 
1978, Shan et al. 2010), hemorrhage (Ducker et al. 
1971, Wallace et al. 1987), lysozyme activity (Kao et 
al. 1977), pulsatile hydrodynamics (Williams et al. 
1981), or macrophage infiltration and inflammation 
(Blight 1994, Zhang et al. 1997). Inflammatory pro-
cesses alone initiate a cascade of secondary tissue 
damage, progressive cavitation and glial scarring in 
the CNS (Allan and Rothwell 2003, Fehlings and 
Nguyen 2010). The physical process of cavitation leads 
to astrocyte abandonment of neuronal processes, neu-
rite stretching, and secondary injury. The macrophage 
mannose receptor and the complement receptor type 3 
β2 integrin are implicated in the cascade that induces 
cavity and scar formation (Fitch et al. 1999, Von 
Boxberg et al. 2006).

CONTROLLING SECONDARY INJURY 

Primary injury to the cord can not be prevented. It 
happened unexpectedly in normal daily life. However, 

repetitive or sustained mechanical insult that may 
exacerbates damage sequel to the primary mechanical 
injury are minimized through surgical decompression 
of the spinal cord and, or stabilization of vertebrae. 
The debilitating effects of secondary injury mecha-
nisms are far reaching, however, therapies aimed at 
controlling them offer the potential to reduce the 
extent of injury and thus enhance the prospect of 
recovering. To this end, various therapeutics strategy, 
have been tried. A variety of approaches have been 
studied to alter neuroinflammation (administration of 
immunomodulator drugs such as minocycline or anti-
bodies against leukocyte adhesion molecules; Popovich 
et al. 1999, Wells et al. 2003, Gris et al. 2004, Schwartz 
and Yoles 2006), reduce free radical damage (adminis-
tration of glucocorticoids, iron chelators, and glutathi-
one promoters; Hall and Braughler 1982, Schultke et 
al. 2003 , Golding et al. 2006, Liu-Snyder et al. 2007), 
reduce excitotoxic damage to neurons (administration 
of N-methyl-D-aspartate (NMDA) receptor antago-
nists; Hirbec et al. 2001), improve blood flow (admin-
istration of opioid antagonists or calcium channel 
blockers; Faden et al. 1981), seal damaged membranes 
(systemic administration of surfactants; Luo et al. 
2002, Laverty et al. 2004), and counter the effects of 
local ionic imbalances (administration of sodium and 
calcium channel blocker; Winkler et al. 2003, Hains et 
al. 2004, Kaptanoglu et al, 2005, Nehrt et al. 2007; for 
a detailed review see Baptiste and Fehlings 2006). 
Similarly, an array of cellular therapeutic interventions 
has shown impressive results after SCI. The strategies 
were generally: to bridge any cysts or cavities; to 
replace dead cells (by providing new neurons or myeli-
nating cells), and to create a favourable environment 
for axon regeneration (Thuret et al. 2006). Efforts 
aimed at these includes: transplantation of peripheral 
nerve (Levi et al. 2002), transplantation of Schwann 
cells (Papastefanaki et al. 2007), transplantation of 
olfactory unsheathing cells (Li et al. 2003), transplan-
tation of embryonic stem/progenitor cells (Teng et al. 
2002, Jablonska et al. 2010, Szymczak et al. 2010), 
transplantation of adult stem/progenitor cells (Koda et 
al. 2005, Karimi-Abdolrezaee et al. 2006, Sypecka et 
al. 2009, Jablonska et al. 2010), transplantation of engi-
neered stem/progenitor cells (Chen et al. 2006, Ali et 
al. 2009, Buzanska et al. 2009; for a detailed review 
see Thuret et al. 2006, Ali and Bahbahani 2010). 
Molecular therapeutic interventions that inhibit the 
activities of some secondary injury mechanisms in 
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SCI have been assessed in animals and in human with 
impressive outcome. The therapeutic strategies were 
generally: to protect neurons from secondary cell 
death; to promote axonal growth; and to enhance con-
duction (Thuret et al. 2006). Efforts aimed at these 
includes: neuroprotective therapies (Fehlings and 
Baptiste 2005), conduction enhancing (Guest et al. 
2005), delivery of growth factors (Zhou and Shine 
2003, Bartkowska et al. 2010), modulation of interac-
tions with myelin inhibitors (Fouad et al. 2004), extra-
cellular matrix modifiers (Klapka et al. 2005; for a 
detailed review see Thuret et al. 2006). However, none 
of these therapeutics strategies has produced any clini-
cally satisfactory intervention. The biological pro-
cesses involved in regaining sensory or motor func-
tions, preventing or eliminating pain, and retraining 
and relearning motor tasks are so diverse that treat-
ment strategies aimed at obstructing several of the 
secondary injury mechanisms in a tailored combina-
tion therapies will certainly be required (Liverman et 
al. 2005, Thuret et al. 2006, Webb et al. 2010). Optimal 
recovery of function will require a combination of 
effective and safe therapeutic interventions. However, 
determining which interventions would best combine 
in a multimodal therapy for SCI, that would provide 
satisfactory and meaningful locomotive or neurologi-
cal improvement remain critical. 

CONCLUSION

This article has cataloged some key secondary 
injury mechanisms that exacerbate a SCI. These mech-
anisms are intricately interconnected in a self- propa-
gating destructive cascade; nonetheless, individual 
mechanisms are capable of exacerbating a traumatized 
spinal cord. Additionally, several distinct precursors 
can further perpetuate a particular mechanism; which 
in-turn induces the release or generation of more quan-
tity of several secondary injurious elements, forming a 
deleterious network. Owing to its complexity, a spinal 
cord injury is unlikely to be cured by a single therapy. 
And given the complexity of the factors that are 
involved, research into multimodal therapies will 
require many years of investigation to identify an 
appropriate therapy that is unequivocally safe and 
effective, that could be tested in human clinical trials. 
Nevertheless, there are concerted efforts to identify 
and develop appropriate and efficacious multimodal 
therapy for SCI.
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