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The Annonaceae family of plants is one of the most anatomically and structurally uniform 

families. Chemotaxonomy is a common practice to determine the chemical patterns within these 

families at different phylogenetic levels. The aim of this study was to build a dataset of all the 

secondary metabolites isolated within the Annonaceae family and to perform the respective 

chemotaxonomic analysis using self-organizing maps (SOMs). This dataset is composed of 

5321 botanical occurrences and 1860 unique molecules present in all subfamilies of the Annonaceae. 

Diterpenes account for 366 unique compounds and 533 botanical occurrences seen in both 

Annonoideae and Malmeoideae subfamilies. The Annoneae, Xylopieae and Miliuseae tribes had 

the highest number of botanical occurrences and were therefore selected for the analysis. Molecular 

descriptors of the diterpenes and their respective botanical occurrences were used to generate the 

SOMs. These SOMs demonstrated clear and indicative tribe separations, with a match rate higher 

than 70%. Our results corroborate with the morphological and molecular data. These models can 

be used to predict the phylogenetic location of certain diterpenes and to accelerate the research of 

Annonaceae secondary metabolites and their biological potentials.
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Introduction

The Annonaceae family was �rst described by Antoine 

Laurent de Jussieu in 1789 and is known for its striking 

anatomical and structural uniformity. The family is very 

consistent morphologically, with a unique primitive group 

of angiosperms providing easy identi�cation.1-4

Two recent studies relevantly discuss the phylogenetic 

classification of the Annonaceae family. The first 

study carried out by Chatrou et al.5 used eight plastid 

markers and representatives of 94 genera to formally and 

scienti�cally classify the Annonaceae into four subfamilies: 

Anaxagoreoideae, Ambavioideae, Annonoideae and 

Malmeoideae. The two largest subfamilies, Annonoideae 

and Malmeoideae, were divided into 14 tribes. The second 

study was conducted by Guo et al.,6 and considered the 

phylogenetics of the Annonaceae based on a super matrix 

of eight chloroplast loci and 749 accessions representing 

705 species (29% of ca. 2,400 species of 105 genres; 98% 

of 107 genres currently accepted). This matrix included 

almost four times more species as well as representatives 

of 15 additional genera compared to the �rst large study 

of phylogenetic importance by Chatrou et al.5

In addition to rebuilding the most comprehensive 

Annonaceae evolutionary tree, Guo et al.6 also determined the 

phylogenetic position of �ve genera, Bocageae, Boutiquea, 

Cardiopetalum, Duckeanthus and Phoenicanthus, 

that were not included in any previous phylogenetic 

reconstruction. Their work assessed the monophyletic 

status and phylogenetic relationships within each major 

clade highlighting possible non-monophylides of genera 

and evaluating alternative resolutions for nomenclatural 

problems. Additionally, they identified and discussed 

unresolved problems such as the phylogenetic location and 

taxonomy of two genera, Froesiodendron and Melodorum, 

which have not yet been sampled. Finally, they provided 
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an updated view of the genera currently recognized in the 

family using their wealth of species.

Overall, Guo et al.6 reorganized the phylogenetics 

and taxonomy of Annonaceae and concluded their study 

stating that the family contains four subfamilies, 15 tribes, 

107 genera and 2400 species.

Annonaceae are very important economically given 

the multitude of ways the derivatives are used; the fruits 

are used in cooking and the production of ropes, the 

great diversity of chemical compounds shown to have 

pharmacological activities inspire new medicines, and 

the wood that is both light and durable.7-9 These chemical 

compounds, also known as secondary metabolites, have 

great structural diversity in this family and represent many 

chemical classes including but not limited to alkaloids, 

terpenes, acetogenins, and steroids.10-12

One of the most common classes of Annonaceae is the 

terpenes. Terpenes are a very diverse class of substances and 

in addition to their important natural defense mechanisms 

in plants, terpenes display several therapeutic uses for 

humans.9,13

In the natural biosynthetic route, terpenes are formed 

from isoprene units, which are considered the basic units 

for the formation of both terpenes and steroids. Subclasses 

of terpenes include monoterpenes (two isoprene units, 

10 carbons in their structure), sesquiterpenes (15 carbons), 

diterpenes (20 carbons) and triterpenes (30 carbons).9,14

The information gathered from chemical structures of 

both different species and genera has been and continues 

to be used in chemotaxonomy, that is, to determine the 

chemical phylogenetic patterns of a given family.15-17 For 

chemotaxonomy studies, it is common practice to use 

machine learning with either supervised or unsupervised 

algorithms. A few examples of these machine learning 

techniques include neural networks (NN), support vector 

machine (SVM) and k-nearest neighbors (k-NN).15-17

Self-organizing maps (SOMs), which were developed 

by Kohonen,18 are the main algorithm used in this 

study. A SOM is an unsupervised neural network that 

recognizes patterns and performs groupings based on 

exploratory analysis of the input data to generate non-linear 

relationships.18-20 The SOM learning phase is competitive 

as there is no convergence or minimization criteria, and 

it works with a de�ned number of iterations and weight 

adjustments. In addition, each variable is mapped in a �nite 

space of neurons organized in a typically two-dimensional 

arrangement (Kohonen map).19-21

In order to generate the SOM model, the model 

must �rst be trained on a portion of the established data 

previously separated for training. Then, the second set 

called the test set evaluates the training of the model. 

Using the results from the test set evaluation, we then 

isolate models capable of correctly mapping the test set, 

since the test data instances are not present in the training 

data.20-24

Vesanto et al.25 created a unified distance matrix 

(U-matrix) that uses Euclidean distances to further analyze 

the SOM. In this matrix, it is possible to better visualize 

the possible groupings of the analyzed data.25-27

The goal of this study is to compile and integrate 

secondary metabolites isolated from Annonaceae into one 

curated dataset and to perform a chemotaxonomic analysis 

of diterpenes.

Results and Discussion

We collected and processed all Web of Science-indexed 

research papers published between 1970 and 2019 to 

create a database of secondary metabolites isolated 

from Annonaceae, except for the acetogenin class that is 

exclusive to this family. As seen in Figure 1, the interest 

in studying the Annonaceae plants has grown over time. 

One explanation for this growth is the abundant and diverse 

biological activity of the Annonaceae that comes from the 

structural diversity of the secondary metabolites. Alkaloids, 

for example, exhibited a wide variety of pharmacological 

activities and have been clinically studied for the treatment 

of cancer, Parkinson’s disease, cardiovascular diseases, and 

various viral infections.1-4,8,28,29

Our database consisted of 5321 botanical occurrences 

and 1860 unique molecules present in all subfamilies, 

12 tribes, 64 genera and 380 species of the Annonaceae. 

Terpenes and alkaloids are the largest classes present in 

these plants (Figure 2).

It is important to note that although Annonaceae has 

107  genera and 2400 species, only a small percentage 

of them have been studied chemically and therefore our 

database was considered comprehensive.

Figure 1. Distribution of published phytochemical studies of the 

Annonaceae plant family over time.
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The alkaloids present in the Annonaceae are 

isoquinolines but the biosynthetic origins of the main 

nuclei occurring in the Annonaceae are the simple 

isoquinoline, proaporphine, aporphine, benzylisoquinoline, 

protoberberine, and phenanthrene.30,31

Terpenes, the second most common class in Annonaceae, 

occur in all subclasses (mono-, di-, sesqui-, and triterpenes), 

with the diterpenes being the most abundant. The most 

frequent diterpenes are kaurene, trachylobane, labdane, 

and atisane, wherein kaurane is the most common. Figure 3 

shows the skeletons of some of the most present alkaloids 

and diterpenes in this family.

Once the database was compiled and the classes and 

skeletons of the secondary metabolites most present in 

Annonaceae were identi�ed, the chemotaxonomic analysis 

was performed.

Chemotaxonomy is de�ned as a taxonomic classi�cation 

method based on the chemical similarity of compounds 

identi�ed in the organisms/plants being classi�ed.32 Thus, 

we sought to investigate chemical molecules that serve as 

taxonomic markers of the Annonaceae.

Given the assortment of the secondary metabolites 

collected, the terpenes were selected for the chemotaxonomic 

studies because they were the predominant class (46% 

of metabolites). As mentioned earlier, terpenes can be 

classi�ed into mono-, di-, sesqui-, and triterpenes.

Among these four subclasses, about 50% of the terpenes 

were diterpenes. Annonaceae diterpenes have promising 

anti-in�ammatory activity, making compounds of this class 

excellent candidates for clinical trials in anti-in�ammatory 

therapy.33

Diterpenes represented a total of 366 unique chemical 

structures and 533 botanical occurrences; a botanical 

occurrence indicates that the compounds are present in 

several species.

These 533 botanical occurrences are distributed in two 

subfamilies, Annonoideae and Malmeoideae, which are the 

largest subfamilies of the Annonaceae and are distributed 

in 8 tribes, 13 genera and 50 species. The phylogenetic 

classification of the Annonaceae family proposed by 

Guo et al.6 was utilized.

The three tribes with the highest number of botanical 

occurrences and molecules were then selected for the 

self-organizing neural maps, as the high number of 

diterpenes allows for the recognition of chemical pattern 

among the tribes. These tribes were Annoneae, Xylopieae 

and Miliuseae, and Table 1 contains the botanical 

characteristics and quantities of the selected molecules.

The genera represented in each selected tribe are: 

Annona (Annoneae), Xylopia (Xylopieae), Polyalthia, 

Pseudouvaria, Piptostigma and Greenwayodendron 

(Malmeoideae). Malmeoideae is the most studied genera 

of these tribes.

Figure 2. Secondary metabolite classes isolated from the Annonaceae 

family.

Table 1. Botanical characteristics and occurrences of the diterpenes of the tribes Annoneae, Xylopieae and Miliuseae

Tribe Subfamily Genus Species Diterpenes Occurrences

Annoneae Annonoideae 1 11 150 179

Xylopieae Annonoideae 1 14 179 241

Miliuseae Malmeoideae 4 13 95 101

       Total: 521

Figure 3. Skeletons of the most abundant alkaloids and diterpenes in the 

Annonaceae family.
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For the 521 molecules of the three selected tribes, 

molecular descriptors were calculated using the 

DRAGON  7.0 software,34 which has 5270 descriptors 

organized in 30 logic blocks. From these three blocks 

of descriptors, 60 molecular descriptors were selected to 

consider ring descriptors, functional groups, and fragments 

of central atoms. 

The botanical occurrences were classified in the 

three selected tribes and the values of the 60 molecular 

descriptors were used as input data in the SOM Toolbox 

software.25 The self-organized matrix of diterpenes was 

then generated, classi�ed into the three aforementioned 

tribes according to the chemical similarity between them. 

Then, the classi�cation generated was compared with the 

phylogenetic classi�cation proposed by Guo et al.6 The 

phylogenetic classi�cation of Guo et al.6 can be seen in 

Figure 4.

In the generated maps, the hit rate using the two types 

of DRAGON 7.0 descriptors was > 77%. Thus, the 5-fold 

validation was performed for the generated SOM model, in 

which the diterpenes were divided into �ve training groups 

and �ve test groups, always maintaining the proportion 

of molecules from the three tribes (Annoneae, Xylopieae 

and Miliuseae). The results of the validation are described 

in Table 2.

Table 2, like Table 3, also describes the accuracy 

values for each training and test. Accuracy provides us 

with information about the overall performance of the 

model, indicating the overall hit rate. The values of this 

metric vary between 0 and 1, and the closer to 1 it indicates 

that the model is getting more correct in its classi�cation 

of molecules in terms of their tribes, that is, correctly 

classifying a molecule of the Annoneae tribe in the 

Annoneae tribe. Models with an accuracy greater than 0.70 

are already considered models of excellent performance.24

After analyzing Table 2, it is observed that the hit rate 

was overall > 70%, with the best hit rate of 95% for the 

Miliuseae tribe. The average hit rate of the test sets was 

80% and is very close to the average hit rate for the training, 

which was 83%, revealing not only the good predictive 

power of the model, but that the model is robust. The 

applicability domain was also analyzed and was > 99% of 

the predictions of the test sets.

To verify the tribes dependence on chemical similarity 

and the ability to separate them accordingly, chemotaxonomy 

analysis was performed using other machine learning 

algorithms such as the support vector machine (SVM) 

and the k-nearest neighbors’ algorithm k-NN, in addition 

to neural maps generated using the �ngerprint descriptors 

calculated by the DRAGON 7.0 software. The results are 

shown in Table 3 for this SOM analysis of the Annoneae, 

Xylopieae and Miliuseae tribes and like those in Table 2, 

the hit rates are excellent.

To visualize the generated SOM, we utilize a U-matrix 

and display it alongside a principal component analysis 

(PCA) which was developed from the correlation matrix 

of the database used in the generation of SOM. PCA is 

measured using eigenvectors with higher eigenvalues. In 

Figure 4. Phylogenetic diagram of the Annonaceae family (adapted from 

Guo et al.6).

Table 2. Accuracy statistics of the training and tests groups of the 5-fold cross-validation of the self-organizing map from the Annoneae, Xylopieae and 

Miliuseae tribes

Tribe Training 1 Training 2 Training 3 Training 4 Training 5 Average

Annoneae 0.89 0.90 0.80 0.80 0.78 0.83

Miliuseae 0.90 0.86 0.86 0.90 0.90 0.88

Xylopieae 0.77 0.76 0.85 0.86 0.85 0.82

Accuracy 0.83 0.83 0.83 0.84 0.84 0.83

Tribe Test 1 Test 2 Test 3 Test 4 Test 5 Average

Annoneae 0.83 0.70 0.77 0.86 0.70 0.77

Miliuseae 0.90 0.94 0.85 0.95 0.80 0.88

Xylopieae 0.71 0.89 0.83 0.67 0.85 0.79

Accuracy 0.79 0.83 0.81 0.79 0.78 0.80
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the projection of the PCA, the neighboring map units are 

connected by lines to make the visualization of the data on 

the map more clear and de�ned. The PCA performed has 

an explained variance of 37.04%, that is, using only two 

variables it is possible to visualize one third of the entire 

variance.

Figure 5 shows the U-matrix of the generated SOM 

where we can see a chemical pattern separating the three 

tribes Annoneae (blue), Xylopieae (red) and Miliuseae 

(green), which are best observed in the principal component 

analysis chart (PCA).

We can see that the Miliuseae tribe, despite having 

the fewest number of diterpenes and, consequently, the 

fewest botanical occurrences, was the tribe with the best 

hit rates (greater than 85% in all algorithms and different 

descriptors in SOM) and is more structurally distant from 

the Annoneae and Xylopieae tribes, corroborating Guo’s6 

phylogenetic classi�cation, seen in Figure 4.

Annoneae and Xyopieae are part of the same subfamily, 

Annonoideae, explaining the proximity of the two tribes 

in the SOM, while Miliuseae is part of the Malmeoideae 

subfamily, and is therefore further away. When observing 

the diterpenes present in the tribes present in the SOM 

(Figure 6), we can see that each tribe has a higher frequency 

of a certain subtype of diterpene. The subtypes present in 

the Annoneae and Xylopieae tribes, although different, 

maintain a certain chemical similarity in their skeletons, 

explaining once again the approximation of these two 

tribes in the SOM.

Figure 6 shows some of the isolated diterpenes in 

each of the analyzed tribes, focusing on the most frequent 

skeletons identi�ed from each tribe. The Miliuseae tribe 

has a clerodane subclass of diterpenes. The clerodane 

diterpene is able to undergo structural changes and generate 

some subtypes,35 and the kolava subtype is present in 

the Miliuseae tribe. The Annoneae and Xylopieae tribes 

have kaurane and trachylobane diterpenes, respectively. 

Although different, these subclasses have similarities 

in their chemical skeletons, even further supporting the 

closeness of the two tribes in the SOM.

The most signi�cant descriptors in the separation of 

each cluster (each tribe in SOM) are represented in Figure 7. 

For the Annoneae tribe, the descriptors that presented a high 

value were (i) NROH, which describes hydroxyl groups 

(OH) linked to aliphatic groups, (ii) nOHp descriptor that 

points to primary alcohols, (iii) C-006, which indicates 

CH2 carbons attached to a radical and that radical attached 

to an OH, and (iv) the descriptor O-056 that describes 

the alcohol function. Thus, these descriptors report that 

the diterpenes of this tribe are distinguished by the large 

number of hydroxyls in their chemical structure (Figure 6).

For the Xylopieae tribe, the most representative 

descriptors were nCIR, which indicates the number of 

circuits (rings/cycles connected to each other) present in 

the molecule, the RFD descriptor of ring melting density, 

Figure 5. Visualization of the SOM of Annonaceae diterpenes data. 

In the upper corner we have the U-matrix. The left U-matrix does not 

identify the tribes while the right U-matrix identi�es the tribes by color; 

Annoneae is blue, Xylopieae is red, and Miliuseae is green. The values 

shown on the scale between the two U-matrices represent the values of 

the molecular descriptors of the diterpenes, varying between 0.603 and 

5.96. These values were used to group the diterpenes by tribes. At the 

bottom, we have the PCA projection of the SOM measured by its two 

eigenvectors with higher eigenvalues. The tribes were plotted using the 

same identi�cation colors as the U-matrix.

Table 3. Summary of test averages corresponding to 5-fold cross-validation using the different machine learning algorithms and self-organizing map 

(SOM) with the �ngerprint descriptors for the Annoneae, Xylopieae and Miliuseae tribes

Tribe
SOM molecular descriptors 

average

SOM �ngerprint descriptors 

average
SVM average k-NN average

Annoneae 0.766 0.77 0.70 0.70

Miliuseae 0.88 0.92 0.81 0.85

Xylopieae 0.79 0.89 0.87 0.81

Accuracy 0.80 0.85 0.80 0.78

SVM: support vector machine; k-NN: k-nearest neighbors’ algorithm.
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Figure 6. Diterpenes of the most present subtypes in the Annoneae, Xylopieae, and Miliuseae tribes.

Figure 7. The most signi�cant descriptors for the Annoneae, Xylopieae and Miliuseae tribes. In (a) we have the U-matrix for the four most signi�cant 

descriptors in the grouping of the diterpenes of the Annoneae tribe. In (b), the U-matrix is shown for the three most signi�cant descriptors of the Xylopieae 

tribe. (c) Shows the U-matrix for the three most signi�cant descriptors of the Miliuseae tribe. Finally, in (d) we have the U-matrix of the self-organizing 

map generated in the study, with the upper U-matrix not identifying the tribes and the lower U-matrix identifying the tribes by color; Annoneae is blue, 

Xylopieae is red, and Miliuseae is green.
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and the RCI descriptor that provides information about 

the ring complexity of the molecule. These descriptors 

point to the presence of molecules with a large number 

of interconnected rings/cycles; as seen in Figure 6, the 

diterpenes of this tribe have many interconnected rings/

cycles and a certain degree of complexity.

For the Miliuseae tribe, the descriptors with the 

highest values were nConj, a descriptor that expresses the 

presence of non-aromatic C conjugates (sp2), NNRS, the 

normalized number of ring system, which accounts for 

both the ratio between the number of ring systems (NRS) 

and the cyclomatic number (nCIC, discriminates cyclic 

compounds from acyclics) to provide information related to 

the presence of aromatic rings in the chemical structure, and 

lastly the ARR descriptor. The ARR, aromatic ratio, is the 

ratio of the number of aromatic bonds to the total number 

of bonds in the molecule. These descriptors reveal that the 

diterpenes of this tribe have an aromatic ring and conjugated 

non-aromatic bonds, which can also be seen in Figure 6.

An article by Scotti et al.,15 constructed a SOM with 

nuclear magnetic resonance (NMR) data of 118 diterpenes 

from three genera of the Annonaceae, the genera Xylopia, 
Polyalthia and Annona. The SOM was able to separate 

the diterpenes of the three genera with the NMR data and 

speci�c chemical displacement values of 13C were observed 

for the skeletal carbons of each type of diterpenes of each 

genus. Kauranes skeletons were found for Annona, while 

trachylobans were found for Xylopia and clerodanes were 

found for Polyalthia.

Review papers concerning the Annona genus and some 

of its species have suggested that ent-kauranes are the most 

abundant diterpenes.36-38 A review by Barbosa and Vega,9 

highlights that diterpenes are the second most common 

class of secondary metabolites in species of the Xylopia 

genus, with kaurane, labdane, atisane and trachylobane 

diterpenes being the most frequent. Of these, trachylobanes 

are considered as chemotaxonomic markers of Xylopia as 

they are the most abundant in Xylopia and are dif�cult to 

�nd elsewhere in Annonaceae.9,39 

The four genera selected from the Miliuseae tribe 

are those with the most phytochemical studies, with 

the Polyalthia and Pseuduvaria genera being the most 

chemically and biologically studied of the tribe. As in the 

other genera, there are studies in the literature that show that 

the most isolated diterpenes of Polyalthia and Pseuduvaria 

species are clerodanes.40-43

Conclusions

The literature corroborates the information obtained 

in this study. In this way, this study of Annonaceae 

diterpenes establishes a way to separate the Annoneae, 

Xylopieae and Miliuseae tribes in accordance with the 

family’s morphological and taxonomic separation. This 

phenomenon makes it possible to predict the location 

of a certain diterpene in the Annoneae, Xylopieae and 

Miliuseae tribes of the Annonaceae and to search for 

these secondary metabolites and their biological potentials 

more effectively.

Methodology

Construction of the Annonaceae database

The articles used for the construction of the database 

were selected by means of an electronic search in the Web 

of Science research base, and were composed of studies 

and literature reviews on secondary metabolites isolated in 

plants of the Annonaceae. The following terms were used in 

the search for scienti�c articles: “Annonaceae”, “secondary 

metabolites”, “terpenes”, “alkaloids”, “�avonoids”. All 

secondary metabolites, the species from which they were 

isolated, and the geographic locations will be registered 

on the SISTEMATX44 web tool and developed by the 

Chemistry Laboratory of the Postgraduate Course on 

Natural and Bioactive Synthetic Products.45

Obtaining structures in three dimensions of compounds

For all structures, SMILES codes were used as 

input data for Marvin v. 19.27.0.46 It was also used the 

Standardizer software47 which made it possible to convert 

the various chemical structures into personalized canonical 

representations. This standardization is extremely important 

to create libraries of consistent compounds, in addition to 

canonizing the structures, adding hydrogens, aromatizing 

molecules, generating the 3D structures, and saving the 

compounds in SDF format.

Obtaining the molecular descriptors

Molecular descriptors are used to calculate the 

physicochemical properties of the molecules of each set 

of molecules. To obtain the molecular descriptors, the 

DRAGON 7.0 program34 was used.

The DRAGON 7.0 software34 can calculate 5270 

molecular descriptors, covering several approaches. These 

molecular descriptors are arranged in 30 logic blocks.34 

Of the 30 blocks of molecular descriptors available in 

the Dragon 7.0 software,34 only the ring descriptors, 

functional groups, and fragments of central atoms blocks 

were selected.
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Pre-processing of data

In this step, the variables/descriptors were selected. 

This selection tactic is used to identify those descriptors 

that are most important for the grouping of the diterpenes 

and in this case were mostly related to the tribes. The 

selection of descriptors is an important step that must be 

carried out before the generation of the model, since it is 

useful for reducing the dimensionality of the data, helping 

to obtain a generic and not over-adjusted model, reducing 

computational cost, simplifying extraction processes 

and transformation of data, and further simplifying the 

presentation and demonstration of data.48 In short, this step 

helps to reduce over�tting, increases the accuracy of the 

model, and reduces training time. 

The pre-treatment criteria removed descriptors that 

had equal values in the series, ones that only a different 

value, and ones that had a correlation greater than 0.99. 

The majority of descriptors end up being removed, as many 

were inter-correlated, such that the independent variable 

remained the most correlated with the dependent variable.

Self-organizing maps (SOMs)

For the realization of the neural maps, the selection 

of molecular descriptors was performed for the bank of 

isolated molecules of the Annonaceae. The functional 

group, central atom, and ring descriptors were selected. 

Then, the constant variables for each block of descriptors 

and those with a different value in the series were 

excluded.

The molecular descriptors selected were analyzed with 

SOMs in Matlab 6.5 and SOM Toolbox 2.0.25,26,49 The SOM 

Toolbox tool is a set of Matlab functions that can be used 

for the elaboration and implementation of neural networks, 

since it contains functions for the creation, visualization, 

and analysis of self-organizing maps. The data set was 

presented to the network before any adjustments were 

made. Subsequently, the data group was partitioned 

according to the regions of the weight vectors of the map, 

in each training stage. Then, the correct prediction of these 

sets and the total correct predictions of the compounds 

were evaluated. In the most relevant models, the set was 

divided into training and test sets to assess the forecasting 

capacity. Training and test performance were assessed 

by calculating the proportion of the number of samples 

correctly classified by SOM. For each map, 5 cross-

validations were performed, being partitioned into 80% 

training and 20% testing. In the SOM, sites containing 

molecules for each descriptor were identi�ed to highlight 

existing chemical patterns.

SVM and k-NN models

Knime 3.6.2 software50 was used to perform all the 

following analyzes. The class descriptors and variables 

were imported from the Dragon 7.0 software34 and, for 

each, the data was divided into the “partitioning” node 

with the “strati�ed sample” option to create a training set 

and a set of tests, covering 80 and 20% of the compounds, 

respectively. Although the compounds were selected at 

random, the same proportion of active and inactive samples 

was maintained in both sets. Two models were generated 

using the support vector machine (SVM) algorithm51 and 

the K-nearest neighbors’ algorithm (k-NN).52 An external 

cross-validation was modeled 5 times.

SVM is a supervised machine learning algorithm that 

analyzes data and recognizes patterns.51,53 The parameters 

selected for the SMV for all the models generated were 

polynomials, with power 1.0, bias 1.0, and range 1.0.

k-NN consists of instance-based machine learning as the 

function and is approximated only locally (neighbors) so the 

entire calculation is postponed until classi�cation.53,54 It is a 

technique that gives weight to the contributions of neighbors, 

so that the closest neighbors contribute more to the average 

than the more distant ones.52-54 The parameters selected for 

the SVM for all the generated models were k = 3.
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