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Fungi and plants are rich sources of thousands of secondary metabolites. The genetically

coded possibilities for secondary metabolite production, the stimuli of the production,

and the special phytotoxins basically determine the microscopic fungi-host plant

interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary

metabolites usually with antifungal effect as well as the importance of signaling molecules

in induced systemic resistance and systemic acquired resistance processes. The review

also concerns the mimicking of plant effector molecules like auxins, gibberellins and

abscisic acid by fungal secondary metabolites that modulate plant growth or even can

subvert the plant defense responses such as programmed cell death to gain nutrients for

fungal growth and colonization. It also looks through the special secondary metabolite

production and host selective toxins of some significant fungal pathogens and the plant

response in form of phytoalexin production. New results coming from genome and

transcriptional analyses in context of selected fungal pathogens and their hosts are also

discussed.

Keywords: host-pathogen interaction, phytotoxin, phytoalexin, secondary metabolite, mycotoxin

Introduction

Phytopathogenic fungi that are basically classified as necrotrophs, hemibiotrophs and biotrophs
constitute one of the main infectious agents in plants, causing alterations during developmental
stages including post-harvest, gaining nutrients from the plants they invade and, therefore,
resulting in huge economic damage. Plants and fungi are rich sources of thousands of secondary
metabolites (SMs), which consist of low-molecular weight compounds (the number of the
described compounds exceeds 100,000) that are usually regarded as not essential for life while
their role are quite versatile (Perez-Nadales et al., 2014; Scharf et al., 2014). Here, our primary
aims were to overview the fungal-plant interactions and summarize special SM productions
(e.g., phytotoxins and phytoalexins) in context of these interactions. Furthermore, the review
also considers data from new fungal genome and transcriptome analyses. These data have

Abbreviations: ABA, abscisic acid; AF, aflatoxin; AF B1, aflatoxin B1; AF B2, aflatoxin B2; AF G1, aflatoxin G1; DMATS,
dimethylallyl tryptophan synthetase; DON, deoxynivalenol; ET, ethylene; FB1, fumonisin B1; FB2, fumonisin B2; JA, jasmonic
acid; IAA, indole-3-acetic acid; ISR, induced systemic resistance; HST, host-selective toxin; NHST, non host-selective toxin;
NRPS, non-ribosomal protein synthase; PCD, programmed cell death; PKS, polyketide synthase; PR, pathogenesis-related;
ROS, reactive oxygen species; SA, salicylic acid; SAR, systemic acquired resistance; SM, secondary metabolite; TS, tryptophan
synthetase; ZEA, zearalenone.
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hypothesized the biosynthesis of a much wider spectrum of SMs
than we have actually isolated and characterized, and which
could have strong effect on crop quality. In addition, these data
proposed more possible physiological activities for the SMs than
we thought before.

Phytopathogenic Fungi

Lifestyle of Phytopathogenic Fungi
While the initial phases of pathogenesis do not differ
fundamentally between necrotrophs, hemibiotrophs and obligate
biotrophic fungi, different strategies are used to acquire nutrients.
Necrotrophic fungi have broader host ranges than biotrophs
and often enlist cell-wall-degrading enzymes and toxins, which
can be small peptides or SMs (Howlett, 2006). In contrast to
necrotrophic and hemibiotrophic fungal pathogens, obligate
biotrophs are entirely dependent on living plant tissue and
characterized by a number of sophisticated infection structures
including appressoria, penetration hyphae and infection hyphae
allowing the invader to suppress plant defense responses and to
gain excess to host nutrients (reviewed by Mendgen and Hahn,
2002; Schulze-Lefert and Panstruga, 2003). Biotrophs establish
haustoria for nutrient uptake (Panstruga, 2003), suppress
induction of host defense and reprogram metabolism (Biemelt
and Sonnewald, 2006). Biotrophic fungi and their metabolism
has been studied on nonobligate biotrophs, such asCladosporium
fulvum (Thomma et al., 2005),Magnaporthe grisea (Talbot, 2003)
and Mycosphaerella graminicola (Palmer and Skinner, 2002;
Deller et al., 2011). Much less is known about the obligate
biotrophs, such as powdery mildews or rust fungi. However, it
appears that biotrophy is associated with a convergent loss of
secondary metabolic enzymes and reduction in genes encoding
specific transporters of toxin secretion and extrusion of host
defense compounds usual in necrotrophic fungi. Nevertheless,
the infection strategy of necrotrophic fungi is less complex
than that of obligate biotrophs. Appressoria formed by typical
necrotrophs such as Cercospora, Ramularia, Rhynchosporium,
Alternaria, Fusarium, Botrytis, Helminthosporium, Sclerotinia,
or Verticillium species, are inconspicuous, and infection
hyphae formed within the host are quite uniform (reviewed
by Horbach et al., 2011). Condon et al. (2013) suggested that,
while necrotrophs and hemibiotrophs employ fundamentally
contrasting mechanisms of promoting disease, the tools they
utilize e.g., host-selective toxins (HST) and protein effectors
basically overlap.

It cannot be forgot that there are numerous examples of fungi
associated with plants as symptomless endophytes (e.g., black
Aspergilli, Penicillia). However, in association with host plants,
the symptomless endophytes have the capacity to either develop
as pathogens or saprophytes, and in either state can become
producers of mycotoxins (Palencia et al., 2010), rich sources of
effector molecules.

Fungal Secondary Metabolites
Fungal SMs can be divided into four main chemical classes:
polyketides, terpenoids, shikimic acid derived compounds,
and non-ribosomal peptides. Moreover, hybrid metabolites

composed of moieties from different classes are common, as in
the meroterpenoids, which are fusions between terpenes and
polyketides. Analysis of available fungal genomes revealed that
ascomycetes have more genes of secondary metabolism than
basidiomycetes, archeo-ascomycetes, and chytridiomycetes,
whereas hemi-ascomycetes and zygomycetes have none
(Collemare et al., 2008). Ascomycete genomes code for on
average 16 polyketide synthases (PKS), 10 non-ribosomal
protein synthases (NRPS), two tryptophan synthetases (TS),
and two dimethylallyl tryptophan synthetases (DMATS) with
crucial importance in SM synthesis. These types of SM genes
encode signature enzymes that can be enriched in secondary
metabolism gene clusters and responsible for main synthesis
steps of metabolites. PKS–NRPSs have been identified only
in ascomycetes, with an average of three genes per species.
Neurospora crassa as well as human pathogens Coccidioides spp.
and Histoplasma capsulatum have a lower number of PKSs (1–9
genes), NRPS (3–6 genes) and PKS-NRPSs (0–2 genes) than
other ascomycetes. High number of fungal species have more
than 40 genes encoding PKS, NRPS, hybrids, TS, and DMATS in
their genome, including M. grisea (45 genes) (Collemare et al.,
2008) (Table 1). Synthesis of siderophores, a class of SMs for
iron uptake also involves a NRPS that is also very important for
the virulence of several fungi (e.g., Cochliobolus heterostrophus,
C. miyabeanus, F. graminearum, and A. brassicicola) (Oide et al.,
2006).

Whole-genomic analysis have identified 12–15 PKS genes
in F. graminearum (Kroken et al., 2003; Gaffoor and Trail,
2006; Gao et al., 2014; Sieber et al., 2014), where six have been
linked to metabolites. The remaining PKSs have no assigned
products yet even though they were expressed under tested
conditions. In F. graminearum, the genes with known functions
(13 SM genes) cover only a minor fraction of the 51 predicted
SM genes: 15 PKSs, 19 NPSs and 17 TSs were identified
(Sieber et al., 2014). Besides the classical SM genes (TS, NPS,
and PKS) the 114 predicted genes encoding cytochrome P450
enzymes are also suitable candidates for searching SM gene
clusters. Cytochrome P450s play an essential role in many known
biosynthetic pathways of fungal compounds, for instance in the
biosynthesis of trichothecene mycotoxins (Tokai et al., 2007) and
gibberellins (Hedden et al., 2001) (Figure 1).

In the Macrophomina phaseolina anamorphic fungus from
the ascomycete family Botryosphaeriaceae, Islam et al. (2012)
identified 75 putative SM genes compared with 32 in M. grisea,
37 in B. cinerea, 29 in S. sclerotiorum, and 37 in F. graminearum.
A high number of NRPSs which catalyze the production of cyclic
peptides including numerous toxins were also found (Table 1).
In M. phaseolina an NRPS, which showed 46% identity to
Cochliobolus carbonum HST1, the key enzyme responsible for
the biosynthesis of the maize HST cyclic tetrapeptide HC-toxin
(Figure 2) (Panaccione, 1993; Walton, 2006). In 10 different
Fusarium species including F. graminearum, F. verticillioides,
F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi,
F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum
comparative analyses of PKSs and NRPSs led to identification of
52 NRPSs and 52 PKSs orthology groups, respectively (Hansen
et al., 2015). A core collection of eight NRPSs (NRPS2–4, 6,
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TABLE 1 | Distribution of secondary metabolite gene families in selected pathogenic fungi.

Species PKSa PKS-like NRPSb NRPS-like Hybridc DMATd Total References

A. alternata 10 n.d.e n.d. n.d. n.d. n.d. ∼10 Saha et al., 2012

A. arborescens 29 n.d. 5 n.d. 2 n.d. ∼36 Hu et al., 2012

C. fulvum 10 n.d. 10 n.d. 2 1 ∼23 de Wit et al., 2012

C. lunatus CX-3 16 1 6 10 2 1 36 Gao et al., 2014

C. lunatus m118 14 1 5 9 2 2 33 Gao et al., 2014

C. heterostrophus C5 22 3 9 7 0 3 44 Gao et al., 2014

C. zea-maydis 11 2 7 8 1 1 30 Gao et al., 2014

P. nodorum 12 9 9 5 1 2 38 Gao et al., 2014

P. tritici-repentis 14 6 12 6 1 0 39 Gao et al., 2014

P. teres f. teres 18 1 27 n.d. 2 1 ∼49 Amselem et al., 2011

B. cinerea 16 6 6 8 0 1 37 Islam et al., 2012

S. sclerotiorum 16 2 5 5 0 1 29 Islam et al., 2012

M. grisea 12 3 5 6 3 3 32 Islam et al., 2012

M. oryzae 23 2 8 6 5 3 47 Gao et al., 2014

A. flavus 25 3 18 14 2 8 70 Gao et al., 2014

A. niger 15 1 12 2 5 0 35 Amselem et al., 2011

F. graminearum 12 2 10 10 0 0 34 Gao et al., 2014

S. turcica 23 3 9 7 2 2 46 Gao et al., 2014

M. phaseolina 19 16 15 13 12 0 75 Islam et al., 2012

Listed organisms: Alternaria alternata; Alternaria arborescens; Cladosporium fulvum; Cochliobolus lunatus CX-3; Cochliobolus lunatus m118; Cochliobolus heterostrophus C5;

Cercospora zea-maydis; Phaeosphaeria nodorum; Pyrenophora tritici-repentis; Pyrenophora teres f. teres; Botrytis cinerea; Sclerotinia sclerotiorum; Magnaporthe grisea; Magnaporthe

oryzae; Aspergillus flavus; Aspergillus niger; Fusarium graminearum; Setosphaeria turcica; Macrophomina phaseolina.
apolyketide synthase.
bnon-ribosomal peptide synthase.
cPKS-NRPS hybrid.
ddimethylallyl tryptophan synthetase.
enot determined.

10–13) and two PKSs (PKS3 and PKS7) were only conserved in
the investigated strains. The genome of the saprophytic model
organism A. nidulans contained 56 putative SM core genes
including 27 PKS, two PKS-like, 11 NRPS, 15 NRPS-like genes,
and one hybrid NRPS-PKS gene (Yaegashi et al., 2014).

The genome sequences of B. cinerea and Sclerotinia
sclerotiorum were determined by Amselem et al. (2011).
The B. cinerea genome showed high sequence identity and a
similar arrangement of genes to S. sclerotiorum. The genomes
contained a significant number of genes encoding key SM
enzymes (Islam et al., 2012), however, the two fungi differed
strikingly in the number and diversity of SM gene clusters, which
may be involved in the adaptation to different ecological niches
(Islam et al., 2012). These fungi had the potential to produce∼26
and 40 main SMs, respectively, as some SM pathways have more
than one key enzyme (Amselem et al., 2011).

Stimuli in Fungal SM Production
A high degree of environmental interaction, particularly sources
of abiotic stress for either the host or the fungus such as
drought or heat stress, also affect on the interactions (e.g.,
Fountain et al., 2014). Fungal genes involved in stress related
responses, especially to oxidative stress, are highly represented in
phytopathogenic fungi (see e.g., FSRD: Fungal Stress Response
Database; Karányi et al., 2013) and fungal SM toxins often
play a role in triggering these responses. Some fungal SMs,

such as pigments, polyols and mycosporines, are associated with
pathogenicity and/or fungal tolerance to several stress-inducing
environmental factors, including temperature and UV light
(Sinha et al., 2007). Moreover, environmental factors (e.g., light,
temperature, pH, calcium, and nutrients) regulate SM production
in a concerted way.

Light is a requirement for deoxynivalenol (DON) toxin
(Figure 3) to exert its deleterious effect similarly to the induction
of programmed cell death (PCD) during Botrytis infections
(Govrin and Levine, 2002). This might reflect the plant’s need
for light to produce reactive oxygen during the oxidative burst
(Howlett, 2006). Meanwhile, regulation of toxin production is
also light-dependent (Avalos and Estrada, 2010) through one of
the most important light-regulatory protein complex, the velvet
complex, comprising at least FgVe1 and FgVeB in Fusarium with
homologous components in other fungi (Yang et al., 2013; Amare
and Keller, 2014). FgVe1 homolog VeA has been demonstrated to
regulate trichothecene production at the level of the biosynthetic
genes Tri4 and Tri5 and the transcriptional regulator genes Tri6
and Tri10 (Jiang et al., 2011; Merhej et al., 2012). Disruption of
VeB gene led to several phenotypic defects, including suppression
of aerial hyphae formation, reduced hyphal hydrophobicity,
highly increased conidiation and reduced DON biosynthesis
through the regulation of Tri5 and Tri6 (Jiang et al., 2012).
Deletion of LaeA (a nuclear regulator from the velvet complex)
homolog Lae1 in F. verticillioides resulted in reduced expression
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of gene clusters responsible for synthesis of the SMs bikaverin,
fumonisins (Figure 3), fusaric acid and fusarins (Figure 3).
Analysis of SMs in the F. verticillioides LAE1 mutant revealed
differences of regulation from that of in F. fujikuroi LAE1mutant
(Wiemann et al., 2010) as bikaverin production was reduced,
but the amount of fumonisin B1 (FB1) (Figure 3) remained
unchanged (Butchko et al., 2012).

Nitrogen limitation have appeared to be an essential stimulus
for the activation of virulence functions in phytopathogenic
fungi. The ability to metabolize a wide variety of nitrogen sources
enables fungi to colonize different environmental niches and
survive nutrient limitations (Tudzynski, 2014). Amino acids
are required for SM biosynthesis, especially for the NRPS.
Amino acid limitation in fungi results in the induction of a
genetic network that induces genes for enzymes of multiple
amino acid biosynthetic pathways as well as for aminoacyl-tRNA
synthases. Inorganic N sources are also affect SM production.
Ammonium activated the expression of aflatoxin (AF) (Figure 4)
genes (Feng and Leonard, 1998), while nitrate served as an
inhibitor of AF biosynthesis of Aspergillus parasiticus (Bagheri-
Gavkosh et al., 2009). In all fungal species studied, the major
GATA transcription factor AreA and its co-repressor Nmr were
central players of the nitrogen regulatory network (Tudzynski,
2014). The importance of global nitrogen regulators for the
development of pathogenicity was shown for M. grisea (Talbot
et al., 1997) and many other fungal plant pathogens, e.g.,
Colletotrichum lindemuthianum, C. acutatum, and F. oxysporum
(Kroll et al., 2014). In F. graminearum, which causes crop
disease, nitrogen starvation activated the trichothecene pathway
and induced the biosynthesis of the DON toxin (Figure 3)
that was identified as a virulence factor (Desjardins et al.,
1993; Audenaert et al., 2014), similar to the host selective
T-toxin from Cochliobolus heterostrophus (Bipolaris maydis)
(Turgeon and Baker, 2007) and the cyclic peptide AM-toxin
(Figure 2) from Alternaria alternata (Markham and Hille,
2001).

Fungal toxin production is also regulated by signals or
even substrates from plant. The well-characterized oxylipins (a
group of diverse oxygenated polyunsaturated fatty acids) such
as jasmonic acid (JA) (Figure 1) and its immediate precursor
12-oxo-phytodienoic acid are formed enzymatically in plants
and accumulate in response to various stresses, in particular
wounding and pathogen infection (Wasternack, 2007). These
compounds are also formed non-enzymatically via the action
of reactive oxygen species (ROS) (Wu and Ge, 2004), which
also accumulate in response to pathogen infection, heavy metal
uptake, or other stresses.

Fungal species have been shown to harbor or secrete JA and
its derivatives (Miersch et al., 1999). Fungal oxylipins are able
to mimic plant oxylipins; therefore, a reciprocal crosstalk was
proposed between plant and fungus (Brodhagen et al., 2008), and
several examples have proven this theory. The tomato-infecting
F. oxysporum produced JAs using a lipoxygenase enzyme related
to those found in plants, suggesting that JA biosynthesis in
pathogenic fungi occurs via a pathway similar to that in
plants (Brodhun et al., 2013). In Aspergillus flavus, oxylipins
are molecules of quorum sensing. At low extracellular oxylipin

FIGURE 1 | Chemical structures of some plant hormones. Source:

National Center for Biotechnology Information. PubChem Compound

Database (accessed Jun. 6, 2015) (Bolton et al., 2008).

concentration the cultures were characterized by increased
sexual reproduction (sclerotia production), reduced conidiation
(Horowitz Brown et al., 2008) and increased AF biosynthesis
(Horowitz Brown et al., 2008; Affeldt et al., 2012; Amare
and Keller, 2014). Moreover, deletion of oxylipin-encoding
dioxygenase genes (ppo genes) of A. flavus resulted in decreased
pathogenicity on host seeds. Exposure to the exogenous plant
oxylipins 9(S)-hydroperoxyoctadecadienoic (9(S)-HpODE) acid
and 13(S)-hydroperoxyoctadecadienoic acid (13(S)-HpODE)
influenced positively the sporulation and effected precursor
sterigmatocystin and AF synthesis in A. flavus as well as in A.
nidulans and A. parasiticus (Calvo et al., 1999). In a lipidomic
approach, Scarpari et al. (2014) have proven the important
role of maize oxylipins in driving SM production in A. flavus;
however, the mechanism of the action has been remained
unsolved.

Effects of Phytotoxins on Host Plant
Fungal phytotoxins are usually divided into host-selective toxins
(HSTs) and non-host selective (NHSTs) toxins. Typically, HSTs
are active only toward host plants, have unique modes of
action and toxicity to the host (Otani et al., 1995); moreover,
the production of the HSTs is crucial for the virulence of
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these fungi (Walton, 1996; Horbach et al., 2011; Tsuge et al.,
2013). Nearly all HSTs identified so far are produced by
necrotrophic pathogens of the order of Pleosporales within
the class of Dothideomycetes and especially in Alternaria and
Cochliobolus species (Friesen et al., 2008; Stergiopoulos et al.,
2013). These HST toxins are diverse chemically ranging from
low-molecular-weight compounds to cyclic peptides. Genes
encoding polypeptides for biosynthesis of these HSTs have been
shown to reside on a conditionally dispensable chromosome
that controls host-specific pathogenicity (Hatta et al., 2002). The
mechanism of host-selective pathogenesis, through the HSTs,
is well understood and about 20 HSTs have been documented
(Otani et al., 1995; Walton, 1996). In some cases, host sensitivity
was mediated by gene-for-gene interactions, and the toxin
sensitivity was mandatory for disease development (Wolpert
et al., 2002). Contrarily, NHSTs are not primary determinants
of host range and not essential for pathogenicity, although they
may contribute to virulence. These toxins have a broader range
of activity, causing symptoms not only on hosts of the pathogenic
fungus but also on other plant species (Walton, 1996).

Several microbial phytotoxic compounds either inhibited an
amino transferase or appeared to have such a mode of action, like
cornexistin (Figure 5) from Paecilomyces variotii (Amagasa et al.,
1994), which was patented as an herbicide; or tentoxin (Figure 2),
a cyclic tetrapeptide from A. alternata, which indirectly inhibited
the chloroplast development (Halloin et al., 1970). A series
of structurally related fungal metabolites specifically inhibited
ceramide synthase (sphinganine-N-acyltransferase) in plants,
e.g., several analogs of AAL-toxin (A. alternata) (Figure 2)
and FB1 (Figure 3) (Fusarium spp.) (e.g., Abbas et al.,
1994). Fusicoccin (Figure 5) [Fusicoccum (Phomopsis) amygdali]
irreversibly activated the plant plasma membrane H+-ATPase
(Paiardini et al., 2014). Alternariol (Figure 2) and monomethyl
alternariol are natural phytotoxins, produced by Nimbya and
Alternaria, inhibited the electron transport chain (Demuner
et al., 2013). Cerulenin (Figure 5) (Cephalosporium cerulens)
inhibited de novo fatty acid synthesis in plastids (Laskay
et al., 1985). T-toxin (a family of C35 to C49 polyketides)
from C. heterostrophus (Levings et al., 1995; Inderbitzin et al.,
2010), which is a HST trichothecene phytotoxin, inhibited
mitochondrial respiration by binding to an inner mitochondrial
membrane protein in sensitive plants, resulting in pore
formation, leakage of NAD+, and other ions, as well as
subsequent mitochondrial swelling (reviewed by Rocha et al.,
2005). Zinniol (Figure 2) (Alternaria species and one Phoma
species) bound plant protoplasts and stimulated Ca2+ entry into
cells (Thuleau et al., 1988). The availability of fungal genome
sequences, the knowledge of the biosynthesis of these toxins and
gene disruption techniques, allows the development of tools for
discovering the role of more and more toxins in plant cell death
and disease.

Secondary Metabolite Production on the
Host’s Side

Based on their biosynthetic origins, plant SMs can be
divided into three major groups, (i) flavonoids and allied

phenolic and polyphenolic compounds, (ii) terpenoids, (iii)
nitrogen-containing alkaloids and sulfur-containing compounds,
while other researchers have classified plant SMs into more
specific groups (Wink, 2003) (Table 2). Plant SMs functions as
defense molecules against microbes, viruses or other competing
plants or as signal molecules like hormones and attracting
molecules for pollinators or seed dispersal animals. Therefore,
these compounds have importance for survival and fitness (Wink,
2003).

FIGURE 2 | Structures of representatives of Alternaria SMs. Source:

National Center for Biotechnology Information. PubChem Compound

Database (accessed Jun. 6, 2015) (Bolton et al., 2008).
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Hormone Production and Plant Resistance
Hormone biosynthetic pathways are typically involved in
the regulation of plant resistance to pathogens and pests.
Endogenous signaling molecules, e.g., ethylene (ET) (Ton et al.,
2002), SA (Figure 1; Janda and Ruelland, 2014), JA (Figure 1;
Wasternack, 2007; Van der Ent et al., 2009) and abscisic acid
(ABA; Figure 1) (Hauser et al., 2011) have been associated
with plant defense signaling against biotic stress. Generally, SA
signaling induces defense against biotrophic pathogens, whereas
JA against necrotrophic pathogens (Glazebrook, 2005).

SA synthesis is a crucial way a plant responds to a biotic
attack and involved in both local and systemic resistance (Janda
and Ruelland, 2014). Systemic acquired resistance (SAR) is a
plant immune response (Shah et al., 2014) that is induced after
a local infection and confers immunity throughout the plant

FIGURE 3 | Structures of representatives of Fusarium SMs. Source:

National Center for Biotechnology Information. PubChem Compound

Database (accessed Jun. 6, 2015) (Bolton et al., 2008).

to a broad spectrum of pathogens. The onset of SAR (Durrant
and Dong, 2004) is usually associated not only with increased
levels of SA but additional small metabolites (Figure 6) have also
been involved as effectors. Some of these metabolites have been
implicated in the rapid activation of defenses in SAR in response
to subsequent exposure to the pathogen that called priming (Shah
et al., 2014).

The induced systemic resistance (ISR) pathway is stimulated
during necrotrophic bacterial attack but was shown to protect
Arabidopsis against the necrotrophic fungal pathogensAlternaria
brassicicola (Ton et al., 2002), Botrytis cinerea (Van der Ent
et al., 2008) and also Plectosphaerella cucumerina (Segarra et al.,
2009), where SAR was ineffective (Van der Ent et al., 2009).
Investigations of the regulation of ISR revealed the role of JA and
ET (Ton et al., 2002; Yan et al., 2002; Kazan and Lyons, 2014).
SAR and ISR were characterized by the coordinated activation
of pathogenesis-related (PR) genes, many of which encode PR
proteins with antimicrobial activity such as chitinases (Van Loon
et al., 2006). Soluble chitin fragments released from fungal cell
wall through the action of plant chitinases were found to serve
as biotic elicitors of defense-related responses like phytoalexin
synthesis in plants (Ren and West, 1992; Walker et al., 2003).
ISR-related effect of methyl JA and SA was shown to activate also
some defense enzymes (Derksen et al., 2013), which play a role to
save plant cell wall and also raise the antioxidant capacity in plant
cells (Yao and Tian, 2005).

The main auxin in higher plants, indole-3-acetic acid
(IAA) (Figure 1), has profound effects on plant growth and
development (Zhao, 2010). Only the free form of IAA and related
compounds are considered to be active. Themajority of produced
auxin, however, is conjugated mainly to amino acids and sugars
and thereby inactivated. IAA induces e.g., the production of
expansins, the proteins whose function is to loosen the cell wall.
But, the loose cell wall is more vulnerable to the invasion of
different types of pathogens (Ludwig-Müller, 2011). Similarly
to bacterial pathogens, hemibiotrophic or necrotrophic fungi
produced IAA, manipulated plant growth and subverted plant
defense responses such as PCD to provide nutrients for their
growth and colonization (Ludwig-Müller, 2015). Magnaporthe
oryzae secreted IAA in its biotrophic phase especially in the
area of the infection hyphae (Tanaka et al., 2011) and, in turn,
provoked rice to synthesize its own IAA at the infection sites (Li
et al., 2013). However, it has not been elucidated yet whether IAA
production is for the manipulation of the host plant or also for
the fungus’s own benefit. The activation of an auxin-inducible
promoter by fungal IAA indicated that the host plant responds
transcriptionally to the secreted auxin. The molecular processes
that lead to plant disease and also the prospects for sustainable
control were reviewed by Wilson and Talbot (2009). Treatment
of F. culmorum infected barley with IAA resulted in a reduction
of symptoms and yield losses, even though IAA did not inhibit
the growth of the fungus in vitro. The results indicated increases
in the gene regulation for defense-associated genes (Petti et al.,
2012).

Plant gibberellins are important phytohormones promoting
plant growth and fungi also synthesize gibberellins among other
several important terpenes (Keller et al., 2005; Khan et al., 2011).
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FIGURE 4 | Structures of representatives of Aspergillus SMs. Source: National Center for Biotechnology Information. PubChem Compound Database

(accessed Jun. 6, 2015) (Bolton et al., 2008).

However, higher plants and fungi have evolved their complex
gibberellic acid (Figure 1) biosynthetic pathways convergently as
it was indicated by the amino acid sequence homology analysis
of the proteins in their biosythetic pathways (Hedden et al.,
2001). Nevertheless, gibberellic acids produced as SMs in the
rice-infecting F. fujikuroi were good examples of phytohormone
mimics (Bömke and Tudzynski, 2009). Fungal gibberellins were
involved in plant infection, e.g., as growth modulators like IAA,
cytokinins, and ABA (Figure 1). Interestingly, other Fusarium
species seem to have lost the ability to synthesize gibberellic
acid, suggesting that this is an advantage for F. fujikuroi over
other pathogens (Wiemann et al., 2013). Aspergillus fumigatus
also produced gibberellins, and the role of this fungal species
was also rectified by its regulatory effect on other phytohormones
(ABA, SA, and JA) under stress condition (Khan et al., 2011).

Plant Secondary Metabolites–Antifungal
Compounds
Most of the SMs like phytocassanes (Koga et al., 1995) have
been reported to have antifungal properties at least in vitro.
The flavonoids and allied phenolics, e.g., coumarins, lignans,
and polyphenolic compounds, including tannins and derived
polyphenols form one major group of phytochemicals (reviewed
by Crozier et al., 2008). These compounds or their precursors
are present in high concentrations in leaves and the skin of
fruits and are involved in important defense processes such as
UV resistance, pigmentation, disease resistance, stimulation of
nitrogen-fixing nodules (Pierpoint, 2000). Phenolic compounds
(reviewed by Balasundram et al., 2006) are derivatives of
the pentose phosphate, shikimate, and phenylpropanoid
pathways in plants. These are known to alter microbial
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FIGURE 5 | Phytotoxic SM molecules from diverse fungi. Cornexistin

from Paecilomyces variotii, fusicoccin from Fusicoccum (Phomopsis) amygdali,

cerulenin Cephalosporium caerulens and botrydial from Botrytis

cinerea.Source: National Center for Biotechnology Information. PubChem

Compound Database (accessed Jun. 6, 2015) (Bolton et al., 2008).

cell permeability and to interact with membrane proteins,
which cause deformation in the structure and functionality
of these proteins. These disadvantageous changes may lead
to dysfunction and subsequent disruption of the membranes
including the following events: (i) dissipation of the pH gradient
and electrical potential components of the proton motive
force, (ii) interference with the energy (ATP) generating and
conservation system of the cell; (iii) inhibition of membrane-
bound enzymes, and (iv) prevention of substrate utilization
for energy production (De Oliveira et al., 2011; El-Mogy and
Alsanius, 2012).

Antimicrobial compounds such as the steroidal glycoalkaloid
saponins, e.g., avenacin (Figure 7) and α-tomatine, restrict
the growth of pathogens in the apoplast. Saponins have
strong antifungal activity; the tomato saponin α-tomatine
activates phosphotyrosine kinase and monomeric G-protein
signaling pathways leading to Ca2+ elevation and ROS burst
by binding to cell membranes followed by leakage of cell
components in F. oxysporum cells (Ito et al., 2007). Different
plant species produce different types of saponins, which are
effective against a wide range of pathogenic fungi (Osbourn,
1996). Terpenes are composed of several isoprene units, and
can be linear or cyclic, and even saturated or unsaturated.
The best-known terpenes are odoriferous plant metabolites
like camphor and turpentine. The industrial and medical
significances of plant terpenes, e.g., those of taxol, are reviewed
by Bohlmann and Keeling (2008). In maize, sesquiterpenoid
phytoalexins, zealexins (Figure 7), were discovered through
characterization of physiological responses to the toxinogenic

pathogen F. graminearum. Importantly, zealexins exhibited
antifungal activity against several phytopathogenic fungi (F.
graminearum, A. flavus, Rhizopus microsporus) at physiologically
relevant concentrations (Huffaker et al., 2011).

Plant antifungal metabolites are preformed inhibitors that
constitutively produced in healthy plants (phytoanticipins), or
they may be synthesized de novo in response to pathogen attack
or various non-biological stress factors such as short-wavelength
UV light, treatment with heavy metal ions (e.g., copper or
mercury salts). The letter pathogen and environmental stress
elicited compounds are called phytoalexins. These groups cannot
be separated strictly as the same compound may be a preformed
antifungal substance in one species and can be phytoalexin
in another. For example, flavanone sakuranetin (Figure 8) was
found to be a phytoanticipin in Ribes nigra (Atkinson and
Blakeman, 1982) and in Hebe cupressoides (Perry and Foster,
1994) but was induced in the leaves of rice Oryza sativa (Kodama
et al., 1992). These metabolites can be constitutively present in
one organ and can be induced in another. Plant SMs usually
accumulate in smaller quantities than the primary metabolites
(e.g., Dewick, 2002); however, they can accumulate in particular
tissues (e.g., Takanashi et al., 2012) at a higher concentration.
This accumulation is regulated in a highly sophisticated manner
in appropriate compartments because some plant SMs are
even toxic to the plants themselves if they are mislocalized.
In the compartmentation and translocation processes, both
primary and secondary transporters are involved and many
transporter genes, especially genes belonging to the multidrug
and toxin extrusion type transporter family, have been identified
as responsible for the membrane transport of SMs (Yazaki, 2006;
Yazaki et al., 2008). High number of SMs are well characterized
in the families Fabaceae, Solanaceae and Labiaceae (Wink, 2003)
as well as in cereals (reviewed by Du Fall and Solomon, 2011).
Phytoalexins in families Fabaceae and Rosaceae and in rice
were reviewed by Grayer and Kokubun (2001); while, SMs
in a range of crop plants from families Cruciferae, Fabaceae,
Solanaceae (Pedras and Ahiahonu, 2005), Brassicaceae, Vitaceae,
and Poaceae (reviewed by Ahuja et al., 2012) have also been
described recently.

Phyllosphere and rhizosphere microorganisms can live in a
close mutualistic association with plants or even colonize plant
tissues (endophytes). Plant growth-promoting non-pathogenic
microorganisms like rhizobacteria and fungi are soil-borne
microbes with beneficial effects on plant performance in the
rhizosphere. They can stimulate plant growth by increasing
tolerance to abiotic stress or by suppressing plant diseases
(Van der Ent et al., 2009). Plants may actively shape microbial
communities either inhabiting their outer surface or colonizing
their interior (Bednarek et al., 2010). The growing plant
secretes a wide range of chemicals, e.g., in root exudates, to
communicate with rhizosphere microbes (Kolattukudy et al.,
1995; Suryanarayanan et al., 2009; Baetz and Martinoia, 2014)
such as arbuscular mycorrhiza. Altered exudation patterns,
putative direct arbuscular mycorrhiza effects, different root
size and architecture, altered physiology may contribute to
quantitative and qualitative microbial community changes
in the mycorrhizosphere caused by arbuscular mycorrhiza
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TABLE 2 | Classification of plant secondary metabolites.

Groups Chemical structures Examples

Phenolics with one aromatic ring C6 Phenol, hydroquinone, pyrogallol acid

C6-C1 Gallic acid, salicylic acid, methyl syringate, vanillic acid

C6-C2 Acetophenones, apocynin

C6-C3 Hydroxycinnamic acid, ferulic acid, sinapic acid, coumaric acid, eugenol,

zosteric acid

Phenolics with two aromatic rings C6-C1-C6 Xanthones Mangostin

C6-C2-C6 Stylbenes Reservatrol, chlorophorin

C6-C3-C6 Flavonoids Quercetin, glyceollin, sakuranetin

Quinones Naphthoquinones Antraquinones

Benzoquinones

Alizarin, emodin

Flavonoid polymers and non flavonoid

polymers

Tannins

Terpenoids C5 Hemiterpene Isoprene, prenol, isovaleric acid

C10 Monoterpene Limonene, cineol, pinene, thymol, camphor, turpentin, carvacrol, citral,

γ-terpinene, myrcene

C15 Sesquiterpene Abscisic acid, humulanes, culmorin, gossypol, zealexin

C20 Diterpene Gibberellin, taxol, oryzalexins, phytocassanes, momilactone, kauralexin

C30 Triterpene Brassinosteroids, squalen, lanosterol, avenacin

C40 Tetraterpene Carotenoids, lycopen

C > 40 Polyterpenes Rubber, glisoprenin

Mixed origin (meroterpenes) Cytokines, vitamine E

Nitrogen-containing Alkaloides Tomatin, solanin, nicotine

Glucosinolates Sinigrin, glucobrassicin

Non protein amino acids L-canavanine

Amines Phenylethylamine, tyramine, morphin

Cyanogenic glycosides Amygdalin, sambunigrin, linamarin

fungi (Wehner et al., 2010). Organic acids, amino acids
and phenolic compounds present in root exudates play an
active role in root-microbe communications (Dakora and
Phillips, 2002; Tanimoto, 2005; Crowley and Kraemer, 2007;
Li et al., 2013) and stimuli such as microbial elicitors trigger
compositional changes in root exudates (Baetz and Martinoia,
2014). Walker et al. (2003) analyzed root exudates of Arabidopsis
thaliana elicited by SA, JA and chitosan as well as by two
fungal cell-wall elicitors and profiled the SMs subsequently
secreted. Among the several compounds detected butanoic
acid, trans-cinnamic acid, o-coumaric acid, p-coumaric acid,
ferulic acid, p-hydroxybenzamide, methyl p-hydroxybenzoate,
3-indolepropanoic acid, gallic acid, and vanillic acid were
successfully inhibited the growth of F. oxysporum, Phytophthora
drechsleri and Rhizoctonia solani phytopathogenic fungi.

Manipulation of Programmed Cell Death
Different fungal strategies mediate killing of the plant host
cells such as secretion of low molecular weight or peptide
toxins or eliciting PCD in the host by secretion of ROS
(Horbach et al., 2011; Barna et al., 2012). From the host’s
side, chloroplasts have a critical role in plant defense as these
organelles are not only sites for the biosynthesis of the plant

signaling compounds: SA, JA and nitric oxide but for ROS
production as well (e.g., Lee et al., 2015). Therefore, chloroplasts
are regarded as important players in the induction and regulation
of PCD in response to both abiotic stresses and pathogen
attack. Moreover, toxin effectors from necrotrophic fungi can
target one of the host’s central signaling/regulatory pathway
to trigger resistance (R) gene-mediated resistance or to down-
regulate defense enzymes, and, as a consequence, to increase
thereby host susceptibility to fungal attack (Wang et al., 2014).
Aspergillus mycotoxin ochratoxin A (Figure 4) induced necrotic
lesions in detached leaves through oxidative burst induction
with increased ROS level and concomitant down-regulation
of plant antioxidant defense enzymes (Peng et al., 2010).
SMs fusarenon, nivalenol, DON, T-2, HT-2, diacetoxyscirpenol,
beauvericine and neosolaniol (Figure 3) from Fusaria caused
complete inhibition of seed germination and induced PCD
and alteration to ascorbate metabolism in tomato protoplasts
(Paciolla et al., 2004). T-2 trichothecene toxin, produced by e.g.,
F. sporotrichioides, also induced cell death, callose deposition,
generation of hydrogen peroxide, and accumulation of SA,
while DON toxin inhibited translation without induction of the
elicitor-like signaling pathway in the non-host plant A. thaliana
(Nishiuchi et al., 2006). The ascomycete Cochliobolus victoriae
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FIGURE 6 | Small metabolites as effectors in SAR signaling. Methyl

salicylate, the abietane diterpenoid dehydroabietinal, pipecolic acid from lysine

catabolism, and the dicarboxylic acid azelaic acid are effectors in SAR

signaling additionally to SA. Source: National Center for Biotechnology

Information. PubChem Compound Database (accessed Jun. 6, 2015) (Bolton

et al., 2008).

is a necrotrophic fungal pathogen of Arabidopsis and oats with
HST victorine, which induced defense-related responses such as
phytoalexin synthesis, extracellular alkalization and PCD causing
Victoria blight (Tada et al., 2005). Zhang et al. (2011) proposed
that both JA and ET promote theA. alternataAAL toxin-induced
PCD in detached Solanum lycopersicum leaves by disruption of
sphingolipid metabolism (Spassieva et al., 2002). In Arabidopsis,
free sphingoid bases were again shown to be involved in the
control of PCD, presumably through the regulation of the ROS
level upon receiving different developmental or environmental
cues (Raffaele et al., 2009).

Phytotoxins, Phytoalexins and Special SMs

Magnaporthe Grisea Species Complex
The M. grisea species complex comprises many phylogenetic
species (Couch and Kohn, 2002) that cause disease to some 50
grass and sedge species. These include rice, wheat, barley, maize,
oats, rye, finger millet, perennial ryegrass, weed and ornamental
grasses. Within this species complex, M. oryzae (previously
known as M. grisea) isolates form the pathotype Oryza, which
causes rice blast disease. Approximately 10–30% of the annual
rice harvest is lost due to the infection. The fungus infects all
aerial parts of rice, leading to leaf blast, neck and panicle rot,
collar rot and node blast (reviewed by Skamnioti and Gurr,
2009).

Chemical signals are responsible for appressorium formation
in M. grisea. The appressorial glue of M. grisea contains
glycoproteins, neutral lipids and glycolipids (Ebata et al., 1998).
The non-toxic plant metabolite zosteric acid (Figure 9) (Todd
et al., 1993) binds water and enhances the hydrophilicity of
the surface, thereby weakening the binding capacity of the
appressorial glue, which is highest with hydrophobic surfaces.
Therefore, zosteric acid inhibits spore adhesion and infection by

FIGURE 7 | Antimicrobials from plants. Source: National Center for

Biotechnology Information. PubChem Compound Database (accessed Jun. 6,

2015) (Bolton et al., 2008).

M. grisea and also byColletotrichum lindemuthianum on artificial
hydrophobic surfaces as well as on plant leaves (Stanley et al.,
2002).

The two most effective inducers of the germination and
appressorium formation were found to be 1,16-hexadecanedial
and 1,16-hexadecanediol from cutin monomers in M. grisea
(Gilbert et al., 1996). Besides cutin monomers, surface waxes
also activated development processes in fungi (Liu et al.,
2011). Appressorium formation was induced by leaf wax
of rice or other plants or synthetic n-C22 fatty acid, fatty
alcohol or alkane (Hegde and Kolattukudy, 1997). Self-
inhibitors of the germination are related to phytotoxin pyriculol
(Figure 9) (Kono et al., 1991). Moreover, other fungi can also
produce specific, non-toxic inhibitors of conidial germination
and appressorium formation of M. grisea like flaviolin,
tenuazonic acid (Figure 2), and glisoprenins (Thines et al.,
2004).

In the appressorium, several key biochemical and
morphogenetic events take place under the generation of
turgor pressure which, in M. grisea, is the highest pressure
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FIGURE 8 | Structures of some phytoalexins isolated from rice. Source:

National Center for Biotechnology Information. PubChem Compound

Database (accessed Jun. 6, 2015) (Bolton et al., 2008).

recorded in any living cell at up to 8MPa to penetrate the
tough rice cuticle (Howard et al., 1991). This exceptionally
high pressure and mechanical penetration question the role
of secreted cell wall-degrading enzymes in the first steps of
invasion at least on the natural host (Howard and Valent, 1996).
In order to generate the high turgor pressure, a thick melanin
layer is deposited outside the primary cell wall. Several natural
products inhibit melanin biosynthesis in a similarly specific
and non-toxic manner, presumably hitting the same targets
(Thines et al., 1995). Typical examples are coumarin (Figure 7),
a common SM from plants (Wheeler and Bell, 1988), scytalol
D from fungus Scytalidium sp. (Thines et al., 1998) and lipid
biosynthesis inhibitor cerulenin (Figure 5) originally obtained
from an isolate called Cephalosporium caerulens (Ohtake et al.,
1999) that conspecific to Sarocladium oryzae phytopathogenic
fungus of rice (Bills et al., 2004).

The first identified rice phytoalexins (reviewed by Peters,
2006) were the momilactones A and B (Figure 8) (Cartwright
et al., 1981). Momilactones exhibit antifungal activity against M.
grisea and only appear in rice leaves after infection (Kodama et al.,

FIGURE 9 | Autoinhibitor signal molecules responsible for inhibition of

conidia germination. Phytotoxin pyriculol and gloeosporone, and/or

appressorium formation: zosteric acid. Source: National Center for

Biotechnology Information. PubChem Compound Database (accessed Jun. 6,

2015) (Bolton et al., 2008).

1988). These compounds were originally isolated and identified
as plant growth inhibitors from rice seed (Kato-Noguchi et al.,
2002). Another group of diterpenoid phytoalexins are oryzalexins
(A-F) also isolated from rice (Akatsuka et al., 1985; Kato et al.,
1993, 1994). Oryzalexins B, C and D (Figure 8) were identified
as ent-pimarane diterpenoids, and found in M. grisea infected,
but not healthy rice leaves (Akatsuka et al., 1985). Oryzalexin
S (Tamogani et al., 1993), and phytocassanes A (Figure 8) to
E (Koga et al., 1995, 1997) are also labdane-related diterpenoid
phytoalexins in rice. Overexpression of another rice flavonon
phytoalexin sakuranetin (Figure 8) resulted in an increased
resistance toM. grisea (Kodama et al., 1992; Kim et al., 2009).

Genus Colletotrichum
Colletotrichum usually shares similar lifestyles and infection
strategies with M. grisea, particularly during the early stages of
pathogenesis. However, in hemibiotrophic C. gloeosporioides and
in other Colletotrichum species unlike in the case of M. grisea,
blocking the cell cycle did not prevent spore germination and
appressoria formation (Nesher et al., 2008). The differentiation
of infection structures including appressoria preceded mitosis
and could proceed without nuclear division. Spore cell death
did not occur during plant infection and the fungus primary
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infection structures remained viable throughout the infection
cycle (Nesher et al., 2008).

The spores of many phytopathogenic fungi contain potent
autoinhibitors, which prevent germination until they have been
washed or diluted out of the spore. Colletotrichum spp. appeared
to be a rich source of germination autoinhibitors. The first
self-inhibitor to be isolated from conidia of C. gloeosporioides
was gloeosporone (Figure 9) (Meyer et al., 1983) followed by
(Z)- (E)-ethylidene-1,3-dihydroindole-2-one that were active at
lower concentrations than gloeosporone (Tsurushima et al.,
1995). At higher concentrations, the latter two compounds also
inhibited the germination of conidia of other Colletotrichum spp.
and of F. oxysporum (Tsurushima et al., 1995). Mycosporin-
alanine is also a potent autoinhibitor of conidial germination
in C. graminicola that was synthesized during the development
of conidia in the pycnidium, and it was quite effective in
preventing germination of the spores until they have become
dispersed (Leite andNicholson, 1992). Interestingly, the synthesis
of mycosporines and mycosporine-like amino acids occurs in
fungi, bacteria, cyanobacteria, phytoplankton and macroalgae
but not in animals because it needs the shikimate pathway (Sinha
et al., 2007). Conidia germination is induced by ET in ripened
fruits (Flaishman and Kolattukudy, 1994), additionally, by fatty
alcohols from cuticular waxes (Podila et al., 1993; Hwang and
Kolattukudy, 1995).

Botrytis Cinerea
The gray mold fungus B. cinerea is a typical necrotrophic
phytopathogenic fungus with a very wide host range. It causes
vast economic damage pre- and postharvesting (Amselem et al.,
2011). Two groups of its phytotoxic metabolites have been
characterized, the sesquiterpene botrydial (Figure 5) and related
compounds (Colmenares et al., 2002) and botcinic acid and
its derivatives (Tani et al., 2006). The sesquiterpene-derived
phytotoxin botrydial has been implicated in virulence, as it can be
detected in planta and its addition facilitates fungal penetration
and colonization of plants (Deighton et al., 2001). In addition
to SM toxins, ROS play in important role in B. cinerea as the
fungus actively contributes to the elevated levels of ROS detected
at infection sites and causing an oxidative burst during cuticle
penetration and lesion formation (Tiedemann, 1997; Tudzynski
and Kokkelink, 2009).

After fungal attack of grapevine and berries, leaves produced
phytoalexins such as resveratrol (trans-3,5,4′-trihydroxystilbene)
(Figure 7) (Langcake and Pryce, 1976) and related compounds,
which have antifungal activity toward B. cinerea and also a
number of other fungal pathogens including Rhizopus stolonifer
and Plasmopara viticola (Jeandet et al., 2002). Strong antifungal
activity of carvacrol (Figure 7) and thymol (Figure 7) was also
confirmed against B. cinerea and R. solani, Fusariummoniliforme
and S. sclerotiorum (Mueller-Riebau et al., 1995; Tsao and
Zhou, 2000; Camele et al., 2012). High inhibitory activity
was detected against B. cinerea by monoterpene γ-terpinene
(Espinosa-García and Langenheim, 1991), while monoterpene
citral has been reported as a potent antimicrobial compound
against B. cinerea (Tsao and Zhou, 2000) and Penicillium
italicum (Saddiq and Khayyat, 2010). Essential plant oils

(e.g., D-limonene, cineole, β-myrcene, α-pinene, β-pinene, and
camphor) showed remarkably high antifungal activity against
B. cinerea (Wilson et al., 1997). In Vicia faba tissues, low-
molecular-weight phytoalexins such as wyerone acid (Figure 7)
and wyerone furanoacetylenic were produced as part of the post-
infection defense response against fungal pathogens. Wyerone
acid accumulated in B. cinerea lesions, whereas in Botrytis fabae
lesions the phytoalexin started to accumulate but later tended to
decrease. The enhanced ability of B. fabae to colonize e.g., broad
bean tissues seemed to be related to its capacity to detoxify broad
bean phytoalexins (Buzi et al., 2003).

Fusaria
The filamentous fungus F. graminearum (teleomorph: Gibberella
zeae) is a worldwide pathogen of maize and small grains such
as wheat, barley and oats. In infected grains, F. graminearum
can produce several mycotoxins, including trichothecene
derivatives (e.g., DON), polyketide zearalenone (ZEA), fusarin C
(Figure 3) (Desjardins et al., 1993; Kimura et al., 2007) among
which trichothecenes were related to the pathogenicity of F.
graminearum (Gaffoor and Trail, 2006; Foroud and Eudes,
2009) reducing crop yield and quality. In plants, trichothecenes
produced by Fusarium spp. cause necrosis, chlorosis, and
mortality enabling them to mediate a wide variety of plant
diseases, including wilts, stalk rot, root rot, and leaf rot in many
important crop and ornamental plants (Abbas et al., 2013).

F. verticillioides (teleomorph: Gibberella moniliformis) is a
ubiquitous pathogen of maize, attacking stalks, kernels, and
seedlings. Considering the maize developmental stages, silking
(R1), blister (R2), milk (R3), dough (R4), dent (R5), and
physiological maturity (R6), infecting the seed at stages R2–
R5 with F. verticillioides revealed that the pathogen colonized
seeds equally well (Bluhm and Woloshuk, 2005). Nevertheless,
significant sphingoid-derived fumonisin B1 (FB1) mycotoxin
(Figure 3) production (Abbas et al., 1994; Bluhm andWoloshuk,
2005; Picot et al., 2011) occurred only in the R5 (dent)-stage
kernels where the R5 kernel acidic state also induced more FB1
production (Picot et al., 2011). Expression of FUM8 and FUM12
fumonisin biosynthetic genes as well as low amounts of FB1 was
detected in the R3 (milk) and R4 (dough) stages. In contrast, no
FB1 or FUM gene expression was detectable in the R2 (blister)
stage. Other experiments revealed that the fungus produced
fourfold more FB1 on maize polysaccharide amylopectin than on
glucose carbon source (Bluhm and Woloshuk, 2005; Picot et al.,
2011).

Usually extracellular ATP functions as an endogenous external
metabolite regulating plant cell viability. FB1 toxin could trigger
the depletion of extracellular ATP, which altered the abundance
of particular intracellular plant proteins and ended in cell death,
which process was reversible by exogenous ATP (Chivasa et al.,
2005). Nevertheless, FB1 did not appear to be a primary virulence
factor, while DON (Figure 3) was considered to have a key role as
a virulence factor at least in F. graminearum, and their induction
is quite different. The production of DON and the spread of
the fungus in the spikes correlated well with the presence of
several polyamine compounds that accumulate as the infection
progresses through the spike (Gardiner et al., 2010).
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SM culmorins are tricyclic sesquiterpene diols that have been
reported from F. culmorum, F. graminearum and F. venenatum
(Langseth et al., 2001). Culmorin had weak phytotoxicity to
wheat coleoptile tissue (Wang and Miller, 1988), but its role in
wheat head scab was not reported. Contaminated grain samples
are usually not screened for culmorins, because there are no
limits for these SMs. However, culmorin and hydroxyculmorins
were detected at relatively high levels in naturally contaminated
Norwegian wheat, barley, and oat samples co-occurring with
high DON concentrations (Ghebremeskel and Langseth, 2001).

Inhibition of toxigenesis in Fusaria has also been studied.
Velluti et al. (2004) explored the efficacy of cinnamon, clove,
lemongrass, oregano and palmarosa essential oils in order to
prevent ZEA and DON accumulation when inoculated with F.
graminearum; however, it should be noted that this assay was
based on non-sterilized, naturally contaminated maize grain.
Dambolena et al. (2011) studied the capacity of 10 natural
phenolic compounds to inhibit FB1 synthesis by F. verticillioides
and revealed that thymol, carvacrol (Figure 7), isoeugenol as well
as eugenol were the most active. The plant phenol chlorophorin
was also effective in reducing FB1 toxin production (94%
reduction), followed by caffeic acid (hydroxycinnamic acid),
ferulic acid, vanillic acid and iroko (Beekrum et al., 2003). In F.
proliferatum, aquaeous extracts of host plants inhibited the fungal
growth in dose dependent manner, resulting in growth induction
at low doses. While, pea extract inhibited the FB production in
most of the strains (Stȩpień et al., 2015).

Modulation of spore germination is also often based on low-
molecular weight substances produced by the plant host. For
example, flavonoids stimulated the germination of conidia of F.
solani on the leaves of vegetables (Ruan et al., 1995). Moreover,
Garcia et al. (2012) found that production of FB1 and FB2
by F. verticillioides, and ZEA and DON by F. graminearum
was stimulated or similar to the controls in most of the
conditions tested using Equisetum arvense and Stevia rebaudiana
extracts.

Aspergilli
Aspergillus species can be saprophytic, or symptomless
endophytes or weak and opportunistic plant pathogen. A.
flavus from yellow Aspergilli is a weak and opportunistic plant
pathogen. It lacks host specificity (St Leger et al., 2000) as it can
attack seeds of both monocots and dicots such as maize, cotton,
groundnuts (peanuts) and other nuts like tree nuts such as Brazil
nuts, pecans, pistachio nuts, and walnuts. A. flavus can cause
ear rot on maize and preharvest contamination of these crops
with SM AFs is common, but A. flavus also causes the spoilage
of post-harvest grains during storage resulting in significant
economic losses to farmers (Figure 10).

A. flavus, A. parasiticus and A. nidulans are proposed to
derive acetyl CoA for the biosynthesis of SM toxins (i.e.,
sterigmatocystin and AF) (Figure 5) from fatty acids present
in the kernel of maize (Howlett, 2006). In vitro supplemented
oleic acid induced the biogenesis of fungal peroxisomes, as
well as catalase activity and β-oxidation. Concomitantly with
the increased expression of biosynthetic genes for precursor
sterigmatocystin and AF in hyphae, colonizing the embryo and

aleuronic layer, where most seed lipids are stored, AF precursor
norsolorinic acid accumulated in peroxisomes (Maggio-Hall
et al., 2005).

Bagheri-Gavkosh et al. (2009) showed that AF B1 production
by A. parasiticus was inhibited by methanolic extracts of Ephedra
major aerial parts and roots, whereas the essential oil of the plant
aerial parts did not exhibit any effect on AF B1 biosynthesis. The
authors attributed the inhibition of A. parasiticus growth and
AF B1 production to the presence of flavonoid compounds such
as p-coumaric acid and quercetin in plant extracts. Dos Santos
and Furlong (2008) noted that AF B1 and AF B2 production by
A. flavus was inhibited in the presence of methanolic extracts
from banana pulp and peel, orange, eggplant and potato pulp.
However, these authors found that in the presence of banana
pulp and potato pulp extracts, A. flavus produced AF B2, which
was not detected in the control. Crude essential oil of Betula
alba also inhibited both AF production and fungal growth in
parallel. Jermnak et al. (2012) found that after roughly purifying
the oil by silica gel column chromatography an active fraction was
obtained that was identified as methyl syringate. This compound
strongly inhibited norsolorinic acid production, an early step of
the AF biosynthetic pathway: it inhibited the AF B1 and AF
G1 production of A. parasiticus in liquid medium in a dose-
dependent manner and also inhibited AF B1 production by A.
flavus on raw peanuts.

Black aspergilli are common soil organisms decomposing
dead plant residues, some of them are capable of a biotrophic
endophytic existence with maize and onion. A. niger var. niger
and A. carbonarius black Aspergilli are the two major producers
of ochratoxin A (Figure 4) that is nephrotoxic, teratogenic,
carcinogenic, and immunosuppressive in animals, and of FB1
mycotoxin (Palencia et al., 2010).

In A. terreus infection, crops such as wheat, ryegrass and
potatoes were shown to acquire disease. A number of SMs
and mycotoxins, including territrem A, citreoviridin, citrinin,
gliotoxin (Figure 4), patulin, terrein, terreic acid, and terretonin
are coded in A. terreus (Guo and Wang, 2014). The phytotoxic
SM terrein possessed ecological, antimicrobial, antiproliferative,
and antioxidative activities was also highly induced in plant-
derived media and in induced lesions on fruit surfaces (Zaehle
et al., 2014).

Rhizoctonia Solani Species Complex
The soil-borne fungus Rhizoctonia solani (teleomorph
Thanatephorus cucumeris), belonging to the phylum
Basidiomycota, is an economically important plant pathogen. R.
solani, as a non-obligate necrotrophic pathogen, causes diseases
in many crops including species in the families Solanaceae,
Fabaceae, Asteraceae, Poaceae, and Brassicaceae as well as
ornamental plants and forest trees throughout the world
(Gonzalez Garcia et al., 2006). The anamorph R. solani is a
species complex and consists species of at least 14 different,
genetically isolated populations [=anastomosis groups (AG)]
that differ in their ecology and host range (Carling et al., 2002;
Stodart et al., 2007).

Recently it was considered that R. solani synthesizes HSTs and
NHSTs (Vidhyasekaran et al., 1997). HSTs from R. solani could
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FIGURE 10 | Schematic presentation of main plant defense

processes in Aspergillus flavus-maize interactions. A. flavus can

attack kernels during all the six stages of their development. However,

infection in non-injured kernels takes place later in the field, during the

dent (R5) developmental stage just prior to physiological maturity (R6)

(Marsh and Payne, 1984). As soon as 4 days after inoculation A. flavus

mycelium reaches the aleurone, endosperm and germ tissue (Dolezal

et al., 2013). Transcriptional analysis of the maize—A. flavus pathogen

interaction revealed down-regulated (black arrow) starch biosynthesis and

up-regulated genes (white arrows) of plant starch hydrolytic enzymes like

β-amylase as well as downstream invertases and fructokinase. The

produced hexoses flow through the up-regulated shikimate (SM) pathway,

the methylerithryole (ME) pathway and toward up-regulated jasmonic acid

(JA) and oxylipin biosynthesis, and feed pathogenesis related (PR) protein

synthesis, e.g., peroxidases, glutathione S-transferase (GST) or chitinases

that were also found up-regulated during infection. Oxylipins up-regulate

aflatoxin (AF) biosynthesis and sexual reproduction in A. flavus and

down-regulate fungal growth. Up-regulation of the SM pathway leads to

the production of antifungal compounds flavonoids, phenylpropanoids,

phytoalexins, and up-regulated lignin production in maize. Up-regulated

plant hormone JA and abscisic acid (ABA) production is crucial in these

defense mechanisms (Dolezal et al., 2014).

increase the virulence of the pathogen (e.g., HC-toxin on maize)
(Brooks, 2007), and were often pathogenicity determinants
required for a pathogen to incite disease (reviewed in Wolpert
et al., 2002). For example, significantly increased five new
superoxide dismutase (SOD) activities were detected in plant
under treatment of rice leaf sheaths with R. solani-toxin, which
eliminated the antifungal oxidative burst (Paranidharan et al.,
2005).

Previous research has shown that R. solani also produces
phenyl acetic acid and its derivatives (Bartz et al., 2013),
a phenolic compound, and a carbohydrate as phytotoxins
that supported the broad host range and diversity within
the R. solani species. Xu et al. (2015) identified eight
compounds from fermentation broth of R. solani, from which
m-hydroxymethylphenyl pentanoate, (Z)-3-methylpent-2-en-
1,5-dioic acid and 3-methoxyfuran-2-carboxylic acid showed
phytotoxicity in vitro.

Interestingly, in the R. solani AG1-IA genome project,
genes homologous to reported mycotoxin biosynthesis genes

could not be identified (Zheng et al., 2013). However, genes
for a putative phytotoxin enniatin (Figure 4) and sequences
featuring homology to putative trichothecene citrinin, and
AF (Figure 4) and terpene biosynthesis genes (e.g., genes
encoding sesquiterpene synthases) were identified. In addition,
three volvatoxin genes that homologous to volvatoxin from
Volvariella volvacea (Basidiomycota) were also detected (Wibberg
et al., 2014). In proteome analysis, a trichothecene 3-O-
acetyltransferase that is required for trichothecene biosynthesis
and is involved in reducing the toxicity of trichothecene
mycotoxin DON of Fusaria (Audenaert et al., 2014), was
differentially expressed during the development stage in R. solani
AG1 (Kwon et al., 2014).

In the last decade, newly related chemical structures have
been reported to have significant antifungal activity against
R. solani: arvelexin isolated from Thlaspi arvense (stinkweed)
(Pedras et al., 2003), isalexin, brassicanate A and rutalexin from
Brassica napus, ssp. rapifera (Pedras et al., 2004). Cauliflower
(Brassica oleracea var. botrytis) produced other phytoalexins
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caulilexins A, B, and C (Figure 7), which were also active against
the economically important pathogenic fungi Leptosphaeria
maculans and S. sclerotiorum (Pedras et al., 2006). Pedras and
Ahiahonu (2005) reviewed the detoxification metabolism of
phytoalexins in phytopathogenic fungi. Indole-3-acetaldoxime
is an intermediate in the biosynthesis of diverse plant SMs such
as indole-3-acetonitrile, brassinin, and brassilexin, as well as the
indole glucosinolate (glucobrassicin) and the plant hormone IAA
(Figure 1) in Cruciferae. Metabolism of indole-3-acetaldoxime
to IAA via indole-3-acetonitrile by fungi could support the
development of plant diseases in crucifers (Pedras and Montaut,
2003).

Genus Cochliobolus
The filamentous ascomycete genus Cochliobolus (anamorph
Bipolaris/Curvularia; Manamgoda et al., 2014) is composed of
more than 40 closely related pathogenic species with particular
specificity to their host plants (Condon et al., 2013). Gao et al.
(2014) reported the genome sequence of a highly virulent C.
lunatus strain, and phylogenomic analysis indicated that C.
lunatus was evolved from C. heterostrophus. C. lunatus CX-3
strain was capable of producing diverse SMs (Table 1) such as
NHSTs and melanin that could aid in niche exploitation and
pathogenicity.

It was known previously that the ability to produce HST
T-toxin requires three genes encoded at two unlinked loci
(Baker et al., 2006). However, Inderbitzin et al. (2010) reported
further six genes including two PKSs, one decarboxylase, five
dehydrogenases, and one unknown protein that were involved
in T-toxin production and high virulence of C. heterostrophus
to maize. HST1, one NPRS of C. carbonum (Bipolaris zeicola)
played a key role in the cyclic tetrapeptide HC-toxin (Figure 2)
biosynthesis (Walton, 2006), which was also produced by
Alternaria jesenskae (Wight et al., 2013) and was also encoded
in another maize pathogen Setosphaeria turcica (Condon et al.,
2013). Six other known PKSs were found to be involved in
different kinds of toxin biosynthesis such as A. alternata ACT-
toxin, F. graminearum ZEA, F. verticilloides fumonisin, A.
ochraceus OTA and C. heterostrophus T-toxin. Phylogenetic and
modular analyses suggested that the protein structures of C.
lunatus CX-3 NRPSs were obviously different from other known
NRPSs being involved in the biosynthesis of mycotoxins such
as HC-toxin (Figure 2) of C. carbonum, similarly to AM-toxin
(Figure 2) of A. alternata, gliotoxin (Figure 4) of A. fumigatus
and enniatin of F. equiseti (Gao et al., 2014).

Genus Alternaria
Alternaria species have different lifestyles ranging from
saprophytes to endophytes and to pathogens. Phylogenetic
relations of the Alternaria complex was revisited and delineated
byWoudenberg et al. (2013) withinAlternaria and related genera
based on nucleotide sequence data. A. alternata has the ability to
produce more than 60 SMs from which at least 10 PKS products
can be found (Saha et al., 2012) (Table 1). Alternaria species
have been reported to cause diseases in nearly 400 plant species
including a wide variety of economically important crops and
cause severe economic problems. A. alternata alone can infect

more than 100 plant species (Thomma, 2003). The production of
diverse phytotoxins and HSTs can be considered as a key reason
for the success of these pathogens (Nishimura and Kohmoto,
1983). From about 20 HSTs that have been documented (Otani
et al., 1995; Walton, 1996), at least seven are from A. alternata
pathotypes (Otani et al., 1995). For HST ACR-toxin production
and pathogenicity, PKS gene ACRTS2 was found to be essential
of the rough lemon pathotype of A. alternata (Izumi et al., 2012).
Several NHSTs are also produced in Alternaria such as brefeldin
A, altertoxin, and tentoxin (Figure 2) and also other mycotoxins.
Alternariol (Figure 2) and alternariol-9-methyl ether are major
NHSTs that are common contaminants of food such as cereals,
fruits and fruit juices (Scott, 2001). A PKS involved in melanin
biosynthesis was also characterized and named ALM (albino)
(Kimura and Tsuge, 1993). For production of SM siderophores
and virulence, the A. alternata gene AaNPS6, encoding a
polypeptide analogous to fungal NRPS was demonstrated by
Chen et al. (2013). The Alternaria toxins provide prospect for
biocontrol of weeds due to high phytotoxic effect against weeds
but lowmammalian toxicity (Abbas et al., 1995; Chen et al., 2005;
Evidente et al., 2009; Yang et al., 2012).

From the plant side, high concentrations of alkaloid
phytoalexin camalexin (Tsuji et al., 1992) have been observed
at the infection site of A. alternata (Schuhegger et al., 2007)
and also in the proximity to the lesions induced by Botrytis
species (Kliebenstein et al., 2005). In A. thaliana leaves both
biotrophic and necrotrophic plant pathogens induced camalexin
formation (Thomma et al., 1999). A. brassicicola could detoxify
camalexin but at much slower rate than phytoalexin brassinin
from Brassicaceae (Pedras et al., 2014).

Secondary Metabolite Production of Biotrophs
Growth and reproduction of obligate biotrophic phytopathogens
that are very poor in SM production like powdery mildews
are entirely dependent on living plant cells. Spanu et al.
(2010) hypothesized that Blumeria synthesized only one
iron siderophore and one simple polyketide pigment of the
cleistothecia. Similar trends have been observed in other
biotrophs, such as the basidiomycete corn smut fungus Ustilago
maydis and the plant symbiotic fungus Tuber melanosporum.

Cladosporium fulvum (Passalora fulva) is also a biotrophic
fungus that infecting tomato, grows extracellularly in close
contact with host mesophyll cells. The only known SMs produced
by C. fulvum is cladofulvin (de Wit et al., 2012; Collemare
et al., 2014) anthraquinone pigment. However, cladofulvin has
not been detected to cause necrosis on Solanaceae plants or
to show any antimicrobial activity (Collemare et al., 2014). C.
fulvum has also the potential to produce elsinochrome and
cercosporin toxins, but the corresponding core genes were not
expressed during infection of tomato (Collemare et al., 2014).
It has been suggested that loss of SM biosynthetic pathways is
associated with biotrophy (Spanu et al., 2010); nevertheless, the
biotrophic C. fulvum has twice the number of key SM genes
compared to the closely related hemibiotrophic Dothistroma
septosporum (teleomorph Mycosphaerella pini), of which 14 and
9, respectively, are organized into gene clusters along with other
SM-related genes (de Wit et al., 2012). The numbers of its
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SM enzyme-encoding genes were comparable to those of M.
graminicola, but were lower than those in most other sequenced
Dothideomycete (Table 1). It could be concluded that, in contrast
to reduced SM production capacity, down-regulation of high
number of SM biosynthetic pathways might represent another
mechanism associated with a biotrophic lifestyle (Collemare
et al., 2014).

Conclusions and Future Aspects

Fungal-plant host interactions represent biochemically complex
and challenging scenarios that are being investigated also by
metabolomic approaches (Allwood et al., 2008). It is noteworthy
that although SMs play important roles in the virulence and
lifestyle of fungal plant pathogens only about 25% of the fungal
SM gene clusters have already been characterized functionally
and this number is much lower at plant side.

Concomitantly, comparative genomics and transcriptomics
are employed to obtain insights into the genetic features
that enable fungal pathogens to adapt successfully to various
ecological niches and to adopt different pathogenic lifestyles.
The suites of fungal SM genes reflect astounding diversity
among species, hinting that gene products, particularly those
associated with unique genomic regions, are candidates for
pathogenic lifestyle differences. Furthermore, horizontal gene
and chromosome transfers provide a means for pathogens to
broaden their host range (Mehrabi et al., 2011; Fitzpatrick,
2012). The increasing availability of fungal pathogen genome
sequences and next-generation genomic tools allow us to survey
the SM gene clusters in individual fungi. The recent availability

of next-generation RNA-Seq technologies has revolutionized
transcriptomic profiling and are used to probe the expression
of SM gene clusters during various stages of infection. Unlike
microarray, RNA-Seq allows the simultaneous quantification of
transcripts from more than one organism and is thus perfectly
suited for the study of plant-pathogen interactions (Chooi and
Solomon, 2014). Moreover, manipulations of strain-unique SM
genes associated with host-specific virulence provide possibility
to investigate fungal-plant interaction.

The great structural diversity of phytotoxins, the high
potency and exclusive mechanisms of action (compared to
synthetic herbicides) make fungal toxins highly attractive for
discovering herbicidal activity. Even if natural phytotoxins
are not necessarily suitable for direct use as a commercial
herbicide, the identification of mechanisms are very important
for new herbicide developments. Newly developed herbicides
with environmentally friendly component could be used
more safely in integrated pest management systems. On the
other side, plant SMs can be used against plant pathogens
(especially in sprayable forms) as natural plant extracts
for example in organic agricultural production systems.
Deeper knowledge of the fungus-plant interaction may help
resistance breeding of new plant cultivars/hybrids against
stresses such as abiotic (e.g., heat) stress or against fungal
diseases.
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