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This review deals with polyketides produced by the filamentous fungus Monascus which include: 1) a group of 
yellow, orange and red pigments, 2) a group of antihypercholesterolemic agents including mevinolin and related 
compounds and 3) the newly discovered metabolite ankalactone. Biosynthesis, methods of production, isolation 
and biological activities of these secondary metabolites are discussed. 
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Introduction 

The genus Monascus, which includes four species: M. 
pilosus, M. purpureus, M. ruber [39] and M. floridanus [7], 
belongs to the class Ascomycetes and the family Monasca- 
ceae. This fungus is a source of various secondary metab- 
olites of polyketide structure. The aim of the present paper 
is to summarize the present state of knowledge of this 
diverse group of compounds some of which are applicable 
as food additives (the red pigments) or pharmaceuticals 
(mevinolin). 

Pigments 

Structure and biosynthesis 
Organisms in the genus Monascus produce a mixture of six 
major pigments of polyketide origin [17,31,40,44] (Figure 
1). In recent years, two novel yellow pigments have been 
discovered [86,100] (Figure 2). 

The orange pigments, monascorubrin and rubropunctatin, 
are synthesized in the cytosol from acetyl coenzyme A 
(Figure 3) by the multienzyme complex of polyketide syn- 
thase I [43,85]. These compounds possess a unique struc- 
ture responsible for their high affinity to compounds with 
primary amino groups (so called aminophiles). Reactions 
with amino acids (Figure 4) yield the water-soluble red 
pigments, monascorubramine and rubropunctamine 
[11,34,64]. 

The mechanism of formation of the yellow pigments, 
ankaflavin and monascin, has not yet been elucidated. Car- 
els and Shepherd [14] supposed that these compounds orig- 
inated from chemical oxidation of monascorubrin and rub- 
ropunctatin. However, their structures (Figure 1) strongly 
suggest that the yellow pigments are reduced derivatives of 
the orange ones. Thus, the suggestion of Yongsmith et al 
[101] that ankaflavin and monascin have their own biosyn- 
thetic pathway seems to be more probable. 
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Utilization and biological activity 
Red rice (ang-kak) obtained by cultivation of Monascus 
species on rice grains has been well-known as a food dye 
in Japan and China for centuries. Recent efforts to replace 
synthetic food dyes by natural colorants, Monascus pig- 
ments, has attracted worldwide attention. 

Extracts from red rice have been suggested as a substitute 
for the nitrate/nitrite salts in meat products [30,33]. It has 
been demonstrated that extracts exert no acute toxic effects 
on mice [32]. Furthermore, treated animals exhibited favor- 
able changes of lipid blood levels. However, this effect 
might be ascribed to the presence of other metabolites, eg 
mevinolin, in the crude extracts. Leistner et al [60] con- 
cluded that the genotoxic potential of extracts from Mon- 
ascus species was much lower than that of nitrosamines 
which possibly occur in cured meats. 

Monascus species, first mentioned in a monograph of 
Chinese medicine in 1590, were also used for the treatment 
of, eg indigestion, muscle bruises, dysentery and anthrax 
[99]. However, the first scientific report on the antibiotic 
activity of this fungus appeared in 1977 when Wong and 
Bau [97] found antibacterial effects of M. purpureus on 
Bacillus, Streptococcus and Pseudomonas. Two major 
active yellow-colored compounds, a yellow pigment of an 
unknown structure named monascidin A and a fluorescent 
yellow pigment, were isolated from a crude pigment extract 
by chromatography on silica gel columns and thin layers 
[99]. Leistner and Dresel [60] reported on the bacteriostatic 
action of the Monascus extract against Staphylococcus 
aureus. The active fractions were colorless and sterilizable. 

A note describing substantial inhibitory effects of rubro- 
punctatin and monascorubrin on Bacillus subtilis and Esch- 
erichia coli appeared in a paper by Nozaki et al [81]. 
Recently, we found [72] that the orange pigments were 
most probably responsible for not only antibacterial, but 
also antifungal, immunosuppressive, embryotoxic and tera- 
togenic activities of extracts from submerged Monascus 
cultures. These samples impaired the concanavalin A- 
stimulated proliferation of mouse splenocytes and human 
peripheral blood cells and exhibited toxic and teratogenic 
effects on chicken embryos. On the contrary, the extracts 
from red rice were harmless to chicken embryos. The main 
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Figure 2 Novel yellow pigments produced by members of the genus 
Monascus. 

ProducUon 

Solid state cultivation: The traditional manufacture of 
red rice includes the following steps: rice is washed, soaked 
in water for 24 h, drained, steamed, sterilized, fermented 
and dried [20]. 

One of the conditions of a successful cultivation is usu- 
ally a low initial substrate humidity (25-30%, w/w) which 
prevents the risk of bacterial contamination, the sticking of 
rice grains together [41] and keeps a low glucoamylase 
activity of the fungus in favor of pigment production [68]. 
Nevertheless, some Monascus strains require a substantially 
higher water content in the substrate (approximately 50%, 
w/w) [46,49]. 

Another important factor is the oxygen supply. Han and 
Mudgett [38] recommended oxygen and carbon dioxide 
partial pressures of 0.5 and 0.02 atm, respectively. Pigment 
production was more sensitive than growth to oxygen and 
carbon dioxide concentrations in the atmosphere. In order 
to achieve a sufficient aeration of the mycelium it is also 
advisable to separate grains from agglomerates formed dur- 
ing sterilization or cultivation. This separation is quite easy 
when cultivation is carried out in plastic bags [68] or in a 
fermenter with a moving bed ('swing' fermenter) [57]. 

Lin [61] reported that solid state cultivation resulted in 
a higher pigment yield than cultivation in shaken flasks and 
concluded that this phenomenon could be due to a minor 
inhibition by the product. In solid state culture, pigments 
were released into grains while during submerged culfi- 
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vation they accumulated in the mycelium. However, Evans 
and Wang [29] showed that better pigment yields by solid 
state cultures were probably not caused by the extractive 
effect of rice grains because addition of sorbent particles 
into submerged cultures did not result in an increase of 
pigment production. These authors suggested that the rea- 
son might be rather the attachment of the mycelium to the 
grains. Johns and Stuart [46] supposed that the microscopic 
porous structure of rice influenced the cultivation favorably 
because the substitution of this substrate for carrageenan 
particles containing all nutrients was not successful. 

Lin and Iizuka [63] compared various kinds of substrates 
and found that the use of steamed bread (mantou) led to 
the best pigment yield. In addition to rice and bread, oat 
[841, corn or wheat grains [41,63] can serve as substrates 
for the solid state cultivation of Monascus species. 

Submerged cultivation: In general, pigment pro- 
duction can be influenced by the medium composition, 
especially by the type of nitrogen source, whereas the suit- 
ability of the carbon source seems to be strain dependent, 
and dependent upon oxygen supply. 

1) Effect of  the carbon source. Glucose was held by 
most authors [13,65,82,102] to be a superior substrate for 
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pigment production by Monascus species. However, others, 
[74] found glucose to be less suitable for this purpose. This 
may be caused by strain differences or by other differences 
in medium composition (glucose concentration, type of 
nitrogen source). A high glucose concentration (50 g L -1) 
led to low growth rates, pigment synthesis and considerable 
ethanol production [19], perhaps due to induction of 
respirofermentative metabolism (Crabtree effect) in sub- 
merged aerobic cultures of M. purpureus by high glucose 
levels. It was recommended that glucose be maintained 
below 20 g L -1. 

Starch, maltose [56,61,65,74,102], sucrose and galactose 
[61,82,102] were suitable carbon sources for pigment pro- 
duction, whereas lactose, fructose and xylose were inferior 
substrates [61,65,82]. Nevertheless, we observed 
(unpublished results) that for a strain of M. tuber and a 
strain of M. purpureus, fructose gave pigment yields com- 
parable to glucose. Some strains of M. ruber can be also 
grown on cellulose but pigment production is negligible. 
[12]. 

Stimulation of pigment production by ethanol in some 
Monascus strains [30,50,102] could originate from a higher 
cellular pool of acetyl CoA formed during cultivation on 
ethanol in comparison with that on sugars. Maltitol and gly- 
cerol were tested as substrates for pigment production; the 
former was a superior substrate [74] but the latter resulted 
in poor pigment production [61]. 

Fatty acids can be transformed by Monascus into methyl- 
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ketones [55,83] but cannot be utilized as sole carbon 
sources [47]. 

2) Effect of the nitrogen source. The effect of the nitro- 
gen source on submerged cultures of glucose-utilizing Mon- 
ascus species was described by Shepherd [89] and Cards 
and Shepherd [14]. Yeast extract-stimulated conidiation, 
repressed the sexual cycle and increased biomass pro- 
duction. Due to the formation of copious amounts of con- 
idia, pigment production (calculated from spectrophoto- 
metric measurements) remained at a relatively low level. It 
was proposed that the orange pigments entered reactions 
with amino acids because the pH (above 5) in cultures 
assimilating organic nitrogen source was favorable for this 
interaction. Sodium nitrate supported sporulation, limited 
growth and gave intermediate pigment yields; the use of 
ammonium chloride resulted in a repression of conidiation 
and the sexual cycle and led to the best pigment yields. In 
this medium the dramatic pH decrease impaired the pig- 
ment-amine interactions giving origin to red pigments. 

In addition to ammonium chloride, peptone also yielded 
superior growth and pigment amounts when compared with 
sodium nitrate [19]. Surprisingly, in this work monascorub- 
famine was the major product in all media in spite of the 
low pH of some cultures. 

For the formation of red pigments in a MOPS-buffered 
culture, monosodium glutamate was the most favorable 
nitrogen source [65]. In an unbuffered culture of another 
Monascus strain ammonium glutamate gave superior pig- 
ment yields [50]. 

3) Effect of other medium components'. The only trace 
element which was reported to support growth and pigment 
production by Monascus species was zinc [8,47,73]. This 
effect could be due to the participation of zinc in the uptake 
and utilization of carbon sources. 

Shepherd [89] found that addition of individual amino 
acids influenced neither growth nor pigment production. On 
the other hand McHan and Johnson [73] reported that 
almost all protein amino acids except lysine stimulated 
growth. Pigment production was also increased by the 
addition of nonprotein amino acids, especially methanpro- 
line and azetidinecarboxylic acid [58]. Leucine, valine, 
lysine and methionine had strong negative effects on the 
formation of hydrophilic red pigments, ie pigments contain- 
ing an amino acid side-chain [66]. 

Addition of a crystallization inducer, poly(oxyethylene)- 
sorbitane esters of palmitic acid (Tween), to the cultivation 
medium resulted in the production of extracellular 
microcrystalline pigments [93]. 

4) Effect of pH. pH change during cultivation depends 
on the nitrogen source [14,50] and, to a lesser extent, on 
the carbon source [49,50]. The optimal initial pH value 
must also be selected with respect to the carbon and nitro- 
gen sources used [61]. 

Regardless of the initial pH, the final pH of the cultures 
utilizing the same carbon and nitrogen source was approxi- 
mately the same [15,49,50]. Yoshimura et al [102] reported 
that maintenance of pH at a constant value during the entire 
cultivation was not profitable. On the contrary, Lin and 
Domain [65] carried out successful cultivations at a con- 
stant pH by using a MOPS buffer. 

5) Effect of physical factors. The optimal cultivation 

temperature for individual Monascus strains varies from 
25~ [89] to 37~ [65]. Nevertheless, the most frequently 
cited temperature is 30~ 

The fungus requires sufficient aeration and therefore sub- 
merged cultivation can proceed only in shaken, preferably 
baffled [49] flasks or in a well-stirred and aerated fer- 
menter, eg a fermenter equipped with an airlift system [70]. 
Shear forces which may destroy the mycelium can be over- 
come by using roller bottles [69]. 

Pigment formation is independent of visible light. Broder 
and Koehler [13] recommended cultivation of Monascus 
species in total darkness. Irradiation of Monascus cultures 
by light of various wavelengths (blue, red, infrared light) 
did not affect pigment production [98]. 

Pigment determination and isolation: Owing to the 
complexity of the pigment mixture produced by Monascus 
species, in most of the previous studies pigment compo- 
sition was determined spectrophotometrically, using the 
absorption maxima exhibited around 400 nm, 470 nm and 
500 nm by the yellow, orange and red compounds, respect- 
ively. 

Qualitative analysis of the pigments was carried out by 
TLC on silica gel plates (Merck) developed with a solvent 
system containing chloroform : methanol : acetic acid 
( 2 8 5 : 2 1 : 9 )  [15]. 

Recently, HPLC was applied to pigment determination. 
The columns used were a Bondapak C~8 or LichroCART 
100 RP- 18 and mobile phases were 60% acetonitrile-0.05 % 
trifluoroacetic acid, 70% acetonitrile or a gradient from 15 
to 80% acetonitrile-water [18,53,64]. It is notable that the 
results of HPLC pigment analysis differed from the absorb- 
ency measurement [18]. Whereas according to HPLC 
analyses monascorubramine concentration was much 
higher than the concentration of yellow pigments, the 
absorbency data indicated the opposite result. In addition, 
HPLC analysis showed maximum pigment concentrations 
at earlier stages of cultivation when compared with spectre- 
photometric measurements. The differences between spec- 
trophotometric and HPLC analyses could be caused by for- 
mation of some unknown compound(s) that interfere(s) 
with absorption maxima of pigments from Monascus spec- 
ies. 

Purification of the major Monascus pigments to hom- 
ogeneity has been reported [11,37,44]. 

Strain improvement 
Irradiation of wild Monascus strains by UV light, neutron- 
or X-rays, mutation using MNNG or combinations of these 
methods can result in mutants with advantageous properties 
(rapid growth, superior pigment production, elimination of 
ascospore formation) or albino mutants [42,62,98,99]. The 
latter strains can he reverted into pigment producers by 
further UV irradiation [98]. Lin and Iizuka [63] prepared a 
Monascus strain which produced mainly extracellular pig- 
ments by a series of mutations induced by chemical and 
physical mutagens. Yongsmith et al [100] obtained a 
mutant of a Monascus species which produced a high con- 
centration of yellow pigments instead of the red pigments 
formed by its parent strains. 



Mevinolin and related compounds 

Structure and biosynthesis 
Unlike pigments described above, the polyketide mevinolin 
(also referred to as Lovastatin, monacolin K, Mevacor, MB 
530B, MK 803 or MSD 803) is produced not only by mem- 
bers of the genus Monascus, but also by a variety of other 
filamentous fungi including Aspergillus terreus and some 
species of Penicillium [2], Hypomyces, Doratomyces, 
Phoma, Eupenicillium, Gymnoascus, Trichoderma [25] and 
Pleurotus ostreatus [36]. 

6-Demethylmevinolin (also referred to as compactin, 
Mevastatin, ML 236B, CS 500) was isolated in 1976 by 
Endo and colleagues and by researchers at Beecham Lab- 
oratories from Penicillium citrinum and P. brevicompac- 
turn, respectively [2]. Mevinolin was first reported from M. 
ruber by Endo [21] and, independently, by Alberts et al 
[3] from Aspergillus terreus. 

Biosynthesis of mevinolin was detected in 17 of 124 
Monascus strains tested [79]. The active strains belonged 
to M. ruber, M. purpureus, M. pilosus, M. vitreus mad M. 
pubigerus. (According to the new taxonomy of this genus 
[39], M. vitreus and M. pubigerus belong to M. ruber and 
M. pilosus, respectively.) All mevinolin-producing strains 
were inferior in red pigment formation. 

The biosynthesis of mevinolin was determined from 
studies using the fungus Aspergillus terreus [16,35,75,90]. 
Mevinolin (Figure 5) contains two polyketide chains, C18 
and C4 synthesized from acetate units coupled to each other 
in head-to-tail fashion. The C~s-chain is cyclized while 
bound to the polyketide synthase or immediately after dis- 
sociation from the enzyme, oxidized at the 8-carbon atom 
and esterified by the side chain. The 6c~-methyl group and 
the methyl group on the side chain are derived from meth- 
ionine. The methylations are sequential, the first one, on 
the 6 c~-carbon atom, occurs before the closure of the rings. 
The methylation from L-methionine is typical of the fungal 
metabolism whereas propionate incorporation is generally 
used by actinomyces. Fatty acids with three and more car- 
bon atoms are not incorporated into mevinolin. The oxygen 
atoms on the main chain are introduced successively on a 
deoxygenated precursor. 

The biosynthesis of compactin and mevinolin by Penicil- 
lium citrinum and Monascus ruber proceeds in a similar 
way, ie the incorporation of acetate and methionine was 
observed, but not that of propionate. The enzymatic 
hydroxylation and subsequent esterification at the 8-carbon 
atom was also observed [22]. 

Mevinolin is produced as a mixture of a lactone and a 
free hydroxy acid [3]. Mevinolin-related compounds 
(Figure 5) vary in composition of the C4 side chain 
(monacolins J [23], X [24] and M [26]) or lack this chain 
(monacolin L [23], dihydromonacolin L [23] and compactin 
derivative ML-236C [27]). Growth experiments with M. 
ruber using 14C-labeled monacolin J or L suggested that 
both compounds are precursors of monacolin K [23]. The 
results of Komagata et al [54] indicated that monacolin L 
is the precursor of monacolin J, which, in turn, can be con- 
verted to monacolin K [52], and that a monooxygenase is 
involved in this reaction. 
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Figure 5 Mevinolin, compactin and related compounds. 

Biological activity 
Mevinolin, compactin and their derivatives obtained by 
chemical modifications (pravastatin, simvastatin) have pro- 
vided a new mode of therapy for patients with hypercholes- 
terolemia--a disease characterized by an elevated plasma 
concentration of the low density lipoprotein 
(LDL)/cholesterol complex. 

The microsome enzyme 3-hydroxy-3-methylglutaryl- 
coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) cata- 
lyzes an early step in cholesterogenesis, ie the reduction of 
HMG-CoA to mevalonic acid. The specific inhibitory effect 
of mevinolin on this enzyme is caused by a structural 
relation between the 5-carbon hydroxy acid fragment of 
mevinolin and HMG-CoA [78]. 

Mevinolin inhibits sterol synthesis not only in hepato- 
cytes and other types of mammalian cells [76,92,96] but 
also in fungi [6,9,28,51,59,67,94] and in plants [4-6,91]. 

Maltese et al [71] reported that mevinolin can suppress 
tumor growth in vivo owing to its capability to inhibit the 
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synthesis of nonsterol isoprenoid compounds such as dol- 
ichol, ubiquinone and isopentenyl-tRNA. Recently, atten- 
tion has been paid to mevinolin and related compounds as 
potential therapeutic agents for the treatment of various 
types of tumors [48,77,80,95]. 

Production and isolation 
Cultivation of M. ruber for the production of monacolins 
proceeds for 10-11 days at 25~ in complex media con- 
sisting, eg of either glucose, peptone, corn steep and 
ammonium chloride [23] or glycerol, glucose, soy bean 
powder, peptone, sodium nitrate, zinc nitrate and olive oil 
[24]. An elevated temperature (35~ inhibits mevinolin 
production [79]. 

Isolation of mevinolin is usually carried out by extraction 
of the culture broth with ethyl acetate [3] at a pH of 4-4.2. 
For easier purification, the hydroxy acid is transformed into 
lactone [1]. 

Separation can also be started by sorption of the desired 
compounds on the polymeric resin XAD-2 at a pH of 6-8 
and their elution by a mixture of isopropanol:ethyl 
acetate : dichlormethane (25 : 45 : 30) [88]. 

Alternatively, preparative HPLC can be applied to puri- 
fication of mevinolin, using, eg NucleosilsCls or Lobar 
(Si60, Merck, Darmstadt, Germany) and mobile phases 
consisting of 0.1% H3PO4: acetonitrile (1 : 1) or 
benzene : acetone (7 : 3), respectively [23,24,87]. 

Ankalactone 

Nozaki et al [81] isolated a novel a,/3-unsaturated 7-1actone 
derivative (Figure 6), named ankalactone, from a culture 
filtrate of M. anka (ie M. purpureus [39]) grown in a glu- 
cose-peptone medium for 7 days. Using extraction with 
ethanol and repeated chromatography on silica gel with 
chloroform : ethyl acetate (4 : 1), the product was isolated 
as colorless crystals. 

Ankalactone showed a gross inhibitory effect against 
Escherichia coli and Bacillus subtilis, although its action 
was weaker than that of monascorubrin or rubropunctatin. 

Conclusions 

Some biological effects of the secondary metabolites of 
Monascus species remain to be investigated. In this respect, 
additional studies on the antimicrobial and immunosup- 
pressive effects of the pigments merits further research. 

Because Monascus species are used in the production of 
food additives, it is necessary to take into account the tox- 
icity of some of their metabolites. Based on their reactivity 
with amines, the orange pigments undergo detoxification 
during cultivation on solid substrates. Nevertheless, forma- 

Figure 6 Ankalactone [81]. 

tion of the orange compounds is possible in submerged cul- 
tures utilizing inorganic nitrogen sources. Dyes prepared 
from Monascus species by this method must therefore be 
subjected to reaction with amino acids, aminopolysaccha- 
rides or amino alcohols [14] prior to use. According to 
Blanc et al [10] there is some risk of contamination of the 
colorants with citrinin which could be avoided, however, 
either by detoxification of the pigments, use of citrinin-non- 
producing species or by submerged fermentative conditions 
of citrinin non-production. 

Ishiwata et al [45] simulated behavior of colorants from 
Monascus species during digestion and concluded that the 
main product formed from a pigment-protein complex was 
probably monascorublysine. However, this is, to the best 
of our knowledge, the only work concerning this topic. 
Thus, this problem may also provide an opportunity for 
further studies. 
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