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Journal for Research in Mathematics Education 
2002, Vol. 33, No. 5, 379-405 

Secondary School Mathematics 
Teachers' Conceptions of Proof 

Eric J. Knuth, University of Wisconsin-Madison 

Recent reform efforts call on secondary school mathematics teachers to provide all 
students with rich opportunities and experiences with proof throughout the secondary 
school mathematics curriculum--opportunities and experiences that reflect the nature 
and role of proof in the discipline of mathematics. Teachers' success in responding 
to this call, however, depends largely on their own conceptions of proof. This study 
examined 16 in-service secondary school mathematics teachers' conceptions of 
proof. Data were gathered from a series of interviews and teachers' written responses 
to researcher-designed tasks focusing on proof. The results of this study suggest that 
teachers recognize the variety of roles that proof plays in mathematics; noticeably 
absent, however, was a view of proof as a tool for learning mathematics. The results 
also suggest that many of the teachers hold limited views of the nature of proof in 
mathematics and demonstrated inadequate understandings of what constitutes proof. 

Key Words: Proof; Secondary mathematics; Teacher beliefs; Teacher knowledge 

Many consider proof to be central to the discipline of mathematics and the prac- 
tice of mathematicians. In fact, Ross (1998) contended that "the essence of math- 
ematics lies in proofs" (p. 254). Yet, surprisingly, the role of proof in secondary 
school mathematics has traditionally been peripheral at best, usually limited to the 
domain of Euclidean geometry. According to Wu (1996), however, the scarcity of 
proof outside of geometry is a misrepresentation of the nature of proof in mathe- 
matics. He argued that this absence is 

a glaring defect in the present-day mathematics education in high school, namely, the 
fact that outside geometry there are essentially no proofs. Even as anomalies in educa- 
tion go, this is certainly more anomalous than others inasmuch as it presents a totally 
falsified picture of mathematics itself (p. 228). 

Similarly, Schoenfeld (1994) maintained that "proof is not a thing separable from 
mathematics, as it appears to be in our curricula; it is an essential component of 
doing, communicating, and recording mathematics. And I believe it can be 
embedded in our curricula, at all levels" (p. 76). Many mathematicians and math- 
ematics educators agree with Wu's and Schoenfeld's sentiments and, over the last 
20 years, have been reassessing the nature and role of proof in mathematics educa- 

The author wishes to thank Hilda Borko, Tom Carpenter, Dominic Peressini, Ed 
Silver, and the anonymous reviewers for their helpful comments on earlier versions 
of this paper. 
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380 Teachers' Conceptions of Proof 

tion. This reassessment has influenced the practice of mathematicians, theories of 
mathematics education, and mathematics curricula (Hanna & Jahnke, 1993). 

Reflecting this reassessment, as well as embracing the central role of proof in math- 
ematics, recent reform efforts have significantly elevated the status of proof in school 
mathematics (National Council of Teachers of Mathematics [NCTM], 2000). In 
contrast to its conspicuous absence in previous recommendations (see NCTM, 
1989), proof is expected to play a much more prominent role throughout the entire 
school mathematics curriculum and to be a part of the mathematics education of all 
students. Successfully enacting these new recommendations, however, places signif- 
icant demands on school mathematics teachers because approaches designed to 
enhance the role of proof in the classroom require effort on their part (Chazan, 1990; 
Jones, 1997). The challenge of meeting these demands is particularly daunting in 
light of the fact that many students find the study of proof difficult (e.g., Balacheff, 
1988; Bell, 1976; Chazan, 1993; Healy & Hoyles, 2000; Senk, 1985). 

Factors that have been identified as important determinants of teachers' class- 
room practices, and that consequently have major implications for the extent to 
which teachers implement reform recommendations, are their subject matter 
knowledge and beliefs (Borko & Putnam, 1996). Accordingly, teachers' success 
in enhancing the role of proof in the classroom depends in large part on the nature 
of their own conceptions' of proof. Yet, to date, little research has focused on 
teachers' conceptions of proof and even less has examined in-service secondary 
school teachers' conceptions of proof-the focus of this study. Researchers have 
focused primarily on prospective elementary school (e.g., Martin & Harel, 1989; 
Simon & Blume, 1996) and prospective secondary school (e.g., Jones, 1997) 
teachers' conceptions of proof, as well as undergraduate mathematics majors' 
conceptions of proof (e.g., Harel & Sowder, 1998). Moreover, this body of research 
has tended to neglect individuals' views regarding the nature and role of proof, 
focusing instead on individuals' judgments of proof and approaches to proving. 
Consequently, with the increased emphasis on proof in school mathematics-in 
particular, in secondary school mathematics-as well as the accompanying 
demands on those currently teaching school mathematics, there exists a significant 
need for research on in-service secondary school mathematics teachers' concep- 
tions of proof. A goal of this article is to describe results of a study that examined 
in-service secondary school mathematics teachers' conceptions of proof. 

THEORETICAL PERSPECTIVES 

Authors have suggested various roles that proof plays in mathematics: to verify 
that a statement is true, to explain why a statement is true, to communicate math- 

1 My use of the term conceptions includes both subject matter knowledge and beliefs. Although sepa- 
rating teachers' knowledge and beliefs serves as a useful heuristic for thinking about and studying factors 
influencing their instructional practices, the separation is less distinct in reality than it is in theory 
(Grossman, 1990). 
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ematical knowledge, to discover or create new mathematics, or to systematize state- 
ments into an axiomatic system (e.g., Bell, 1976; de Villiers, 1999; Hanna, 1983, 
1990). These five roles compose the framework for considering teachers' concep- 
tions of proof used in this paper. I will briefly elaborate on these roles. 

The role of proof in verifying that a statement is true requires little elaboration. 
Indeed, few would question that a main role of proof in mathematics is to demon- 
strate the correctness of a result or the truth of a statement (Hanna, 1983). Yet, math- 
ematicians expect the role of proof to include more than a simple verification of 
results-that is, according to Hersh (1993), mathematicians are interested in "more 
than whether a conjecture is correct, mathematicians want to know why it is 
correct" (p. 390). Moreover, a proof functioning in this latter role--explaining why 
a statement is true-is often held in higher regard: The status of a proof is enhanced 
if it gives insight as to why the proposition is true as opposed to just confirming 
that it is true (Bell, 1976). 

Many within the mathematics community also view proof as "a form of 
discourse" (Wheeler, 1990, p. 3)-that is, as a means for communicating mathe- 
matics to other mathematicians (Alibert & Thomas, 1991; Balacheff, 1991). 
Proponents of this view have described, for example, the interactive process by 
which an argument becomes a proof as "a debating forum" (Davis, 1986, p. 352) 
and as "an essentially public activity" (Bell, 1976, p. 24). Similarly, Hanna (1990) 
noted that "the acceptance of a theorem by practising mathematicians is a social 
process" (p. 8). 

Proof also plays an important role in the discovery or creation of new mathe- 
matics. As de Villiers (1999) noted, "There are numerous examples in the history 
of mathematics where new results were discovered or invented in a purely deduc- 
tive manner [e.g., non-Euclidean geometries]" (p. 5). In addition, this role of proof 
is manifest in the relationship of proof to problem solving and conjecturing (P61lya, 
1957). Finally, the role of proof that is perhaps the "most characteristically math- 
ematical" (Bell, 1976, p. 24) is its role in the systematization of results into a deduc- 
tive system of definitions, axioms, and theorems. 

In sum, an informed conception of proof-one that reflects the essence of 
proving in mathematical practice-must include a consideration of proof in each 
of these roles. Traditionally, however, there has been a long distance between these 
roles and their manifestation in school mathematics practices (Balacheff, 1991). 
In large part because of such inconsistencies, current reform efforts are calling for 
significant changes in the role of proof in school mathematics (NCTM, 2000; Ross, 
1998). The goal of the study reported in this article was to examine a factor that is 
critical to the successful enactment of such recommendations-namely, teachers' 
conceptions of proof. The study was guided by the following questions: (a) What 
are teachers' conceptions about the role of proof? (b) What constitutes proof for 
teachers? and (c) What do teachers find convincing? 
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382 Teachers' Conceptions of Proof 

METHOD 

Participants 

Sixteen in-service secondary school (Grades 9-12) mathematics teachers partic- 
ipated in this study. Their years of teaching experience varied from 3 to 20 years, 
and the courses they taught ranged from pre-algebra to Advanced Placement (AP) 
Calculus. Eleven teachers had undergraduate mathematics degrees and 5 had 
undergraduate engineering or physical science degrees; 13 teachers also had 
master's degrees, two of which were in mathematics. The teachers used diverse 
curricular materials in their classrooms; some of them used reform-based curric- 
ular programs, and others used more traditional curricular programs. 

The teachers were selected on the basis of their willingness to participate in the 
study and were chosen from among participants in two ongoing professional 
development programs. Although one might question how representative the 
participating teachers were of the larger population of secondary school mathe- 
matics teachers, it is worth noting that the participating teachers were committed 
to reform in mathematics education (as evidenced in part by their seeking profes- 
sional development opportunities focusing on reform). Consequently, it is likely 
that these teachers were not only familiar with the most recent reform documents 
(e.g., NCTM, 2000) and the corresponding recommendations, but were also inter- 
ested in changing their instructional practices to more closely reflect the vision of 
practice set forth in such documents. 

Data Collection 

The primary source of data was semistructured interviews. The data were 
collected in two distinct stages, each with its own primary focus. The first stage 
focused on teachers' conceptions of proof in the discipline of mathematics (i.e., 
teachers' conceptions as individuals who are knowledgeable about mathematics), 
whereas the second stage focused primarily on their conceptions of proof in the 
context of secondary school mathematics (i.e., teachers' conceptions as individ- 
uals who are teachers of secondary school mathematics).2 The second stage of data 
collection was shaped by an initial analysis of data from the first stage and, as a 
result, the second stage also included follow-up tasks and interview questions 
pertaining to teachers' conceptions of proof in the discipline of mathematics. 
Because the focus of this article is on teachers' conceptions of proof in the disci- 
pline of mathematics, the results presented and subsequent discussion focus exclu- 
sively on data from the first stage and the relevant data from the second stage (see 

2 At times, this separation into two stages seemed somewhat artificial because the teachers often had 
trouble removing their "teacher hats" (i.e., the teachers' responses often reflected what they thought 
their students might do or think). Yet, I tried to maintain this separation throughout the data collection 
stages by reminding teachers to think about a question or task as someone who knows mathematics rather 
than as someone who teaches mathematics. 
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Knuth, 2002, for a discussion of teachers' conceptions of proof in the context of 
secondary school mathematics). 

Each interview consisted of several parts. Initial questions focused on teachers' 
conceptions about the nature and role of proof in mathematics. Typical questions 
included: What does the notion proof mean to you? What does it mean to prove 
something? What purpose does proof serve in mathematics? How does an argu- 
ment become a proof? Do proofs ever become invalid? Other questions focused 
on teachers' understandings of what constitutes proof. More specifically, during 
the interview, teachers were shown and asked to evaluate different sets of 
researcher-constructed arguments-arguments that varied in terms of their validity 
as proofs (cf. Martin & Harel, 1989; see Figure 1 for an example of three such argu- 
ments within a set). The arguments presented were chosen so that the underlying 
mathematical concepts were not difficult; ideally, the focus of the teachers would 
be on the argument presented rather than on trying to understand the mathematics 
needed to produce the argument. 

The argument sets also provided a context for examining the nature of what 
teachers find convincing; in particular, teachers were asked whether they found 
a particular argument within a set more convincing than others, and if so, why. 
This additional task was included in an attempt to discern whether teachers were 
cognizant of the explanatory role of proof. To this end, the arguments in each set 
differed, to varying degrees, in the extent to which they were explanatory (cf. 
Hanna, 1990)-that is, the extent to which they provided "a set of reasons that 
derive from the phenomenon itself" (p. 9). Three arguments demonstrating this 
construct are displayed in Figure 1: Argument (a) provides little insight into why 
the statement is true, only that it is true; in contrast, Arguments (b) and (c) provide 
insight based on the geometric and algebraic representations, respectively, into 
why the statement is true. Although the explanatory variance of the arguments in 
each set required an a priori categorization, I hypothesized that the rationale that 
the teachers provided for their responses might provide an indication of the 
degree to which they found particular arguments more or less explanatory than 
other arguments within a set. 

Data Analysis 

The data analysis was grounded in an analytical-inductive method in which 
teacher responses were coded with external and internal codes and then classified 
according to relevant themes. Coding of the data began with a set of external 
(researcher-generated) codes that were identified prior to the data collection and 
that corresponded to, and were derived from, the theoretical framework (e.g., veri- 
fication role of proof, explanation role of proof). The deductive approach used in 
producing the external codes was then supplemented with a more inductive 
approach (Spradley, 1979). As the data were being examined, emerging themes 
required the proposal of several new codes (e.g., sufficient detail as a criteria used 
in evaluating arguments, counterexamples may exist for a proof). After proposing 
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384 Teachers' Conceptions of Proof 

Prove: The sum of the first n positive integers is n(n + 1)/2. 

(a) For n = 1 it is true, since 1 = 1(1 + 1)/2. 
Assume it is true for some arbitrary k, that is, S(k) = k(k + 1)/2. 
Then consider: 
S(k + 1) = S(k) + (k + 1) = k(k + 1)/2 + k + 1 = (k + 1)(k + 2)/2. 
Therefore the statement is true for k + 1 if it is true for k. 
By induction, the statement is true for all n. 

(b) We can represent the sum of the first n positive integers as triangular 
numbers. 

1 1+2 1+2+3 1+2+3+4 

The dots form isosceles right triangles with the nth triangle containing: 

S(n)= 1+2+3+4+... +n dots. 

Overlaying a second isosceles right triangle of the same size so that the diag- 
onals coincide produces a square containing n2 dots plus n extra dots due 
to the overlapping diagonals. To illustrate, the figure below represents the 
fourth isosceles right triangle and another of the same size overlaid so that 
the diagonals coincide. In this case, a square containing 42 dots plus 4 extra 
dots due to the overlapping diagonals is produced: 

J 

Therefore, in the general case (using the nth triangle), the number of dots 
produced by the two overlapping triangles is 2S(n) = n2 + n, 
so S(n) = (n2 + n)/2. 

(c) S(n) = 1 + 2 + 3 + ... + n 
S(n) = n + (n-l) + (n - 2) + ... + 1 
Taking the sum of these two rows: 
2S(n)= (1 + n) + [2 + (n- 1)] + [3 + (n- 2)] + ... +(n+ 1) 

= (n+ 1)+ (n+ 1) +(n + 1)+ ... + (n + 1) 
= n(n + 1) 

Therefore, S(n) = n(n + 1)/2 

Figure 1. Three arguments justifying the statement that the sum of the first n positive inte- 
gers is n(n + 1)/2. From "Some Pedagogical Aspects of Proof," by G. Hanna, 1990, 
Interchange, 21(1), pp. 10-11. Copyright 1990 by Kluwer Academic Press. 
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these internal (data-grounded) codes, the data for each individual teacher were then 
reexamined and recoded to incorporate these new codes. In addition, data for an 
individual teacher were examined for consistencies and inconsistencies in the 
nature of his or her responses; such consistencies/inconsistencies for individual 
teachers were then examined across data sets for all of the teachers, with a focus 
on themes among the consistencies/inconsistencies. Finally, as a means of checking 
the reliability of the coding and the appropriateness of the coding scheme, a second 
researcher read and coded samples of the interview transcripts. The coded samples 
from both researchers were then compared, and differences were discussed until 
resolved. Data were then recoded to take into account any changes made to the 
coding scheme. 

On completion of the coding, a domain analysis of the data sets was conducted 
as a means of identifying, organizing, and understanding the relationships among 
the primary themes that emerged through the coding process (Spradley, 1979). 
According to Spradley, domains are categories of meanings that comprise smaller 
categories, which are linked to the corresponding domain by a single semantic rela- 
tionship. Domains selected for this stage of the analysis were determined by the 
research questions-that is, the issues that were deemed important for this study 
provided a backdrop against which specific categories were proposed as the data 
sets were examined. For example, I used domain analysis techniques to identify 
the nature of what the teachers found convincing, and this process enabled me to 
identify characteristics of convincing arguments. In this case, the domain chosen 
was "convincing arguments," and the smaller categories were the particular char- 
acteristics ("characteristics of" being the semantic relationship linking the smaller 
categories to the domain). As in the approach taken in coding the data, a more induc- 
tive approach supplemented this deductive approach and led to the proposal of addi- 
tional categories. 

RESULTS 

This section presents the results of the study and is organized by the three 
guiding research questions. Although data were collected from each individual 
teacher, in reporting the results, themes related to teachers' conceptions of proof 
are reported for the group rather than for individual teachers. Included in this presen- 
tation are frequency counts for the relevant themes as well as representative 
excerpts from the interviews (followed by teacher initials, which are pseudo- 
nyms). Only themes evident in the responses of at least 4 of the 16 teachers are 
presented. 

What Were the Teachers' Conceptions of the Role of Proof? 

As shown in Table 1, several themes were evident in teachers' responses to the 
interview questions. In this case, the themes corresponded well to the roles of proof 
proposed previously. Several new themes did emerge from the data, however, and 
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386 Teachers' Conceptions of Proof 

these themes related specifically to the context of secondary school mathematics 
rather than to the discipline of mathematics. 

Table 1 
Roles of Proof in Mathematics Identified by Teachers 

Roles of proof Number of teachers 
Establishment of truth 

Q: Do proofs ever become 'invalid'? 
proof not subject to contradictory evidence 4 
proof dependent on axiomatic system 6 
contradictory evidence possible 6 

Q: Counterexample possible for a given proof (see Figure 2)? 
conclusion tested empirically prior to responding 4 
hesitancy in responding 5 
atypical case needs to be tested 5 

Explanation 
Promoting understanding 0 
Answering why 3 

Communication of mathematics 12 

Creation of knowledge/Systematization of results 8 

Proof as a means of verification. All the teachers suggested that a primary role 
of proof in mathematics was to establish the truth of a statement, although they 
talked about the means by which truth is established in one of two ways. On the 
one hand, 11 teachers stated, to varying degrees, that truth is established by means 
of a logical or deductive argument. The following 2 teachers' responses are repre- 
sentative: 

I think it means to show logically that a certain statement or certain conjecture is true 
using theorems, logic, and going step by step. (KK) 

I see it as a logical argument that proves the conclusion. You're given a statement, and 
the logical argument has this statement as its conclusion. (SP) 

On the other hand, 5 teachers used more general terms, suggesting that truth is 
established by means of a convincing argument. For example, one teacher stated 
that proof is "a convincing argument showing that something that is said to be true 
is actually true" (KA). Another teacher within this latter group recalled how her 
teaching experiences with reform-based curricula influenced her view of proof: 
"Having taught Discovering Geometry and really looking at the Interactive 
Mathematics Program and all the writing that they do in there, I guess now I'd say 
proof is really a convincing argument" (DL). 

One of the powerful features of this role of proof concerns the generality of the 
conclusion--that is, the fact that a proof establishes the truth of a statement for all 
situations that satisfy the given conditions. Although all the teachers indicated that 
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they viewed proof as a means of establishing the truth of a conclusion, they seemed 
to have varied understandings of the generality of a proof's conclusion, both at a 
general level and at a more specific level. In responding to a question that probed 
the fallibility of proofs (i.e., Do proofs ever become invalid?), four teachers 
commented that a proof is a proof and is not subject to contradictory evidence. Six 
other teachers demonstrated perhaps a more sophisticated understanding in that they 
recognized that a change in the axiomatic system for which a proof was constructed 
might render an argument invalid in the new system. One teacher explained her 

perspective in the following manner: 

I would say that once it's been proved, unless you introduce some new model, like in 
geometry you can prove [sic] that parallel lines never touch until you get on a sphere 
and then you have a whole different way of looking at something. So within the same 
context, I wouldn't think that too many things can change. (KA) 

Similarly, another teacher stated that, "there's always a chance that something 
new will come along, like Euclidean versus non-Euclidean geometry. If the para- 
meters are changed, or some new insight occurs, then a proof might no longer be 
valid" (KU). Somewhat surprisingly, given their mathematics background, the six 

remaining teachers responded that it might be possible to find a counterexample 
or some other form of contradictory evidence, thus rendering a proof "invalid." The 
following responses were typical: 

Somebody could finally come up with a counterexample that proved it wrong. (QK) 

If it can be disproven by a counterexample.... Once it's proved, the probability may 
be there for a counterexample. (CC) 

As will be discussed next, many of these teachers may not have a robust under- 

standing of the generality of a proof. 
The following discussion looks at the teachers' understandings of the fallible (or 

infallible) nature of proof more explicitly. The teachers demonstrated whether or 
not they had a robust understanding of a proof's generality by examining the rela- 

tively simple proof shown in Figure 2, telling if they understood it, and then 
answering questions about the conditions under which the conclusion would hold. 
All the teachers stated that the proof made sense and that they understood it. Next, 
they were asked if it was possible to find a counterexample.3 Although every 
teacher correctly responded that it was not, four teachers drew additional triangles 
as a means of verifying for themselves the argument's conclusion prior to 
responding. One teacher who was asked why she bothered to test three additional 
triangles explained, "Because proof by exhaustion. There are millions of triangles 
that exist, and I've only looked at three" (SP). In addition, three other teachers did 
not respond very convincingly when asked if it was possible to find a counter- 

3 It is certainly possible teachers perceived the question as a "trick" question and, as a result, decided 
to verify the conclusion. In light of my relationship with the teachers (I was associated with a profes- 
sional development project in which many of the teachers participated), however, I do not think this 
was the case. 
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C 

D E 

A B 

Given: AABC and points D and E, which are midpoints of AC and BC, 
respectively. 
Prove: AB is parallel to DE. 

D is midpoint of AC and E is midpoint of BC Given. 
DC = (1/2)AC and EC = (1/2)BC Definition of a midpoint. 

ZC=- ZC Reflexive property. 
AABC ~ ADEC If two sides of a triangle are 

proportional to the two corre- 
sponding sides of another 
triangle, and the included 
angles are congruent, then the 
triangles are similar. 

ZL CDE =Z CAB Definition of similar triangles. 
AB is parallel to DE If two lines cut by a transversal 

(AC) form congruent angles 
with the transversal, then the 
lines are parallel. 

Figure 2. Does the conclusion holds for all triangles? From "High School Geometry 
Students' Justification for Their Views of Empirical Evidence and Mathematical Proof," by 
D. Chazan, 1993, Educational Studies in Mathematics, 24, p. 366. Copyright 1993 by 
Kluwer Academic Press. 

example; they hesitated and then offered comments such as "I don't think so" or 
"I am pretty sure it is not possible." 

In a second question related to this proof, I drew an atypical triangle (i.e., an 
"extremely" obtuse triangle with a very short base) and asked teachers if the 
conclusion would hold for this triangle. Again, every teacher correctly responded 
that the conclusion would still hold; however, five teachers actually made 
sketches of the given conditions and conclusion on the figure prior to responding 
(two of these five teachers also checked additional triangles in response to the 
previous question). One of these teachers drew another triangle-attempting to 
draw an even more atypical one-before stating that she thought the conclusion 
would hold: 

I'm thinking I want to see it a little more dramatically than you've drawn it, so I can 
make that decision. [After drawing her own triangle:] Yes, I think it will be true. (PB) 
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Four teachers also sounded somewhat unconfident (e.g., "I don't think so" or "It 
appears to be true"); two of these teachers had also expressed some degree of hesi- 
tancy in responding to the previous question. The level of conviction (or lack 
thereof) displayed by these teachers was quite different from that displayed by those 
teachers who had no doubt about the generality of this proof. As one of the confi- 
dent teachers commented, 

That's the whole idea of doing a proof, it applies to every case. So of course it's going 
to be true. (KB) 

A follow-up question asked teachers to explain the proof's generality (i.e., Why 
isn't the proof a proof only for the given triangle?). Every teacher, including those 
who expressed some doubt (either by testing examples or by responding unconfi- 
dently), provided satisfactory responses. It appears that the teachers who expressed 
doubt did not entirely believe what they purported to know. The following are repre- 
sentative of the teachers' explanations: 

There is nothing in the proof that uses any specialness about the way the triangle is 
drawn. It only uses the given words and this is just a picture to help us see what these 
words are talking about (KB). 

There is nothing about the particular figure that makes it unique, no measurements of 
sides or angles (KD). 

One teacher, however, after explaining that it was just a general triangle and that 
the proof was based on its generic features, began to have second thoughts: "Now 
it makes me wonder if it would be true for all those special cases. I think it is" (EN). 

In sum, the teachers expressed a view of proof as a means of establishing the truth 
of a statement, yet several teachers genuinely did not seem to understand (or, at 
the very least, did not seem to be confident in their understanding of) the gener- 
ality of a proven statement (see Table 1). These teachers either believed that it might 
be possible to find some form of contradictory evidence to refute a proof or they 
expressed doubt regarding the conclusion of an argument even though they believed 
the argument to be a proof. 

Proof as a means of explanation. There was no supporting evidence to suggest 
that the teachers viewed the promotion of understanding or insight as a role of proof 
in mathematics, in contrast to views espoused by many mathematicians (e.g., 
Hanna, 1990; Hersh, 1993). (That said, a caveat is in order: Three teachers did talk 
about the role of proof in explaining why something is true, and an additional seven 
teachers also mentioned this role of proof in secondary school mathematics.) 
Teacher responses included the following: 

I think of it [proof] as also answering the question of why does this work. (KA) 

A proof puts the "why" as to why we do something in a given situation. You can always 
go back to a proof to show why. (CA) 

On the surface, these teachers' comments suggest that they do indeed view expla- 
nation as a role of proof; however, their comments pertained more to under- 
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standing how one proceeded from the premise to the conclusion of a proof-a proce- 
dural focus--rather than to understanding the underlying mathematical relation- 
ships illuminated by the proof. For example, these teachers viewed a derivation of 
the quadratic formula as an illustrative example of the role of proof in telling why 
something is true. One could follow the progression of steps in the derivation to 
understand how the general formula was produced (i.e., "why" it was true). The 
nature of the understanding connected with the role of proof in answering why, 
however, seems qualitatively different from the nature of the understanding 
connected with the role of proof in promoting insight. In the former role, a proof 
"shows only that a theorem is true," whereas in the latter role, a proof "shows why 
a theorem is true" (Hanna, 1990, p. 9). 

Proof as a means of communicating mathematics. Twelve teachers expressed the 
view that proof arises from, or is a product of, social interaction. In the words of 
several of the teachers, proofs are a means to communicate and convince others 
of one's claims: 

[Proofs are a method] to convince them [i.e., a wider audience] that your thinking is 
correct. (DL) 

[Proofs are] an act of communication, for sure. Either writing down, or it could maybe 
be in spoken form through pictures and language, some logical sequence which 
convinces a reader or an audience that you have shown something must be true. (KB) 

When asked how an argument becomes a proof, these teachers suggested that 
proof is the result of a particular social act-the acceptance of an argument by 
others: 

A mathematical community or audience for that particular proof would either accept 
it or refute it. (KJ) 

I think there has to be a collaboration between the prover and audience. "This is my 
argument and I believe my argument and this is my substantiation." A person who is 
trying to understand, if they disagree, then there has to be some interchange about 
accepting it or refuting it. (CA) 

Proof as a means of creating knowledge and as a means ofsystematization. Eight 
teachers seemed to express the view that proof plays an essential role in the 
creation of mathematical knowledge and, to a lesser extent, in its systematization. 
These two roles are presented together because the teachers' responses included 
aspects of both roles. Representative excerpts from teachers expressing this view 
included the following: 

It's [i.e., proof is] the whole basis of our mathematics system. Everything is based upon 
being proven. (KK) 

We can start with something we know. We can go to something we don't know and 
[after constructing a proof] add that to the system. And then if we start with what we 
know we can add other things to this system by showing that it logically follows. (MQ) 

Math is a building block. Everything is based upon what was proven before. (CC) 
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Although the teachers' comments suggest an awareness of proof s role in creating 
knowledge-knowledge that subsequently becomes part of a larger "system" of 
knowledge-it is less clear whether these same teachers view such systematiza- 
tion in terms of some underlying axiomatic structure. In other words, it is less clear 
whether the teachers view the knowledge created by proofs as part of a deductive 
system of definitions, axioms, and theorems. 

What Constitutes Prooffor Teachers? 

The teachers were given five sets of statements with 3 to 5 corresponding argu- 
ments justifying each statement; in all, there were 13 arguments that constituted 
proofs and 8 arguments that did not (each set of arguments had at least one 
nonproof). The arguments also varied in terms of the approach used in constructing 
them (e.g., algebraic, proof by induction) and their explanatory nature (i.e., more 
explanatory or less explanatory). Teachers were asked to review the various argu- 
ments within a set, to rate each argument in terms of its validity using a 4-point 
scale (cf. Martin & Harel, 1989), where 1 represented an argument that is not a proof 
and 4 represented an argument that is a proof, and to provide a rationale for the 
rating given to each argument. Ratings of 2 or 3 were included on the scale to allow 
teachers the freedom to express alternative views regarding the validity of a partic- 
ular argument or to express varying degrees of certainty or acceptance regarding 
the validity of that particular argument. Further, employing a 4-point scale (as 
opposed to a 2-point scale) allows subtle facets of the notion of validity in proving 
to emerge-such as, for example, the presumption of assumed truths or the 
completeness of details. Prior to discussing the criteria that teachers used to eval- 
uate the arguments, I will present the results of their evaluations. 

Evaluation of arguments. In general, the teachers were successful in identifying 
those arguments that were proofs; over 93% of the ratings given to the arguments 
that constituted proofs were correct. Although it is impressive that teachers 
considered all the "right" arguments to be proofs, the number of nonproofs that 
they also rated as proofs was somewhat surprising, in light of their mathematics 
backgrounds. Overall, a third of the ratings that the teachers gave to the nonproofs 
were ratings as proofs. In fact, every teacher rated at least one of the eight 
nonproofs as a proof, and 11 teachers rated more than one as a proof. For example, 
5 teachers rated the empirically based argument in Figure 3a as a proof. One teacher 
did not see it as a "formal" proof but as a proof, nonetheless: "It's a valid proof. 
It's not a formal proof, but it's still a proof of it" (LV). Two other teachers, 
however, were not quite as convinced of its validity; they found fault with it for 
reasons other than that the argument was based on empirical evidence. In the words 
of one, "They didn't try it for every type of triangle. [If they did] then I'd give it 
a 4" (KU). Apparently, if the faults were rectified, then the argument would be 
considered to be a proof. 
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(a) I tore up the angles of the obtuse triangle and put them together (as 
shown below). 

cc 
\b 

lal b a bc 

The angles came together as a straight line, which is 1800. I also tried it 
for an acute triangle as well as a right triangle and the same thing happened. 
Therefore, the sum of the measures of the interior angles of a triangle is 
equal to 1800. 

(b) Using the diagram below, imagine moving BA and CA to the perpendic- 
ular positions BA' and CA ", thus forming the second figure. In reversing 
this procedure (e.g., moving BA' back to BA), the amount of the right 
angle, A'BC, that is lost is x. This lost amount, however, is gained with 
angle y (DA is perpendicular to BC). A similar argument can be made for 
the other case. Thus, the sum of the measures of the interior angles of any 
triangle is equal to 1800. 

A' A A" A' A" A' A A" 

x 

YIn 

m 

B C B C B D C 

Figure 3. Two attempts at proving that the sum of the measures of the interior angles of any 
triangle is equal to 180'. 
Note. Part (b) from "Students Proof Schemes: Results from Exploratory Studies" by G. Harel and L. 
Sowder in Research in Collegiate Mathematics Education III (p. 259), edited by A. Schoenfeld, J. 
Kaput, and E. Dubinsky, 1998, Washington, DC: Mathematics Association of America (MAA). 
Copyright 1998 by MAA. 

For a second example, 10 teachers considered the argument displayed in Figure 
4a to be a proof, though the argument actually proves the converse of the given 
statement. In determining the argument's validity, these teachers seemed to focus 
solely on the correctness of the algebraic manipulations rather than on the mathe- 
matical validity of the argument. 

The algebraic steps were easy to follow, and I had no problem with it. (NA) 
That proves it. It's just the algebra. Everything fits. (QK) 
I'm convinced by [A; shown in Figure 4a]. A is a 4. I think what's convincing to me 
is that it's gone through the algebraic manipulation to show it. (PB) 
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1 Prove: If x > O, then x + - 2. 
x 

1 
(a) x + - 2 x 

x2- 2x + 1 0 
x 

(x- 1)2>0 
x 

x > 0 

Assume true. 

Subtracting 2 from each side and rewriting the left- 
hand side as a fraction with denominator of x. 

Factoring the numerator. 

Since the numerator is always positive and the frac- 
tion itself must be greater than or equal to zero, then 
the denominator must be positive. 

Therefore, x + 1 > 2 is equivalent to x > 0. It follows that if x > 0, then 
x 

x + ->2. x 

(b) We can construct a right triangle with the given sides so that it satisfies 
the Pythagorean Theorem. 

x + 1/x 

x-1/x 

2 

Note: If 0 < x < 1 then the vertical side has length - - x. 
x 

That is, the following is a true statement: x- +22= x + 12 

From right triangle geometry, we know that the hypotenuse is longer 
than either leg. 

Thus, x + 12 2. 
x 

Figure 4.Two attempts at proving that x > 0, then x + 1/x 2 2: (a) a proof of the converse 
and (b) a proof using a visual representation. From "On Proofs and Their Performance as 
Works of Art," by G. Winicki-Landman, 1998, Mathematics Teacher, 91, pp. 722-723. 
Copyright 1998 by the National Council of Teachers of Mathematics. 

A is just an algebraic approach.... Algebraic manipulation is basically the tool pulling 
this proof together (CA). 

It is possible that, in the context of a formal interview, teachers may not have 
reviewed the argument in sufficient detail; nevertheless, their responses seem to 
suggest that they focused on the correctness of the manipulations performed in the 
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argument as opposed to the nature of the argument itself. Of those teachers who 
did recognize the argument as a proof of the converse, the following response was 
typical: "I'm having trouble with A because you're starting with the assumption 
that the conclusion is true. I'm really struggling with this as a proof' (DL). It is 
interesting that this teacher still seemed to lack the confidence (or understanding) 
to conclude outright that the argument was not a proof of the given statement. 

For a final example, four teachers rated the proof of the particular case shown 
in Figure 5 as a proof of the general case. Six teachers rated the proof of the partic- 
ular case as a proof of the particular case only, and the remaining six teachers indi- 
cated that the proof of the particular case was not a proof because it was not general. 
Of those teachers who felt that the proof of the particular case was a proof of the 
general case, the following was a typical reason: "I gave it a 4 because even 
though it used a specific example and not a general case, it was clear from that 
example that this statement was true" (SP). On the one hand, these teachers may 
have abstracted the general argument from this proof-in a sense, mentally filling 
in the blanks that would be necessary to generalize it-a relatively easy task. As 
one teacher pointed out, 

The idea is in A [proof of the particular case]. All you have to do is go put x, y, and z 
in for 7, 5, and 6. You'd have the same proof and then it'd be a 4. (CA) 

On the other hand, these teachers may have perceived the proof of the particular 
as more convincing (as will be discussed shortly) and thus accepted it as a proof. 

Criteria used in evaluating arguments. Although teachers provided a variety of 
criteria in determining what constituted a proof and often supplied different criteria 

Prove: If the sum of the digits of a whole number is divisible by 3, then the 
number itself is divisible by 3. 

Consider 756. This number can be represented as follows: 

756=7. 100+5. 10+6. 

By the commutative and associative properties, we get 
756 = (7 * 99+ 7) + (5 9 + 5) + 6 = (7 * 99 + 5 9) + (7 + 5 + 6). 

Notice that the expression 7 * 99 + 5 * 9 is always divisible by 9, and there- 
fore also by 3. Now, since the second expression 7 + 5 + 6, which is the sum 
of the number's digits, is divisible by 3, then, by the "sum property," we get 
that the number itself is divisible by 3. Since any number can be expressed in 
a similar fashion, then for any whole number, if the sum of its digits is divis- 
ible by 3, then the number itself is divisible by 3. 

Figure 5. A proof of the particular as a proof of the general. From "Proof Frames of 
Preservice Elementary Teachers," by W. G. Martin and G. Harel, 1989, JournalforResearch 
in Mathematics Education, 20, pp. 43, 45. Copyright 1989 by the National Council of 
Teachers of Mathematics. 
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for different arguments, they used four criteria more often than others. The first 
two criteria-valid methods and mathematically sound-primarily concerned qual- 
ities that teachers perceived as necessary in order for arguments even to be consid- 
ered as proofs. In this case, teachers' ratings of arguments as proofs were based 
primarily on the particular proving method used or the mathematical reasoning 
involved in presenting the argument. The last two criteria-sufficient detail and 
knowledge dependent-primarily concerned distinctions that teachers made among 
arguments that they considered to be proofs. Once the issue of validity was resolved 
(i.e., an argument was identified as a proof), teachers then seemed to focus on qual- 
itative factors in the presentation of the argument. In particular, they gave scores 
of 3 to arguments not quite meeting their own standards of proof but which they 
nevertheless considered to be proofs. Especially striking was the number of teachers 
who assigned a rating of 3 to arguments that they in fact considered to be proofs- 
in essence, proposing "degrees of completeness" that affected their rating of a proof. 
In short, the teachers used mathematically grounded criteria for accepting an argu- 
ment as a proof while using qualitatively grounded criteria for making distinctions 
among proofs. 

In all, seven teachers used the valid methods criterion in determining whether 
an argument was a proof. The focus of the teachers who applied this criterion was 
primarily on the method (or perhaps the form) used in producing an argument rather 
than on the reasoning presented in it. For example, one teacher correctly rated 
several arguments within a set as proofs (see Figure la-c). However, she viewed 
one of these arguments as being "better" than the others because of the particular 
approach taken in constructing the argument: 

[The proof shown in Figure Ic] feels likes it's mathematically valid, because it's alge- 
braic in nature. So I tend to see this as the best. (MQ) 

Other teachers did not necessarily base their acceptance of an argument as a proof 
on an understanding of the argument but rather on "knowing" that the method or 
approach used in constructing the argument was valid. For example, one teacher, 
who confessed to not really understanding proof by induction (see Figure la), never- 
theless found such a proof convincing because of its method: "I know that that is 
a valid way of proving things" (KA). Similarly, another teacher commented, "I 
know that this [proof by induction] is one I've seen used before, and I assume it's 
a good way to do it" (KJ). Thus, in both of these cases, the teachers were convinced 
that the argument was a proof because of the method employed rather than because 
of an understanding of the method itself. The teachers who rated the proof of the 
converse of a statement (see Figure 4a) as a proof of the statement also used this 
criterion. In this case, the teachers focused not on the reasoning presented in the 
argument but rather on the symbolic manipulations performed in arriving at the 
conclusion. The manipulations were correct; thus, the teachers considered the 
argument to be valid. As one teacher put it, "I think what's convincing to me is that 
it's gone through algebraic manipulation to show it" (PB). Apparently, these 
teachers focused on the argument's local characteristics (i.e., moving from one step 

This content downloaded from 128.192.114.19 on Wed, 3 Sep 2014 14:24:05 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


396 Teachers' Conceptions of Proof 

to the next within the argument) at the expense of attending to more global char- 
acteristics (i.e., the argument as a whole). Finally, one teacher gave two arguments 
ratings of 3 even though she considered them to be proofs; she assigned the lower 
rating because they were not "mathematical" methods of proving (see Figure lb 
for one of the two proofs). As she explained, the reason for the lower rating 
stemmed from her experiences as a university mathematics student: 

These are all good, but Dr. Smith [a mathematics professor] would not have accepted 
these.... I know from the guys that I had at school that these are cute, and they would 
say well, that's real nice and that's a real interesting way to approach it, but that's more 
like a high school, middle school approach. This is a mature mathematician right here 
[a proof by induction].... There's nothing the matter with any of them ... but this is the 
one that I learned was the way, from a mathematician's point of view. (DF) 

Thirteen teachers based their determination of an argument's validity on whether 
the argument was mathematically sound, as opposed to focusing on the particular 
method or approach used. In other words, these teachers focused explicitly on the 
validity of the reasoning presented in an argument. For example, one teacher rated 
an argument as a proof because it established the truth of the general case mathe- 
matically: "They showed it geometrically for the first few cases and then explained 
the generalization, why the statement is true for any size or shape in the general 
case" (SP). Another teacher based her rating of an argument on her understanding 
of the underlying mathematics: 

I agree with what an ellipse is, a set of points whose distance to two points is a 
constant, and the only point which would lie both on the line and on the ellipse is that 
point of tangency which is going to be the midpoint of that segment, which is very 
obvious. That's convincing as a proof to me. (KB) 

In short, teachers who applied this criterion spoke more about the mathematics 
underlying an argument than about the particular mathematical method or approach 
used in constructing an argument. 

Twelve teachers required that an argument deemed to be a proof must have suffi- 
cient detail in order to merit the highest rating. To some extent, one might expect 
teachers to make this criterion essential--in their daily practices, teachers frequently 
request that students "show all the steps" in their work. Several teachers' comments 
about some of the arguments capture the gist of this criterion: 

There are general requirements of a proof, even though you may think you're proving 
something soundly, if someone else was to look at it and couldn't follow it, then one 
of the requirements of a proof is missing.... It is a sound proof [rated a 3], although it 
would have been nice to have had a little bit more explanation so that I could have 
followed what they were doing a little bit better. (KU) 

This one [shown in Figure 4b] is algebraic and I think if I actually went through and 
wrote the steps out it would be a 4 for me. But you skipped steps here [i.e., details 
regarding the simplification of the equality]. (CC) 

[The proof shown in Figure 3b] is interesting.... It's a little hard for me to see. It's more 
the way the statement is written. It's not whether it's a valid idea. That's why I'm rating 
it down a little bit, it's not obvious to me. (CA) 
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I don't like the proof [shown in Figure 3b]. I had to read it three times before I could 
follow it. I'd say it's a valid proof [rated a 4] though. (DN) 
I can't find anything in the mathematics that's wrong. There's nothing in it that's wrong, 
for me it left too much to figure out. I'd go with a 3. (DL) 
It just seemed to be more clear, very easy to follow, I don't even think I would have 
to ask a question of this person. So I would say that's a 4. (EN) 

It is clear that for these teachers to give an argument the highest rating, not only 
did it have to be mathematically sound but it also had to include enough detail so 
that one could easily follow it. Thus, the rationale for giving an argument a rating 
of 3-still enough to be considered a proof-was more qualitative than substan- 
tive in nature. In other words, in assigning a rating of 4, these teachers seemed to 
focus more on the completeness of the steps of the argument and the ease with which 
one could follow it than on the argument as a whole. 

Five teachers determined an argument's validity on the basis of the final crite- 
rion: whether an argument was knowledge dependent-that is, whether specialized 
knowledge was necessary to understand an argument. For example, in explaining 
why she gave a calculus-based argument a rating of 3, one teacher referred to the 
level of mathematics knowledge required: "You have to have a certain amount of 
math knowledge, but some people who haven't seen calculus in a while would find 
it helpful to have a short little explanation about the derivative" (KU). Another 
teacher, after assigning an argument a 3, stated what she valued in a proof: "I'd 
like a proof that if you don't know anything, and you're coming in and you read 
it, and you understand from the proof how everything falls out" (LV). In a similar 
fashion, one teacher explained why she gave one argument a 4-"1 think this would 
convince any crowd without having them have to assume anything or know 
anything"-while rating another one only a 3-"Just a 3 because there is always 
the assumption that everybody knows about the derivative" (EN). Thus, these 
teachers gave a higher rating to arguments that required a less sophisticated under- 
standing of the mathematics presented (or, alternatively, presented less sophisti- 
cated mathematics in constructing the argument). 

What Do Teachers Find Convincing? 

For each set of arguments, the teachers were also asked if they were more 
convinced by a particular argument or arguments, and why. It is worth mentioning 
that the most convincing arguments, as indicated by the teachers, were often not 
proofs. Table 2 displays the characteristics of arguments that teachers found 
convincing. Some of these characteristics also emerged as criteria that teachers used 
in evaluating an argument's validity (e.g., the criterion mathematically sound was 
used both to judge the validity of an argument and to describe why an argument 
was more or most convincing), and these will not be discussed again here. 
Descriptions of the other characteristics follow. 

Concreteness. The defining characteristic of arguments in this category was their 
inclusion of a concrete feature; that is, teachers were most convinced by arguments 
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Table 2 
Characteristics of Convincing Arguments. 

Characteristic Frequency a 

Concrete features (i.e., uses specific values or a visual representation) 15 (13) 
Familiarity 15 (10) 
Sufficient level of detail 12 (8) 
Generality 10 (9) 
Shows why 9 (5) 
Valid method 5 (3) 
All equally convincing (of arguments within a set) 4 (4) 
a The frequency is the number of occurrences of a particular reason. Totals may include multiple counts 
for a single teacher (e.g., a teacher may have been most convinced by familiar arguments in more than 
one set of arguments). The number of different teachers citing a particular characteristic is provided 
in parentheses. 

that relied on specific examples (6 teachers) or provided a visual reference (12 
teachers). For instance, one teacher found an argument based on several examples 
to be the most convincing: "[Argument] C [not shown in this article] convinces me 
the most. Seeing that many examples" (LV). Others found the proof of the partic- 
ular case (see Figure 5) to be the most convincing because it showed the statement 
to be true by use of a specific example. As one teacher commented, "I should be 
more convinced by C [a proof of the general case-not shown] because it's much 
more general, but I like the particular one" (QK). In other cases, teachers were most 
convinced by an argument's visual features. As one teacher stated, "The most 
convincing to me is this one [see Figure 3a] because you can see it. It's there. It's 
a straight line" (CC). Another teacher stated, "The one that is most convincing to 
me right now is [Figure 4b] because it's the easiest to follow. I can see the right 
triangle and how it relates to the formula" (SP). For this particular teacher, the 
picture allowed her to connect the algebraic manipulations to something concrete. 

Familiarity. Ten teachers found a particular argument in a set to be most 
convincing because of its familiarity (i.e., they had previously seen it or had used 
it in their instructional practice). In this case, the explanation of why they were 
convinced by an argument was not based on the mathematics presented but rather 
on their previous experiences with the argument. The following statements are 
representative: 

This one [Figure Ic] is pretty convincing based on my past experiences. For me, the 
convincing part of this one is the understandability because of my past experiences. (PB) 

[It's convincing because] I'm teaching conic sections and the ellipse and the defini- 
tions, this is very familiar to me and it just clicked. (NA) 
I mean I'm very familiar with this type of proof. I've taught geometry for many years. 
(KU) 

It is certainly possible that these teachers were convinced by an argument resting 
on mathematical grounds, yet in the context of the interviews, their descriptions 
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of why an argument was convincing made no reference to the mathematics involved 
in producing it but only to their previous experiences with an argument. 

Generality. Nine teachers were most convinced by arguments that clearly proved 
the general case-that is, arguments that established the truth of a statement for all 
relevant cases. For example, several teachers found the proof of the general case (see 
Figure 5 for the problem statement and a proof of the particular case) to be most 
convincing. The following comments capture the essence of these teachers' views: 

Because it generalized this problem completely. It showed it to be true for any number. 
(SP) 

I thought proofs A [see Figure 5] and C [proof of the general case; not shown] were 
essentially the same thing. Proof A just used a specific number and proof C was the 
generalization of that. (KA) 

Shows why. Five teachers were more convinced by an argument because of the 
insight that it offered into the underlying mathematics. This characteristic allowed 
these teachers to see not only that the statement proved was true, but also why it 
was true. As one teacher stated, 

Some of them really show an insight and some of them don't. C [Figure lb] would defi- 
nitely convince me of the truth because it's very visual and it shows exactly why it's 
true. (MQ) 

It is interesting that the only arguments that teachers identified as convincing 
because they offered an insight were arguments that included visual representa- 
tions. This was the case despite the fact that the argument sets were designed to 
include other, nonvisual, arguments that were (thought to be) explanatory (see, 
for example, Figure ic). 

DISCUSSION 

This article reports results from a study that examined the nature of secondary 
school mathematics teachers' conceptions of proof. This section discusses the 
results in relation to teachers' views of the role of proof in mathematics, what consti- 
tutes proof, and what they find convincing, as well as the implications of this work 
for teacher education and mathematics education research. 

Roles of Proof 

The teachers described a variety of roles that proof plays in mathematics: to verify 
the truth of a statement, to explain why a statement is true, to communicate math- 
ematics, and to create and systematize mathematics. These roles suggest that 
teachers have a diverse and, pedagogically speaking, potentially powerful under- 
standing of the function of proof in mathematics. Perhaps if teachers were to pay 
explicit attention to these roles during their instruction, they would provide class- 
room experiences with proof that would enable their students to go beyond the 
limited conceptions of proof that students have traditionally developed. For 
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example, one might question whether high school geometry students are able to 
view the proofs that they construct in class as interrelated-that is, whether these 
students are cognizant of the particular axiomatic system (typically Euclidean 
geometry) that provides the structure for their work. Teachers holding a view of 
proof as a means of systematization might be more likely to provide opportunities 
for students to reflect on their work through this particular lens. At the very least, 
these teachers would be better prepared to provide such opportunities for their 
students (cf. Healy, 1993). Encouraging students to reflect on proof from a "meta- 
level" may help them develop an understanding of issues related to the creation 
and systematization roles of proof. A parallel argument could be made concerning 
undergraduate mathematics education: As undergraduates, do prospective teachers 
have opportunities to experience and discuss these roles of proof? The Moore 
method of teaching, for example, which is used by some mathematicians, provides 
undergraduate students with just such an experience.4 In the context of Euclidean 
geometry, for instance, students are given a few axioms and then left to deduce the 
consequences; in the process, they are both creating mathematical knowledge 
through the proofs they construct as well as developing an understanding of a partic- 
ular deductive system of definitions, axioms, and theorems. 

Noticeably absent among the roles of proof that teachers mentioned, however- 
and perhaps most important pedagogically-was its role in promoting under- 
standing. To some extent, this omission should not be surprising as the focus of 
teachers' previous experiences with proof as students themselves, both at the 
secondary and collegiate levels, has tended to be primarily on the deductive mech- 
anism or on the final product (Chazan, 1993; Harel & Sowder, 1998). As a conse- 
quence, "in most instructional contexts proof has no personal meaning or explana- 
tory power for students" (Schoenfeld, 1994, p. 75). Further, proving practices in 
secondary mathematics classrooms are often limited to verifying the truth of state- 
ments that students (and teachers) know have been proven before and, in many 
cases, are intuitively obvious to them. Proving practices of this nature not only 
constrain the conceptions that students develop but also may limit the conceptions 
that teachers develop (as teachers' instructional practices may influence their 
conceptions). In short, if teachers are to develop a view of proof as a meaningful 
tool for studying and learning mathematics, then as Hanna (1995) suggested, 
efforts must be made "to enhance its role in the [undergraduate and secondary] class- 
room by finding more effective ways of using it as a vehicle to promote mathe- 
matical understanding" (p. 42). 

The role of proof in promoting understanding was another aspect of proof that 
many teachers omitted as a characteristic of arguments that they found convincing. 
In light of the comments in the preceding paragraph, however, teachers' failure 
to include this aspect of proof may have been an artifact of the interview protocol 

4 For additional information on R. L. Moore and the method of teaching with which he is credited, 
see http://www.discovery.utexas.edu/rlm/index.html. 
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design. In particular, the arguments used during the interviews all provided 
support for statements that the teachers knew to be true (e.g., the sum of the angles 
in a triangle is 1800); as a result, there was not a genuine need for teachers to be 
convinced of the truth of a statement. Had there been such a need, teachers might 
have preferred those arguments that helped them to understand why a given state- 
ment is indeed true. 

What Is Proof? 

Many of the teachers studied did not seem to have robust beliefs about the mean- 
ings that they ascribed to the notion of proof. Every teacher talked about proof as 
an argument that demonstrates the truth of a statement and expressed the view that 
the demonstration of truth is a primary role of proof as well. Yet, a significant 
number of these same teachers seemed to believe that a proof is a fallible 
construct-that counterexamples or other contradictory evidence may exist-or 
they expressed some other measure of doubt about the generality of a proof. These 
teachers' views of proof were in stark contrast to views of proof as "not merely 
beyond reasonable doubt, but beyond all doubt" (Dunham, 1994, p. 117). Although 
Dunham's latter point may seem obvious, the infallibility (or fallibility) of a proof 
may not have been explicitly addressed or discussed during many teachers' under- 
graduate mathematics experiences. For example, not all schools require that their 
teacher education programs include the study of non-Euclidean geometries-a 
domain in which the issue naturally arises. 

Many teachers also seemed to reach a stronger level of conviction regarding the 
truth of a proof's conclusion by testing it with empirical evidence. To some degree 
this need for confirmation is not surprising; Fischbein (1982) suggested that the 
need for additional confirmation primarily reflects differences in what is accepted 
as proof in everyday situations versus mathematical situations: 

The two basic ways of proving-the empirical and the logical-are not symmetrical, 
they do not have the same weight in our practical activity.... The concept of formal proof 
is completely outside the mainstream of behavior. A formal proof offers an absolute 
guarantee to a mathematical statement. Even a single practical check is superfluous. 
This way of thinking, knowing, and proving, basically contradicts the practical way 
of knowing which is permanently in search of additional confirmation. (p. 17) 

Martin and Harel (1989) reached a similar conclusion in their study, suggesting that 
some individuals need to combine a deductive argument with empirical evidence 
to believe a particular conclusion. In Fischbein's study, as well as Martin and 
Harel's, however, the subjects had far less extensive mathematics backgrounds 
(middle grade students and prospective elementary teachers, respectively) than the 
subjects in the study reported here. 

The teachers also displayed varying abilities in distinguishing between arguments 
that constituted proofs and those that did not; they tended to be very proficient at 
recognizing proofs but had more difficulty recognizing nonproofs. With regard to 
the latter, for example, several teachers accepted empirically based arguments as 
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proofs. Further, many teachers accepted arguments as proofs seemingly on the basis 
of their judgments of the mechanics of an argument (e.g., correct symbolic manip- 
ulation) or of an argument's form (e.g., appears to be a proof by induction) rather 
than on the correctness of the reasoning presented. 

The fact that these results are consistent with those found by other researchers 
(e.g., Harel & Sowder, 1998; Martin & Harel, 1989) suggests that such inadequate 
understandings of what constitutes proof may be widespread. It is also worth 
recalling that the arguments presented to teachers were specifically chosen so that 
the underlying mathematical concepts were not difficult; it was intended that the 
focus of the teachers would be on the argument presented rather than on trying to 
understand the mathematics used in producing the argument. One can imagine that 
making the content more difficult (i.e., undergraduate mathematics) might present 
additional obstacles to individuals in deciding what counts as proof. Such a change 
also raises an interesting question: How does the interaction of the mathematics 
content with the presented argument influence one's understanding of proof? 

Finally, the teachers seemed to view the validity of arguments along a continuum, 
with the variability being a function of their sense of an argument's completeness. 
That is, the teachers tended to use one of two values (a rating of 3 or 4) rather than 
a single value (a rating of 4) for arguments that they identified as proofs. In some 
cases, their decision between a 3 and a 4 was dependent on the level of detail 
provided in the proof; in other cases, it was dependent on the level of knowledge 
required to understand the proof. It is interesting that such decisions reflect, to some 
extent, the fact that the discipline of mathematics does not have absolute criteria 
for what counts as proof-in the teachers' case, criteria for the degree of explicit- 
ness that is required and the mathematical results that are acceptable to use. It might 
have been interesting if teachers had been "forced" to rate an argument either as a 
proof or as a nonproof (i.e., using a 2-point rating scale). How would teachers have 
viewed the arguments that they originally rated as proofs but to which they assigned 
a rating of 3? Would teachers have weighed the arguments in a fashion similar to 
that in which mathematicians often weigh arguments offered as proof of a claim, 
asking, "Does the argument convincingly present the case that a formal proof exists 
and could be generated if so desired?" 

What Is Convincing? 

The characteristics of arguments that the teachers found to be most convincing 
seemed, in large part, to relate more to form than to substance. In other words, the 
majority of the characteristics that the teachers suggested concerned qualities 
related to an argument's form-features of the argument, the teacher's own famil- 
iarity with the argument, the amount of detail provided by the argument, or the 
particular method used in constructing the argument-rather than to the mathe- 
matical substance of the argument. In the area of mathematical substance, only two 
of the characteristics described by teachers-that an argument proves the general 
case and that an argument explains why a statement is true-spoke explicitly to 
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the mathematics of an argument. Because the teachers were not specifically asked 
which arguments they found most mathematically convincing, they may have 
suggested arguments with characteristics resting on psychological grounds (i.e., 
characteristics that they found personally convincing). For example, several 
teachers found that they were most convinced by an empirically based argument, 
though they were fully aware that the argument was not a proof; it is unlikely, 
however, that these same teachers were mathematically convinced by such an argu- 
ment. The difference between being convinced mathematically and being convinced 
personally or psychologically is underscored in the comments of Fischbein (1982) 
cited earlier and is an area that warrants further research. In addition, as noted earlier, 
had the statements being justified been unfamiliar to the teachers, they might have 
considered other characteristics of an argument (e.g., whether or not the argument 
promoted understanding). 

CONCLUSION 

The conclusion that teachers' conceptions of proof are somewhat limited should 
not be entirely surprising. After all, literature abounds that has documented limi- 
tations in teachers' conceptions in other mathematical domains (e.g., Ball, 1990; 
Even, 1993). In fact, such limitations have become a central concern for many 
teacher educators, as it is commonly acknowledged that teachers' subject matter 
conceptions are perhaps the most important influence on their instructional prac- 
tice and ultimately on what their students learn (Borko & Putnam, 1996; Brophy, 
1991). Thus, it seems clear that if teachers are to be successful in enhancing the 
role of proof in secondary school mathematics classrooms, then their conceptions 
of proof must be enhanced. 

The responsibility for enhancing teachers' conceptions of proof lies with both 
mathematicians and mathematics educators, the parties who are chiefly responsible 
for the nature of teachers' experiences with proof and who, traditionally, have not 
adequately prepared teachers to succeed in enacting the lofty expectations set 
forth in reform documents (Ross, 1998). Of these two parties, university mathe- 
matics professors perhaps play the more significant role in shaping teachers' 
conceptions of proof. As Alibert and Thomas (1991) noted, 

[The] context in which students meet proofs in mathematics may greatly influence their 
perception of the value of proof. By establishing an environment in which students may 
see and experience first-hand what is necessary for them to convince others, of the truth 
or falsehood of propositions, proof becomes an instrument of personal value which they 
will be happier to use [or teach] in the future (p. 230). 

Establishing such an environment in university mathematics classrooms may 
require that coursework "give conscious and perhaps overt attention to proof 
understanding, proof production, and proof appreciation as goals of instruction" 
(Harel & Sowder, 1998, p. 275). In short, teachers need, as students, to experience 
proof as a meaningful tool for studying and learning mathematics. Experiences of 
this nature may influence the conceptions of proof that they develop as teachers, 
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and these ideas, in turn, may influence the experiences with proof their students 
will encounter in secondary school mathematics classrooms. 

Although changing the nature of teachers' experiences with proof as students in 
mathematics courses may certainly enhance their conceptions of proof, such 
enhancement may be only a necessary but not a sufficient condition for enabling 
teachers to teach proof meaningfully to secondary school mathematics students. 
Future research needs to explore more fully the conceptions of proof that teachers 
must have as they help students learn to reason mathematically. What do teachers 
need to know about proof and how do they draw on and use this knowledge in the 
act of teaching? What conceptions of proof are necessary in selecting and designing 
tasks to present to students? Which are essential for making sense of and changing 
one's practice to more closely reflect reform recommendations about proof? As our 
understanding of the answers to the foregoing questions grows, we will be in a better 
position to support teachers in their efforts to make proof a more meaningful part 
of their classroom practices. 
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